• Tidak ada hasil yang ditemukan

suppmat1229.doc 104KB Jun 05 2011 09:30:51 PM

N/A
N/A
Protected

Academic year: 2017

Membagikan "suppmat1229.doc 104KB Jun 05 2011 09:30:51 PM"

Copied!
13
0
0

Teks penuh

(1)

SUPPLEMENTARY MATERIAL

for

Van der Waals Effects between Hydrogen and First-Row Atoms in

Molecular Mechanics (MM3/MM4)

Norman L. Allinger and Kathleen A. Durkin

(2)

Table I. Interaction energy (kcal/mole) data in the head-to-head methane-methane

3.50 6.9856 7.1205 10.877 10.637 4.00 0.8369 1.0725 1.5087 1.5572

4.20 0.5158 0.5637

4.40 0.0790 0.1180

4.60 -0.1574 -0.0602 -0.0922 -0.0623 4.80 -0.1812 -0.1025 -0.1437 -0.1213 4.90 -0.1788 -0.1077 -0.1482 -0.1288 5.00 -0.1715 -0.1071 -0.1453 -0.1285 5.50 -0.1151 -0.0750 -0.0979 -0.0893 7.00 -0.0341 -0.0162 -0.0210 -0.0193

a Geometries were optimized at MP2/6-31G**. Energies are relative to the isolated energy of methane and which was -40.3937707 at MP2/6-311++G (2d,2p) (x 2 for the dimer). b This is relative to the isolated energy of methane which was 0.2157 kcal/mole by MM4 and 0.0 kcal/mole by MM3 (x 2 for the dimer). The MM3/4 H is atom type 5. The C-H bond length in MM3/4 is 1.07Å and 1.09Å at MP2/6-31G**.

Table II. Interaction energy (kcal/mole) data in the head-to-tail methane-methane system.

3.50 0.6197 0.8717 1.1701 1.0508

3.60 0.6434 0.5723

3.80 -0.2072 -0.0385 0.0523 0.0364 4.00 -0.3474 -0.2203 -0.1855 -0.1777 4.10 -0.3640 -0.2530

4.20 -0.3603 -0.2637 -0.2557 -0.2393 4.30 -0.3449 -0.2605 -0.2598 -0.2420

4.40 -0.2529 -0.2349

4.50 -0.2984 -0.2322 -0.2396 -0.2220 4.70 -0.2494 -0.1941 -0.2047 -0.1890 4.90 -0.2058 -0.1572 -0.1685 -0.1553

5.50 -0.0878 -0.0805

(3)
(4)

Table III. Interaction energies (kcal/mole) in the methane-dimethyl ether system.

O/H

dist (Å) MM4 a MM3 HF/6-31G**b MP2/6-31G** BSSE correctedc HF/6-31G** BSSE corrected MP2/6-31G** 1.8 5.1890 5.8873 5.9401 2.9031 6.6349 4.8162 1.9 3.4134 3.9187 3.7245 1.1582 4.4009 2.9175 2.0 2.1620 2.5216 2.1962 0.0020

2.1 1.2939 1.5448 1.1571 -0.7402 1.7563 0.7390 2.2 0.7021 0.8728 0.4593 -1.1958

2.3 0.3067 0.4190 -0.0025 -1.4533 0.5593 -0.1658 2.4 0.0492 0.1194 -0.3008 -1.5744

2.488 -0.4661 -1.6029 0.0772 -0.4620

2.5 -0.1127 -0.0723 -0.4823 -1.6025 0.0592 -0.4706 2.6 -0.2092 -0.1895 -0.5876 -1.5683 -0.0595 -0.5151 2.7 -0.2616 -0.2562 -0.6382 -1.4935 -0.1296 -0.5221 2.8 -0.2849 -0.2889 -0.6517 -1.3921 -0.1678 -0.5065 2.9 -0.2894 -0.2995 -0.6414 -1.2743 -0.1775 -0.4791 4.0 -0.1278 -0.1257 -0.1238 -0.2125 -0.0875 -0.1534 a This is relative to the isolated energies of methane and dimethyl ether which were 0.2157 and 0.9239 kcal/mole respectively by MM4. By MM3, these were 0.0 and 2.3040 kcal/mole respectively.

b All geometries were optimized at MP2/6-31G**. The interaction energies are relative to isolated methane and dimethyl ether. The HF energies are -40.2016949 and -154.0030263 Hartrees, respectively. The MP2 energies are -40.3646259 and -154.5518256 Hartrees. c Corrections were applied by counterpoise method.

Table IV. Interaction energy (kcal/mole) data in the methane-dimethyl ether system. O/H

dist (Å) HF/6-311G (2d,2p) a,b MP2/6-311G (2d,2p) BSSE corrected HF/6-311G (2d,2p)

BSSE corrected MP2/6-311G (2d,2p)

1.8 6.3214 2.1664 7.1481 4.2498

(5)

a This is relative to the isolated energies of methane and dimethyl ether which were -40.2120991 and -154.1146257 Hartrees, respectively, at the HF level. The isolated energies at MP2 were -40.3934864 and -154.6584773 Hartrees, respectively.

(6)

Table IXa. Fluoromethane dimer interaction energy (kcal/mole) for the head-on orientation.a F/F distance

(Å) MP2/6-311++G(2d,2p)b +G(2d,2p) BSSEMP2/6-311+

corrected

MM4 MM3

2.5000 1.6552 2.4180 1.5696 1.9584

2.6000 1.2525 1.9347 1.2374 1.4982

2.7000 1.0095 1.6129 1.0059 1.1776

2.8372c 0.8099 1.3297 0.8435 0.9541

2.9000 0.7523 1.2371 0.7286 0.7978

3.0000 0.6883 1.1225 0.6461 0.6880

3.1000 0.6421 1.0368 0.5858 0.6100

3.2000 0.6121 0.9666 0.5405 0.5539

0.5055 0.5127 0.4774 0.4815

3.5000 0.5615 0.8136 0.4542 0.4573

0.4342 0.4376 0.4165 0.4210 0.4005 0.4066 0.3857 0.3937

4.0000 0.5127 0.6401 0.3719 0.3817

0.3123 0.3306

5.0000 0.3958 0.4117 0.2645 0.2881

Table IXb. Fluoromethane dimer interaction energy (kcal/mole) for the 90° orientation.a

F/F distance

(Å) MP2/6-311++G(2d,2p)b +G(2d,2p) BSSEMP2/6-311+

corrected

MM4 MM3

2.5000 1.3107 2.1926 1.2582 1.8526

2.6000 0.6505 1.4455 0.8141 1.2184

2.7000 0.2273 0.9515 0.5120 0.7793

(7)

4.0000 -0.1273 0.0186 0.0145 0.0045

4.5000 0.0413 0.0465

5.0000 -0.0183 0.0245 0.0543 0.0700

a The isolated energies of fluoromethane were 0.0815 and 0.0497 kcal/mole by MM3 and

MM4, respectively. The isolated energy at MP2/6-311++G(2d,2p) was -139.4827432 Hartrees. Each isolated energy was doubled to account for the dimer energy at infinite separation and this value was used to calculate the interaction energies.

(8)

Table XI. MM4X vs. Gaussian data in methane-dimethyl ether interactions. O/H dist (Å) MM4X steric energies (kcal/mole)

1.9, 0.9 3.8, 0.8 5.6, 0.75

1.8 6.23 4.72 3.79

1.9 4.30 3.06 2.34

2.1 2.12 1.35 0.95

2.3 1.19 0.75 0.55

2.5 0.85 0.61 0.51

2.6 0.79 0.61 0.54

2.7 0.76 0.64 0.59

2.9 0.78 0.71 0.69

(9)

Table XIII. MM3X calculations on 9-isobutyl-1.4-dimethoxytriptycene. Value Typea x-ray MM3X Dev. MM3X

E=1.4,

(10)
(11)

C(14),C(16) bg 2.4021 2.4211 0.0190 2.4210 0.0189 2.4211 0.0190 C(17),C(19) ss 2.6393 2.6451 0.0058 2.6404 0.0011 2.6336 -0.0057 C(17),C(20) ss 2.5085 2.5404 0.0319 2.5409 0.0324 2.5410 0.0325 C(17),C(22) sa 2.5844 2.5637 -0.0207 2.5614 -0.0230 2.5586 -0.0258 C(17),C(23) sa 2.6429 2.6220 -0.0209 2.6172 -0.0257 2.6097 -0.0332 C(17),O(25) o 2.7883 2.8107 0.0224 2.8047 0.0164 2.7950 0.0067 C(18),C(22) sa 3.2468 3.2106 -0.0362 3.2028 -0.0440 3.1920 -0.0548 C(18),C(23) sa 3.4368 3.4066 -0.0302 3.3949 -0.0419 3.3791 -0.0577 C(18),O(25) o 3.0803 3.1475 0.0672 3.1323 0.0520 3.1118 0.0315 C(19),C(20) aa 2.5159 2.5193 0.0034 2.5204 0.0045 2.5215 0.0056 C(19),C(22) sa 3.4199 3.4249 0.0050 3.3976 -0.0223 3.3654 -0.0545 C(19),C(23) sa 3.2560 3.2056 -0.0504 3.1822 -0.0738 3.1514 -0.1046 C(19),O(25) o 3.0165 3.0651 0.0486 3.0552 0.0387 3.0390 0.0225 C(20),O(25) o 3.3326 3.4182 0.0856 3.3864 0.0538 3.3475 0.0149 C(21),C(22) aa 2.8226 2.8333 0.0107 2.8338 0.0112 2.8334 0.0108 C(21),C(24) aa 2.4339 2.4283 -0.0056 2.4279 -0.0060 2.4278 -0.0061 C(21),O(27) o 2.3542 2.3638 0.0096 2.3595 0.0053 2.3577 0.0035 C(22),C(23) aa 2.5120 2.5202 0.0082 2.5194 0.0074 2.5177 0.0057 C(23),C(24) aa 2.8546 2.8635 0.0089 2.8638 0.0092 2.8623 0.0077 C(23),O(25) o 2.3792 2.3926 0.0134 2.3891 0.0099 2.3883 0.0091

RMS

Deviation 0.025995 0.024297 0.025713

a Type bg is a beta or gamma interaction across a phenyl ring. Type ba is a bridge carbon to aromatic carbon interaction. Type sa is a saturated (except bridge) carbon to aromatic carbon interaction. Type o is an interaction involving oxygen. Type ss is a saturated carbon to saturated carbon interaction. Type aa is an aromatic carbon to aromatic carbon

(12)

0

(13)

Insert for Kathy’s paper

While the scaling factors for the O/H interactions seem certain enough as long as the

hydrogen is an ordinary hydrogen attached carbon (an alkane hydrogen), and the oxygen is

an ordinary ether oxygen (alkane type). However, in the triptycene case, we are looking at

an oxygen attached to an aromatic ring. Such an oxygen is well known to be an electron

donor into the pi system. This means that the electron density of that oxygen will be less

than in the case of an aliphatic oxygen, and the effective nuclear charge at oxygen in this

system will be higher than the effective nuclear charge for an isolated oxygen atom. Both of

these effects tend to reduce the van der Waals repulsion between oxygen and anything else.

The first of these simply reduces the electron density, which is the principle source of the

repulsion. The second of these means that the nucleus attracts the electrons more than

normally, and pulls the electron cloud even closer to the nucleus.

We have in our parameterization to this point simply used the aliphatic oxygen

numbers for the oxygen in the triptycene system. But actually, the van der Waals radius of

Gambar

Table I.  Interaction energy (kcal/mole) data in the head-to-head methane-methane
Table III.  Interaction energies (kcal/mole) in the methane-dimethyl ether system.
Table IXa.  Fluoromethane dimer interaction energy (kcal/mole) for the head-on orientation.a
Table XI.  MM4X vs. Gaussian data in methane-dimethyl ether interactions.
+3

Referensi

Dokumen terkait

Pada hari ini Selasa tanggal Satu bulan Oktober tahun Dua ribu tiga belas, dimulai pukul 13.00 WIB dan berakhir pukul 15.00 WIB melalui situs www.lpse.pelalawankab.go.id telah

[r]

Melakukan penelitian/evalusasi secara saksama terhadap surat penawaran yang memenuhi persyaratan administrasi dan persyaratan teknik sebanyak 3 (tiga) calon penyedia yang diterima

Setelah konsep telah kuat mendasari pengambilan keputusan perancangan interior beserta dengan pembentukan elemen interior, dibuat desain mebel display yang akan

Menindak lanjuti hasil evaluasi yang dilakukan oleh Kelompok Kerja Pengadaan Barang/Jasa Politenik Kesehatan Maluku Tahun Anggaran 2016, dan berdasarkan Berita Acara

Trauma extrensik yaitu akibat adanya fraktur atau ruptur ligamen sedangkan trauma intrisik berupa adanya perubahan metabolisme sendi yang pada akhirnya mengakibatkan tulang

Pengawas Barang dan/atau Jasa (PPBJ) Angkatan XXIX, Nomor : 641/Pokja-.. II/PPT/11/2013 Tanggal 19 November 2013, maka dengan ini diumumkan

Sistem pemantauan shelter BTS berbasis mikrokontroler dan website telah berhasil dibuat dengan tujuan memantau shelter BTS secara otomatis dan akan mengirimkan