• Tidak ada hasil yang ditemukan

Directory UMM :Journals:Journal_of_mathematics:DM:

N/A
N/A
Protected

Academic year: 2017

Membagikan "Directory UMM :Journals:Journal_of_mathematics:DM:"

Copied!
9
0
0

Teks penuh

(1)

Copies of Orlicz sequences spaces

in the interpolation spaces

A

ρ,

Φ

Copias de espacios de Orlicz de sucesiones

en los espacios de Interpolaci´

on

A

ρ,Φ

Ventura Echand´ıa ([email protected])

Escuela de Matem´aticas, Facultad de Ciencias, Universidad Central de Venezuela

Jorge Hern´andez ([email protected])

Dpto. T´ecnicas Cuantitativas, DAC, Universidad Centro-Occidental Lisandro Alvarado

Abstract

We prove, by using techniques similar to those in [3], that the inter-polation spaceAρ,Φcontains a copy of the Orlicz sequence spacehΦ.

Hereρis a parameter function and Φ is an Orlicz function.

Key words and phrases:Orlicz spaces, Interpolation spaces, param-eter functions.

Resumen

En el presente trabajo, usando t´ecnicas an´alogas a las usadas en [3], demostramos que el espacio de Interpolaci´onAρ,Φ contiene una copia

del espacio de Orlicz de sucesioneshΦ. ρdenotar´a una funci´on par´

ame-tro y Φ una funci´on de Orlicz.

Palabras y frases clave:Espacios de Interpolaci´on, Espacios de Or-licz, funci´on Par´ametro

1

Introduction

In [3] it was proved that the classical Interpolation spaceAθ,pcontains a copy

ofℓp. Here we are going to give a similar result for Orlicz spaces, for that we

need some concepts.

Received 2006/02/22. Revised 2006/08/08. Accepted 2006/08/23. MSC (2000): Primary 46E30.

(2)

1.1

Orlicz spaces and parameter functions

Definition 1. An Orlicz function Φ is a an increasing, continuous , convex function on [0,∞) such that Φ(0) = 0. Φ is said to satisfy the ∆2-condition

at zero if l´ım sup

t→0

Φ(2t)/Φ(t)<∞.

Definition 2. Let Φ be an Orlicz function, the spaceℓΦof all scalar sequences

{αn}∞n=1 such that

X

n=1

Φ

µ|α n|

µ

<∞ for some µ >0,

provided with the norm

k{αn}

n=1kℓΦ = ´ınf

(

µ >0 :

X

n=1

Φ

µ|α n|

µ

≤1

)

,

is a Banach space called anOrlicz sequence space.

The closed subspace hΦ of ℓΦ, consists of all scalar sequences {αn}∞n=1 such

that

X

n=1

Φ

µ

|αn|

µ

<∞, for all µ >0.

Remark 1. if Φ satisfy the ∆2-condition at zero, we have that the spacesℓΦ

and hΦ coincide, so the result in this work generalize the one in [3] for the

case Φ(t) = tp p, p >1.

We have the following result proved in [4]

Proposition 1. Let Φ be an Orlicz function. Then hΦ is a closed subspace

of ℓΦ and the unit vectors{en}∞n=1 form a symetric basis ofhΦ.

In the following the next concept is very important.

Definition 3. A functionρis called a parameter function, orρ∈BK, if

ρis a positive increasing continuous function on (0,∞),such that

Cρ= Z ∞

0

m´ın(1,1 t)ρ(t)

dt

t <∞, where ρ(t) = sups>0

(3)

Definition 4. Given ρ∈BK and Φ an Orlicz function, we define the

weighted Orlicz sequence space ℓρ,Φ, as the space of all scalar sequences

{αm}m∈Z such that

X

m∈Z

Φ

µ

|αm|

µρ(2m)

<∞ for some µ >0,

equipped with the norm

°

°{αm}m∈Z

° °

ℓρ,Φ= ´ınf

(

µ >0 : X

m∈Z

Φ

µ |α m|

µρ(2m)

≤1

)

.

1.2

Interpolation spaces

Definition 5. An Interpolation couple A = (A0, A1) consists of two

Banach spacesA0andA1which are continuously embedded into a Haussdorff

topological vector space V.

The spaceP ¡

=A0+A1 is endowed with the normK(1, a), where

K(t, a) =K¡

t, a;A¢

= ´ınf

a=a0+a1

©

ka0kA0+tka1kA1 :a0∈A0, a1∈A1ª,

is the so called Peetre’s K−functional.

For 0< θ <1 and 1≤p <∞,theclassical Interpolation space Aθ,p,

consists of those ain P ¡

, such that

kakθ,p=

Z

0

(t−θK(t, a))pdt

t

 p

<∞.

In [2] we introduced the following function norm.

Definition 6. For ρ∈BK and Φ an Orlicz function, the function norm

Fρ,Φon¡(0,∞),dtt¢ is defined by

Fρ,Φ= ´ınf  

r >0 :

Z

0

Φ

·

|u(t)|

rρ(t)

¸

dt t ≤1

 

,

(4)

Using the function normFρ,Φ, we introduced in [2] for a Banach pairA,

the interpolation space Aρ,Φ, as the space of all a ∈ P ¡A¢ such that

Fρ,Φ[K(t, a)]<∞,endowed with the normkakρ,Φ=Fρ,Φ[K(t, a)].

Since fora∈Aρ,Φ,withρ∈BK and Φ an Orlicz function, we have that

1 2Φ

µK(2m, a)

ρ(2m)

1 ρ(2)

≤ ln(2)Φ

µK(2m, a)

ρ(2m+1)

2m+1

Z

2m

Φ

µK(t, a)

ρ(t)

dt

t

≤ Φ

µ

2K(2

m, a)

ρ(2m)

,

we obtain that, for alla∈Aρ,Φ,

°

°{K(2m, a)}mZ ° °

ℓρ,Φ

≤2kakρ,

Φ ≤4ρ(2)

°

°{K(2m, a)}mZ ° °

ℓρ,Φ

, (1)

which gives a discretization of Aρ,Φ.

In this work we use this discretization to prove that the interpolation space Aρ,Φcontains a copy ofhΦ.

2

The main result.

Theorem 1. Let(A0, A1)be a Interpolation couple,ρ∈BK andΦan Orlicz

function. We have that ifA0∩A1 is not closed inA0+A1 , then(A0, A1)ρ,Φ

contains a subspace isomorphic tohΦ.

Letε >0; we are going to construct a sequence{xn}∞n=1 in (A0, A1)ρ,Φ

and a sequence of integer {Nn}

n=1, strictly increasing, which satisfies the

following conditions 1. kxnkρ,Φ= 1

2. ´ınf

µ>0 (

P

|m|>Nn

Φ³K(2m,xn)

µρ(2m)

´

≤1

)

=°° °{K(2

m, x

n)}|m|>Nn

° ° °

ℓρ,Φ

≤ ε

2n+2

3. ´ınf

µ>0 (

P

|m|≤Nn

Φ³K(2m,xn+1)

µρ(2m)

´

≤1

)

=°° °{K(2

m, x

n+1)}|m|≤Nn

° ° °

ℓρ,Φ

≤ ε

2n+2.

For the purpose, supposse we have defined x1, x2, ..., xn, N1, ..., Nn−1, which

satisfies the above conditions. Since{K(2m, x

n)} ∈ℓρ,Φ, i.e.,

´ınf

(

µ >0 : X

m∈Z

Φ

µK(2m, x n)

µρ(2m)

≤1

)

(5)

there exists 0< µ0<∞,so that

X

m∈Z

Φ

µ

K(2m, x n)

µ0ρ(2m) ¶

≤1;

thus there exists Nn> Nn−1,such that

X

|m|>Nn

Φ

µK(2m, x n)

µ0ρ(2m) ¶

≤ ε

2n+2 µ 1

µ0 ¶

.

Therefore

X

|m|>Nn

Φ

µK(2m, x n) ε 2n+2ρ(2m)

≤1;

and from this we deduce that

ε 2n+2 ≥

° ° °{K(2

m, x

n)}|m|>Nn

° ° °

ℓρ,Φ .

By using (1) we can findk1, k2>0 so that

k1kxkΣ(A)≤ ° ° °{K(2

m, x)}

|m|>Nn

° ° °

ℓρ,Φ

≤k2kxkΣ(A),

for allx∈(A0, A1)ρ,Φ.

Let now xn+1∈(A0, A1)ρ,Φbe such that

kxn+1kΣ(A)≤

ε k22n+2

and kxn+1kρ,Φ= 1,

then we have that

° ° °{K(2

m, x

n+1)}|m|≤Nn

° ° °

ℓρ,Φ

≤k2kxn+1kΣ(A)≤

ε 2n+2.

We have thus contructed the required sequence.

Let us see now that for all sequences{αn}∞n=1,such that all but finitely many

are zero, we have that

µ

1−3ε

2

k{αn}

n=1khΦ ≤

° ° ° ° °

X

n=1

αnxn ° ° ° ° °

ρ,Φ

≤(1 +ε)k{αn}

n=1khΦ (2)

(6)

In order to prove the inequality (2) we need the following definitions: Form∈ Zandx∈Σ(A), put

Hm(x) =K(2m, x);

Hmis an equivalent norm tok..kΣ(A), for eachm∈ Z.

Also we put form∈ Z,

Fm=¡Σ¡A¢, Hm¢,

i.e. Fmis the space Σ(A) provided with the normHm.

Let nowF = (⊕m∈ZFm)ℓρ,Φ, i.e.

F=n{xm}m∈Z:xm∈Fm,k{Hm(xm)}kℓρ,Φ<∞ o

,

provided with the norm

°

°{xm}mZ ° °

F =k{Hm(xm)}kℓρ,Φ.

Given {αn}∞n=1a scalar sequence such that all but finitely many are zero, we

define X ={Xm}m∈Z, Y ={Ym}m∈Z, Zn ={Zmn}m∈Z ∈F,in the following

way

1. For eachm∈Z, Xm=P∞n=1αnxn

2. Ym= ½

α1x1 if |m| ≤N1

αnxn if Nn−1≤ |m| ≤Nn, n≥2

3. Z1

m= 0,if|m| ≤N1 and Zm1 =α1x1 if|m|> N1

4. Forn≥2,Zn m=

½

0, if Nn−1≤ |m| ≤Nn

αnxn, otherwise.

We have then that

X =Y +

X

n=1

(7)

and that

Moreover, we have that

(8)

Using the H¨older inequality we get

where Ψ is the complementary function of Φ. Since we have that

kYkF

we obtain that

kYkF−ε

Now using the fact that

(9)

we get, by replacing in (4), that

µ

1−3ε

2

¶ °

°{αn}∞n=1 ° °

hΦ≤ kXkF ≤

³

1 +ε 2

´°

°{αn}∞n=1 ° °

hΦ,

which means

µ

1−3ε

2

¶°°

° ° °

X

n=1

αnen ° ° ° ° °

hΦ ≤

° ° ° ° °

X

n=1

αnxn ° ° ° ° °

ρ,Φ

≤(1 +ε)

° ° ° ° °

X

n=1

αnen ° ° ° ° °

hΦ ,

as desired.

References

[1] Beauzamy, B., Espaces d’Interpolation R´eel, Topologie et G´eometrie, Lecture Notes in Math., 666, Springer-Verlag, 1978.

[2] Echand´ıa V., Finol C., Maligranda L., Interpolation of some spaces of Orlicz type, Bull. Polish Acad. Sci. Math., 38, 125–134, 1990.

[3] Levy M., L’espace d’Interpolation r´eel(A0, A1)θ,pcontain ℓp,C. R. Acad. Sci.

Paris S´er. A 289, 675–677, 1979.

[4] Lindenstrauss J., Tzafriri L.,Classical Banach Spaces, Vol. I, Springler-Verlag, 1977.

Referensi

Dokumen terkait

In this generalization, we will study possibility of extension of a continuous linear functional on A belonging to the eigen- vector space Eβ (ρ) to the whole algebra Oρ as a

More generally, if a complete locally compact metric space ( X, ρ ) has geodesic rays which determine distinct Busemann points of ∂ρX and yet stay a finite distance from each

Since the sequence of zeros is trivially log-concave, it is sufficient to prove the case when the ray passes through at least one binomial coefficient in the Pascal triangle.J. Then

In this section, we will prove Theorem 1, but first we note the following lemma, which is a direct consequence of the definitions of the Stern sequence and its twist..

Accordingly, these equivalence classes will be in one-to-one correspondence (via Φ) with the minimal nonzero inter- sections (w.r.t1. Since we are given a global linear isomorphism F

By using a certain Tth root of a unitary operator Hurd and Mandrekar [1] provided the Gladyshev’s type representation for a T -WP sequence in a Hilbert space.. The identification

We will prove that the order ideal generated by the finite rank operators on L p provided with an extension of the positive projective tensor norm is a Banach function space with

If Φ is a small class of weights we can define, as we did for J -Colim, a2-category Φ- Colim of small categories with chosen Φ-colimits, functors preserving these strictly, and