Pengelompokan Jenis Tekstur Kayu Menggunakan
K-Nearest Neighbor dan Ekstraksi Fitur Histogram
Wood Texture Classification Using K-Nearest Neighbor and Histogram Feature Extraction
Dedi Argya Nugroho Effendi1,Erna Zuni Astuti2 1,2Fakultas Ilmu Komputer,Universitas Dian Nuswantoro
Jl. Nakula 1 No. 5-11, Semarang 50131
E-mail :[email protected], [email protected]2
Abstrak
Kayu di Indonesia memiliki beraneka macam jenisnya, antara lain kayu jati, bengkirai, glugu, nangka, sengon dan lain sebagainya. Pengelompokan jenis kayu biasanya ditentukan oleh beberapa parameter, diantaranya adalah warna, berat, tekstur, dan masih banyak lagi. Salah satu faktor penting dalam pengelompokan jenis kayu adalah tekstur kayu. Pengelompokan jenis kayu biasanya hanya dapat dilakukan oleh para ahli kayu maupun penjual mebel. Persepsi mata manusia biasanya cenderung subyektif terhadap suatu obyek dalam melakukan pengelompokan. Untuk mengatasi hal ini maka digunakanlah suatu teknologi untuk menganalisis suatu tekstur kayu agar dapat diklasifikasikan ke dalam kelas-kelas tertentu. Oleh karena itu, diperlukan sebuah sistem yang dapat melakukan pendeteksian jenis kayu berdasarkan inputan citra tekstur kayu sehingga sistem tersebut diharapkan dapat melakukan klasifikasi jenis kayu berdasarkan tekstur. Dari pengklasifikasian jenis kayu menggunakan algoritma k-Nearest Neighbors (KNN) untuk mendapatkan pengelompokan jenis kayu.Pengklasifikasian menggunakan fitur pengukuran jarak, metode pengukuran jarak yang digunakan adalah Cityblock Distance sehingga dapat mengoptimalkan dalam melakukan pengklasifikasian berdasarkan jarak klasifikasi dari data training dan data testing.
Kata Kunci:K-Nearest Neighbor, Klasifikasi Citra Kayu, Cityblock Distance
Abstract
Wood in Indonesia has various colors, such as teak, bengkirai, glugu, jackfruit, Albizia, and so forth. Grouping by type of timber is usually determined by several parameters, such as color, weight, texture, and much more. One important factor in the grouping type of wood is the wood texture. Grouping types of wood can usually only be carried out by experts of wood and furniture sellers. Perception of the human eye tends subjective to an object in the grouping. To overcome this it is used a technology to analyze a wood texture that can be classified into certain classes. Therefore, we need a system that can make the detection of the type of timber based on the input image texture of wood so that the system is expected to classify the type of wood based texture. From the classification of types of wood using the algorithm k-Nearest Neighbors (KNN) for grouping wood types. This classification uses features distance measurement, distance measurement method used is Cityblock Distance so as to optimize in making the classification based on the distance the classification of the training data and data testing.
Keywords:K-Nearest Neighbor, Wood Image Classification, Cityblock Distance
1. PENDAHULUAN
kayu-bengkirai, glugu, nangka, sengon dan lain sebagainya. Jenis-jenis kayu di Indonesia tersebut tidak semua memiliki nilai jual dan ada juga yang memiliki nilai jual. Untuk jenis-jenis kayu yang memiliki nilai jual tergolong banyak jumlahnya, dan diantara jenis-jenis kayu tersebut bahkan memiliki nilai jual tinggi” hingga pasar Internasional. “Pengelompokan jenis kayu biasanya ditentukan oleh beberapa parameter, diantaranya adalah warna, berat, tekstur, dan masih banyak lagi. Salah satu faktor penting dalam pengelompokan jenis kayu adalah tekstur kayu [1].
Pengelompokan jenis kayu biasanya sangat bergantung pada persepsi mata manusia terhadap faktor tekstur jenis kayu, biasanya hanya dapat dilakukan oleh para ahli kayu maupun penjual mebel. Persepsi mata manusia biasanya cenderung subyektif terhadap suatu obyek dalam melakukan pengelompokan [2]. Untuk mengatasi hal ini maka digunakanlah suatu teknologi untuk menganalisis suatu tekstur kayu agar dapat diklasifikasikan ke dalam kelas-kelas tertentu. Keuntungan melakukan klasifikasi jenis kayu secara komputerisasi ini dapat terlihat secara nyata. Dengan kemampuan analisis yang lebih cermat terhadap perubahan-perubahan kecil yang secara umum tidak bisa dilakukan oleh manusia tentu menimbulkan perubahan yang cukup drastis”. Perubahan tekstur kayu dapat terjadi akibat lingkungan pertumbuhan, suhu kelembapan dan umur pohon itu sendiri. Sehingga warna dan tekstur dapat berubah sesuai dengan faktor lingkungan tersebut.
Dalam penelitian ini, penulis menggunakan teknologi dan ilmu pengetahuan pada citra digital. Dimana teknologi tersebut dapat melakukan pengelompokan secara otomatis dengan menggunakan melakukan inputan ke dalam database. Oleh karena itu, diperlukan sebuah sistem yang dapat melakukan pendeteksian jenis kayu berdasarkan inputan citra tekstur kayu sehingga sistem tersebut diharapkan dapat melakukan klasifikasi jenis kayu berdasarkan tekstur.
Klasifikasi biasa dilakukan melalui fitur-fitur yang diolah dengan menerapkan langkah-langkah pengumpulan dan pengelompokan data dengan beberapa upaya seperti pembagian ukuran fitur, seleksi fitur, dan pendesainan klasifikasi berdasar aturan. Secara praktikal, salah satu contoh bentuk pengolahan fitur dapat dilakukan melalui ekstraksi warna R-G-B [3].
Dari data jenis kayu tersebut akan dilakukan sebuah ekstraksi dengan ciri statistik atau analisis sebuah tekstur. Dengan menggunakan komposisi warna dalam bentuk histogram untuk mepresentasikan jumlah piksel untuk intensitas warna dalam citra. Gambar dalam database akan di olah melalui fitur ekstraksi ciri melaluiIntensitas, Deviasi, Skewness, Energi, Entropi dan Smoothness yang akan digunakan dalam pengklasifikasian jenis kayu. Dari pengklasifikasian jenis kayu tersebut, selanjutnya dilanjutkan dengan menggunakan algoritma k-Nearest Neighbor (KNN) untuk mendapatkan pengelompokan jenis kayu untuk mendapatkan hasil klasifikasi terdekat. Pengklasifikasian menggunakan fitur pengukuran jarak, metode pengukuran jarak yang digunakan adalahCityblock Distancesehingga dapat mengoptimalkan dalam melakukan pengklasifikasian berdasarkan jarak klasifikasi dari data training dan data testing. Dalam penelitian ini digunakan fitur warna dan tekstur pada kayu guna menentukan jenis kayu menggunakan Algoritma K-Nearest Neighbor. Pola pencarian dengan mencari sejumlah citra yang memiliki kemiripan dengan citra dalamdatabase[4].
SN: 1978-1520
Received June1st,2012; Revised June25th, 2012; Accepted July 10th, 2012
proses ekstraksi ciri dan output yang menghasilkan nilai kebenaran. Dari karakteristik yang ada pada tiap citra kayu, akan dilakukan percobaan untuk mendapatkan ciri khas dari masing-masing citra kayu. Diharapkan ciri yang berhasil diperoleh dapat membedakan jenis kayu pada masing-masing citra inputan. Sehingga penelitian ini dapat bermanfaat untuk meminimalisir adanya kesalahan pemilihan jenis kayu berdasarkan citra yang dilihat [4].
Berdasarkan latar belakang di atas yang sudah di sampaikan sebelumnya, dengan ini maka penulis akan mengangkat judul “Ekstraksi Fitur Histogram Guna Klasifikasi Jenis Kayu Menggunakan Algoritma K-Nearest Neighbor”
2. METODE PENELITIAN
Metode penelitian Klasifikasi citra kayu menggunakan K-NN sebagai berikut :
Gambar 1. Metode Penelitian 2.1 Objek Penelitian
Dalam penelitian ini penulis memilih kayu sebagai objek penelitian. Objek penelitian adalah bagaimana melakukan klasifikasi jenis kayu dengan metode K-NN menggunakan inputan citra kayu sehingga inputan tersebut dapat di ketahui jenis kayunya
2.2 Instrumen Penelitian
Instrumen penelitian yang dipergunakan berupa hardware dan software sebagai berikut :
2.2.1. Perangkat Lunak (Software)
Perangkat lunak yang digunakan dalam menyelesaikan penelitian adalah sebagai berikut :
a. Windows 7 ultimate 64 bit
Digunakan dalam implementasi Ekstraksi Citra, Impelentasi Metode pengukuran jarak dank-Nearest Neighbors(KNN).
c. Microsoft Office Word 2010
Digunakan dalam penulisan penelitian d. Adobe Photoshop
Software photoshop digunakan dalam melakukan perbaikan citra seperti cropping citra.
2.2.2 Perangkat Keras ( Hardware)
Perangkat lunak yang digunakan dalam menyelesaikan penelitian adalah sebagai berikut :
a. Laptop Asus A47 Core i5 b. VGA Nvidia 2Gb
c. Ram 4 Gb d. Harddisk 500 Gb
2.3 Teknik Analisis Data
Teknik analisis data adalah cara mengolah data menjadi informasi sehingga sifat atau karakteris datanya mudah dipahami. Data yang telah dikumpulkan akan dibagi menjadi dua jenis yaitu data training dan data testing. Data training berfungsi sebagai bahan pembelajaran pada mesin agar mesin dapat memiliki sebuah pengetahuan tentang tekstur kayu. Data testing berfungsi sebagai data uji coba kemampuan mesin. Data-data tersebut kemudian dipindahkan kedalam komputer. Data training sebanyak 30 citra dan data testing sebanyak 20 citra dari 5 jenis kayu yang berbeda. Dalam penelitian ini ada beberapa tahapan yang dilakukan terhadap data-data yang diperoleh, tahapan tersebut antara lain :
1. Melakukan seleksi kualitas tektur dan warna kayu yang memenuhi standart 2. Melakukan ekstraksi untuk data testing dan data training
3. Ekstraksi menggunakan Histogram
4. Metode klasifikasi menggunakan metode K-Nearest Neighbor (KNN)
5. Pemilihan data uji sehingga data inputan dapat dengan mudah terdeteksi.
2.4 Objek Data
Data primer yang digunakan berupa data kayu yang nantinya digunakan sebagai citra testing dan data training yang nantinya akan di lakukan klasifikasi menggunakan perbandingan dengan citra uji atau citra inputan.
2.5 Eksperimen
Alur metode penelitian merupakan alur yang digunakan untuk mendeskripsikan diagram yang ada di metode penelitian, tahapnya sebagai berikut
1. Input Citra RGB Kayu
Menginputkan citra input kayu yang akan di masukkan kedalam data training dan data testing. Data yang dipergunakan berjumlah 30 data training dan 20 data testing.
2. Data Training dan data testing
SN: 1978-1520
Received June1st,2012; Revised June25th, 2012; Accepted July 10th, 2012 3. Ekstraksi
Citra yang ada di data training dan testing, di ekstraksi menggunakan fitur ekstraksi, dimana pada tahap ini dilakukan pengkalkulasian citra berdsarkan 6 fitur ekstraksi histogram yaitu : Intensitas, Deviasi, Skewness, Energi, Entropy dan Smoothness. Nilai yang dihasilkan dari fitur ekstraksi dimasukkan di data training dan data testing.
4. Database Training dan Testing
Nilai yang dihasilkan dari tahap sebelum dimasukkan ke database training dan testing. Database training digunakan sebagai acuan data, yang nantinya dicocokan dengan data testing.
5. K-NN
Perhitungan metode menggunakan K-Nearest Neighbor. K-NN menggunakan k=3 dikarenakan klasifikasi pada k=3 merupakan nilai yang optimal dalam pengklasifikasian. Dengan menentukan tetangga terdekat, kemudian melakukan penentuan kelas ketertangaan jarak. Sehingga dapat diketahui kelas – kelas citranya berdasarkan jarak ketertanggaan.
6. Cityblock Distance
Tahap selanjutnya adalah melakukan perhitungan jarak. Jarak yang dikalkulasi adalah antara jarak data testing dengan data training, perhitungan jarak tersebut menggunakan Cityblock distance.
7. Output
Perhitungan yang sudah dilakukan menggunakan cityblock distance antara data training dengan data testing, akan menghasilkan output nama berdasarkan kelas citra yang dihasilkan pada tahap kalkulasi.Manhattan Distance.
3. HASIL DAN PEMBAHASAN
Data citra yang digunakan menggunakan ukuran piksel 625x417. Citra yang digunakan berjumlah 250 citra kayu dari 5 jenis kayu. Citra diambil menggunakan kamera saat siang hari. Dari jumlah 250 citra, 150 data citra digunakan sebagai data training dan 100 data citra sebagai data testing. Data training di masukkan ke dalam database sebagai media klasifikasi. Berikut citra yang digunakan dalam penelitian ini :
Citra Nama Jumlah
Kayu Glugu
Training = 30 Testing = 20
Kayu Bengkirai
Training = 30 Testing = 20
Kayu Nangka
Sengon Testing = 20
Kayu Jati Training = 30 Testing = 20
Gambar 2. Citra yang digunakan
Ekstraksi fitur citra jenis kayu digunakan untuk mendapatkan ciri tekstur dari pola kayu yang berbeda. Dalam ekstraksi fitur yang dilakukan menggunakan 6 fitur diantaranya Intensitas, Deviasi, Skewness, Energi, Entropi dan Smoothness. Citra tersebut kemudian diproses menggunakan ekstraksi fitur Histogram dengan menggunakan jarak Ecluidean Distance. Untuk proses ekstraksi fitur Histogram akan menghasilkan angka - angka pixel pada setiap citra jenis kayu sebagai berikut :
1. Citra Training
Citra training adalah citra yang digunakan sebagai data training. Data training berjumlah 150 data citra yang sudah di ekstraksi menggunakan 6 fitur. Citra yang digunakan berupa citra RGB atau citra warna. Berikut contoh tabel citra training yang digunakan dalam penelitian :
Tabel 1 Citra Training
SN: 1978-1520
Received June1st,2012; Revised June25th, 2012; Accepted July 10th, 2012 3.1Pengujian Aplikasi
Berikut percobaan klasifikasi menggunakan metode KNN dengan parameter =3 untuk menghasilkan nilai akurasi pada aplikasi :
Tabel 2 Pengujian Aplikasi
No Jenis Hasil
Aplikasi
TRUE / FALS
E
1 Glugu Glugu TRUE
2 Glugu Glugu TRUE
3 Glugu Glugu TRUE
4 Glugu Glugu TRUE
5 Glugu Glugu TRUE
6 Glugu Glugu TRUE
7 Glugu Sengon FALSE
8 Glugu Glugu TRUE
9 Glugu Glugu TRUE
10 Glugu Glugu TRUE
11 Glugu Glugu TRUE
12 Glugu Glugu TRUE
13 Glugu Glugu TRUE
14 Glugu Glugu TRUE
15 Glugu Glugu TRUE
16 Glugu Glugu TRUE
17 Glugu Glugu TRUE
18 Glugu Glugu TRUE
19 Glugu Glugu TRUE
20 Glugu Glugu TRUE
36 Bengkirai Bengkirai TRUE 37 Bengkirai Bengkirai TRUE 38 Bengkirai Bengkirai TRUE 39 Bengkirai Bengkirai TRUE 40 Bengkirai Bengkirai TRUE
41 Jati Jati TRUE
42 Jati Jati TRUE
43 Jati Jati TRUE
44 Jati Jati TRUE
45 Jati Jati TRUE
46 Jati Bengkirai FALSE
47 Jati Jati TRUE
48 Jati Jati TRUE
49 Jati Jati TRUE
50 Jati Jati TRUE
51 Jati Jati TRUE
52 Jati Jati TRUE
53 Jati Jati TRUE
54 Jati Jati TRUE
55 Jati Jati TRUE
56 Jati Jati TRUE
57 Jati Jati TRUE
58 Jati Jati TRUE
59 Jati Jati TRUE
60 Jati Jati TRUE
61 Nangka Nangka TRUE
62 Nangka Nangka TRUE
63 Nangka Nangka TRUE
64 Nangka Nangka TRUE
65 Nangka Nangka TRUE
66 Nangka Nangka TRUE
67 Nangka Nangka TRUE
68 Nangka Nangka TRUE
69 Nangka Nangka TRUE
70 Nangka Jati FALSE
71 Nangka Nangka TRUE
72 Nangka Sengon FALSE
73 Nangka Nangka TRUE
74 Nangka Nangka TRUE
75 Nangka Nangka TRUE
SN: 1978-1520
Received June1st,2012; Revised June25th, 2012; Accepted July 10th, 2012
78 Nangka Nangka TRUE
79 Nangka Nangka TRUE
80 Nangka Nangka TRUE
81 Sengon Sengon TRUE
82 Sengon Sengon TRUE
83 Sengon Sengon TRUE
84 Sengon Nangka FALSE
85 Sengon Nangka FALSE
86 Sengon Sengon TRUE
87 Sengon Sengon TRUE
88 Sengon Sengon TRUE
89 Sengon Sengon TRUE
90 Sengon Sengon TRUE
91 Sengon Sengon TRUE
92 Sengon Sengon TRUE
93 Sengon Sengon TRUE
94 Sengon Sengon TRUE
95 Sengon Sengon TRUE
96 Sengon Sengon FALSE
97 Sengon Sengon TRUE
98 Sengon Sengon TRUE
99 Sengon Sengon TRUE
100 Sengon Sengon TRUE
Perhitungan akurasi dalam klasifikasi jenis kayu menggunakan klasifikasi K-NN dengan metode perhitungan jarak ecuilden distance dihitung menggunakan recognition rate. Dari 100 citra testing terdapat 9 citra yang tidak sesuai dengan class jenis kayunya sehingga menghasilkan akurasi sebesar 91%.”Dengan perhitungan sebagai berikut.
Recognition Rate=
(Σ Citra benar)(Σ Jumlah Citra) x 100 % = 91/100 x 100%
= 91%
4. KESIMPULAN
sebesar 91%
5. SARAN
Beberapa saran untuk meningkatkan hasil penelitian berikutnya tentang klasifikasi jenis kayu diantaranya sebagai berikut :
1. Penelitian selanjutnya diharapkan untuk menambah sampel jenis kayu.
2. Dalam data training dan data testing menggunakan data citra yang lebih banyak lagi agar dapat meningkatkan akurasi yang lebih baik.
3. Pengambilan citra menggunakan banyak sudut dan jarak yang berbeda-beda. 4. Menggunakan metode perhitungan jarak yang lain , maupun membandingkan antara metode perhitungan jarak dalam melakukan pengklasifikasian citra.
DAFTAR PUSTAKA
[1] M. Khalid, E. L. Y. Lee, R. Yusof dan M. Nadaraj, “Design Of An Intelligent Wood Species Recognition System,”IJSSST,p. 03, 2008.
[2] Online Lecture “Prinsip, jenis, dan unsur-unsur perspektif ”, 2014 http://doclecture.net/1-9476.html (diakses : 19-8-2016)
[3] Andi, “Pengolahan Citra Digital,” Yogyakarta: Darma Putra, 2010.