• Tidak ada hasil yang ditemukan

PENGEMBANGAN TURBIN AIR TYPE CROSS-FLOW DIAMETER RUNNER 400 MM

N/A
N/A
Protected

Academic year: 2021

Membagikan "PENGEMBANGAN TURBIN AIR TYPE CROSS-FLOW DIAMETER RUNNER 400 MM"

Copied!
20
0
0

Teks penuh

(1)

Kedeputian Ilmu Pengetahuan Teknik 1

PENGEMBANGAN TURBIN AIR TYPE CROSS-FLOW DIAMETER

RUNNER 400 MM

Anjar Susatyo

Pusat Penelitian Tenaga Listrik Dan Mekatronik Lembaga Ilmu Pengetahuan Indonesia

ABSTRAK

Pengembangan turbir Air merupakan kegiatan penelitian guna mendapatkan suatu prototype turbin dengan desain yang kokoh dan handal. Pada kegiatan ini di rancang turbin type cross-flow dengan diameter runner 400mm.

Pada perancangan ini dilakukan tahap perrhitungan hidrodinamik untuk mendapatkan dimensi turbin khususnya dibagian runner. Dari hasil perhitungan ini dirancang konstruksi runner secara keseluruhan dan dianalisa tegangan pada beban maksimal. Setelah seluruh bagian di rancang dalam bentuk gambr desain selanjutnya dibuat prototype.

PENDAHULUAN Latar Belakang

Pengembangan turbir kompatibel merupakan kegiatan penelitian guna mendapatkan suatu prototype turbin dengan desain yang kokoh dan handal. Pada kegiatan ini di rancang turbin type cross-flow dengan diameter runner 400mm.

Kegiatan ini sangat penting mengingat potensi tenaga air tersebar hampir di seluruh Indonesia dan diperkirakan mencapai 75.000 MW, sementara pemanfaatanya baru sekitar 2,5% dari potensi yang ada. Untuk memenuhi kebutuhan listrik daerah pedesaan yang belum terjangkau oleh PLN, dan mengingat tenaga air merupakan salah satu potensi sumber energi yang cukup besar namun dan pemanfaatannya masih di bawah potensinya, maka penerapan PLTMH merupakan alternatif yang paling baik. Pembangkit Listrik Tenaga Mikrohidro (PLTMH) telah dikembangkan diberbagai daerah pedesaan di Indonesia. Pertimbangannya adalah karena PLTMH beranjak dari konsep :

(2)

2 Pemaparan Hasil Litbang 2003 • Pemanfaatan energi air yang terbuang agar dapat dilakukan penghematan sumber

energi lainnya seperti minyak bumi.

• Peningkatan perekonomian dipedesaan.

Turbin cross-flow merupakan turbin impuls dengan tipe aliran radial. Awal pengembangan turbin cross-flow (turbin banki) di Nepal didasarkan pada teori profesor Donat Banki yang mempatenkan konsepnya sekitar tahun 1920. Turbin cross-flow sekarang ini sudah jarang dipakai dan digantikan oleh turbin-turbin yang lebih modern seperti turbin Pelton, Francis atau pun Kaplan. Tetapi bagaimanapun juga, turbin cross-flow mempunyai keunggulan-keunggulan tersendiri yang tidak dimiliki turbin jenis lain.

Tujuan kegiatan

Tujuan kegiatan ini adalah mendapatkan suatu protipe turbin type cross-flow dengan desain kokoh dan handal dengan diameter runner 400mm.

Metodologi

Metodologi penelitian yang dilakukan adalah: Perhitungan hidrodinamik dari turbin.

Perhitungan konstruksi turbin. Gambar desain turbin

Pembuatan prototype turbin

TEORI DASAR

Untuk mempelajari lebih jauh tentang turbin cross flow, ada beberapa hal dasar yang harus dipahami lebih dahulu. Hal-hal tersebut menyangkut kondisi aliran, persamaan-persamaan dan hubungan-hubungan dasar yang diperlukan dalam pembahasan turbin cross flow. Dan yang juga sangat penting adalah perilaku aliran pada sudu-sudu roda turbin yang dapat diketahui dengan mempelajari segitiga kecepatan,, baik saat masuk maupun keluar roda turbin.

Aliran Pada Kondisi Tunak (steady state)

Aliran akan berada pada kondisi steady jika hubungan antara dua harga kecepatan yang diamati pada titik yang berbeda bernilai konstan. Pada gambar 2.1, laju aliran fluida melalui dua penampang A dan B besarnya sama. Aliran air dari tangki dengan tinggi

(3)

Kedeputian Ilmu Pengetahuan Teknik 3

permukaan air yang konstan yang terletak lebih tinggi, melalui suatu pipa ke titik yang posisinya lebih rendah adalah konstan. Jika luas penampang pipa keluaran diubah besarnya, maka aliran akan mencapai kondisi steady setelah tercapai kondisi kesetimbangan yang baru.

Gambar 2.1. Aliran pada kondisi tunak

Persamaan Kontinuitas

Jika laju aliran fluida Q (m3/s) melalui suatu penampang A (m2) dengan kecepatan seragam V (m/s) pada setiap titik, maka persamaan kontinuitas akan dipenuhi pada kondisi steady :

Q = A.V = konstan ( 2.1 )

Pemilihan luas penampang A harus tegak lurus terhadap arah aliran fluida. Untuk kepentingan praktis, ini adalah kasus dimana luas penampang tegak lurus terhadap axis dari suatu pipa saluran.

Persamaan Bernoulli

Energi yang mengalir di setiap elemen suatu aliran fluida tersusun atas tiga komponen : a. Energi Potensial, besarnya W . h

dimana W (kgm/s2) adalah berat cairan dan h adalah jarak tegak lurus atau head di atas suatu titik referensi.

b. Energi Tekanan , besarnya

ρ p W.

dimana p adalah tekanan (N/m2) dan ρ adalah kerapatan fluida (kg/m3) atau dengan kata lain p / ρ adalah head tekanan

c. Energi Kinetik (kecepatan) , besarnya

g V W

2 . 2

yang diperoleh dari head kecepatan

g V

2

2

(4)

4 Pemaparan Hasil Litbang 2003

dimana g (m/s2) adalah konstanta gravitasi dan W adalah berat fluida. Sehingga head energi yang terkandung dalam 1 kg fluida adalah :

He = h + ρ p + g V 2 2 + g c 2 2 (mkg/kg) ( 2.2 )

Untuk keperluan praktis dari studi tentang aliran, kita bisa mengasumsikan bahwa semua elemen fluida mengandung jumlah energi yang sama di entry point hingga ke sistem yang diamati, sehingga persamaan (2.2) berlaku untuk seluruh sistem. Jika tidak ada energi yang dimasukkan atau diambil ke dalam sistem,

maka : h + ρ p + g V 2 2 = konstan ( 2.3 )

Persamaan (2.3) dikenal dengan Persamaan Bernoulli, yang menyatakan bahwa tidak ada energi yang hilang pada sistem aliran saat steady state untuk fluida yang bebas gesekan (inviscid fluid).

Untuk h = konstan dan untuk aliran tegak lurus dengan luas penampang referensi :

ρ p + g V 2 2 = konstan ( 2.4 )

Dari persamaan (2.4) bisa disimpulkan bahwa titik yang bertekanan rendah, kecepatannya akan tinggi, dan sebaliknya. Pada suatu pipa saluran yang luas penampangnya secara kontinyu mengecil, sedemikian hingga kecepatan aliran naik secara proporsional, berdasarkan persamaan (2.1), dengan penurunan luas penampang, maka tekanan akan turun secara kontinyu. Tetapi jika kecepatan fluida naik terlalu tinggi akan mengakibatkan penurunan tekanan secara berlebihan sehingga menyebabkan pemisahan fluida. Pada situasi seperti ini akan terbentuk gelembung-gelembung uap sesaat setelah tekanan fluida turun hingga lebih rendah daripada tekanan jenuhnya. Fenomena ini dikenal dengan nama

kavitasi dan biasanya disertai dengan suara-suara yang ditimbulkan oleh gelembung-gelembung uap air yang membentur dinding saluran.

TEORI DASAR TURBIN CROSS-FLOW

Turbin cross-flow terdiri dari dua bagian utama, nosel dan roda turbin. Roda turbin terbuat dari dua piringan lingkaran yang disatukan pada rim oleh sudu-sudu. Nosel yang mempunyai penampang persegipanjang, memancarkan air masuk memenuhi seluruh lebar

(5)

Kedeputian Ilmu Pengetahuan Teknik 5

turbin dengan sudut absolut 160. Air membentur sudu (gambar 3.1), mengalir melalui sudu, dan meninggalkan sudu melalui suatu ruangan kosong antara rim sebelah dalam lalu masuk kembali ke rim di sisi yang lain kemudian akhirnya keluar.

Lintasan Pancaran Air (jet) Melalui Turbin

Dengan asumsi bahwa pusat pancaran air masuk roda turbin pada titik A (gambar 3.1) dengan sudut absolut α1 , maka kecepatan air keluar nosel adalah :

C1 = C (2gH)0.5 ( 3.1 )

dimana : C1 = kecepatan absolut air

H = head pada titik acuan C = koefisien nosel

Kecepatan relatif air pada sisi masuk, w1, bisa diketahui jika kecepatan tangensial pada sisi

masuk tersebut, u1, diketahui. Sudut yang dibentuk oleh kecepatan relatif dengan kecepatan

absolut dinamai sudut relatif , β1. Untuk mencapai efisiensi maksimum , sudut sudu harus

sama dengan β1. Hal yang sama berlaku pada sisi keluar rim. Jika AB merepresentasikan

sudu, maka kecepatan relatif air keluar dari rim, w2’ membentuk sudut β2’ terhadap

kecepatan tangensial , u2’ , dan kecepatan absolutnya dapat ditentukan dari w2’, β2 , dan

u2. Sudut antara kecepatan absolut tersebut dengan kecepatan tangesial adalah α2 .

(6)

6 Pemaparan Hasil Litbang 2003

Dengan asumsi tidak ada perubahan kecepatan absolut, maka titik C, melalui mana air masuk lagi ke rim bisa ditentukan. Kecepatan absolut c2’ di titik ini menjadi c1’ dan

lintasan absolut air melalui sudu CD, dari titik C ke titik D bisa diketahui dengan pasti. Sehingga :

α1’ = α2’ β1’ = β2’ β1 = β2

karena semuanya merupakan sudut-sudut yang saling berkaitan pada sudu yang sama.

Gambar 3.2 Aliran air dalam roda turbin saling berinterferensi

Terlihat bahwa tidak semua pancaran air mengikuti lintasan tersebut, karena beberapa partikel air cenderung saling memotong di bagian dalam wheel. , seperti ditunjukkan gambar 3.2. Sudut defleksi θ dan θ1 akan mencapai maksimum pada sisi paling luar

masing-masing jet.

Efisiensi Turbin

Daya poros yang dihasilkan turbin cross flow dirumuskan sebagai berikut :

Ps = ρgQH (C1 cos α1 + C2 cos α2) U1 ( 3.2 )

Dengan memperhatikan segitiga kecepatan pada gambar 3.3 , dimana :

C2 cos α2 = W2 cos β2 – U1 ( 3.3 )

Dengan mengabaikan kenaikan kecepatan air akibat tinggi h2 (gambar 3.1) yang biasanya

kecil di banyak kasus, maka :

W2 = ψ W1 ( 3.4 )

dimana ψ adalah koefisien sudu (sekitar 0,98). Dari diagram kecepatan pada gambar 3.3,

(7)

Kedeputian Ilmu Pengetahuan Teknik 7

Substitusi persamaan (3.3), (3.4), dan (3.5) ke persamaan (3.2) diperoleh :

Ps = ρgQH (C1 cos α1 – U1) . (1 + ψ cos β2 / cos β1) ( 3.6 )

Secara teoritik daya poros (mengacu pada H) adalah :

P = ρgQH C12 / C22g ( 3.7 )

Sehingga efisiensi dari turbin air tersebut sama dengan perbandingan daya keluaran terhadap daya masukan :

E = (2C2 U1 / W1) (1 + ψ cos β2 / cos β1) . (cos α1 – U1/C1) ( 3.8 )

jika : β2 = β1

maka : efisiensi = (2C2 U1 / W1) (1 + ψ) . (cos α1 – U1/C1) ( 3.9 )

Gambar 3.3 Diagram kecepatan

Dengan menganggap semua variabel sebagai konstanta, kecuali efisiensi dan U1/C1 dan

mendiferensialkan lalu menyamakan dengan nol, diperoleh :

U1/C1 = cos α1/2 ( 3.10 )

Dan untuk efisiensi maksimum :

emax = ½ C2 (1 + ψ). Cos2α1 ( 3.11 )

Bisa dilihat pada gambar 3.3 bahwa arah C2 ketika U1 = ½ C1 Cos α1 adalah tidak

radial. Aliran keluar akan radial dengan :

U1 = [C/(1 + ψ)] . (C1 cos α1) ( 3.12 )

jika ψ dan C berharga 1, yaitu dengan menganggap tidak ada rugi head karena gesekan di nosel dan sudu. Untuk mendapatkan efisiensi mekanik yang maksimal, sudut masuk α1

harus sekecil mungkin dan besar α1 = 160 bisa dicapai tanpa banyak kesulitan. Untuk harga

tersebut, cos α1 = 0,96 dan cos2α1 = 0,92.

Dengan memasukkan harga tersebut ke persamaan (3.11) dengan C = 0,98 dan ψ = 0,98 diperoleh effisiensi maksimum sebesar 87,8 %. Karena effisinsi nosel bervariasi terhadap

(8)

8 Pemaparan Hasil Litbang 2003

kuadrat koefisien nosel, perhatian khusus harus diberikan untuk menghindari rugi di sini. Rugi hidrolik karena air menumbuk bagian dalam dan luar keliling roda turbin , tidak terlalu besar. Jumlah sudu yang tepat dan bentuknya yang setipis dan semulus mungkin memungkinkan dicapai harga ψ sebesar 0,98.

Gambar 3.4. Jarak antar sudu (blade spacing)

Proporsi Bagian-Bagian Turbin Sudut sudu (blade angle)

Sudut sudu (blade angle), sudut sudu β1 bisa ditentukan dari α1, C1, dan U1 seperti

terlihat pada gambar 3.1 dan 3.3.

Jika : U1 = ½ cos α1 ( 3.13 )

maka : tan β1 = 2 tan α1

Dengan asumsi : α1 = 160

maka : β1 = 290 50’ atau kurang lebih 300

Sudut antara sudu pada keliling dalam roda turbin dengan tangensialnya (β2) bisa

ditentukan dengan cara sebagai berikut (ditunjukkan pada Gambar 3.5). Gambar dua segitiga kecepatan yang berada di sebelah dalam roda turbin dengan cara memindahkan kedua sudu secara bersama-sama sedemikian hingga titik C dan B berimpit. Dengan asumsi kecepatan absolut keluar (C2’) dan masuk (C1’) segitiga besarnya sama dan karena α2’ = α1’ maka segitiga kecepatan tersebut kongruen dan arah W2’ dan W1’ sama.

(9)

Kedeputian Ilmu Pengetahuan Teknik 9

Gambar 3.5 Diagram kecepatan gabungan

Asumsikan tidak ada rugi goncangan pada sisi masuk (titik C) maka β2’ = 900 sehingga

ujung sudu sebelah dalam harus radial. Dalam perhitungan beda ketinggian antara titik C dan titik B , kecepatan absolut C1’ mungkin berbeda dari C2’ jika tidak ada rugi-rugi

antara titik-titik tersebut.

C1’ = [2gH + (C1’)2]0.5 ( 3.14 )

Asumsi β2’ = 900 (Gambar 3.6.a) maka W1’ tidak tepat berada pada sudut sudu dan

karenanya akan timbul rugi goncangan. Untuk menghindari hal tersebut, β2 harus melebihi

900. Beda C2’ dan C1’ biasanya kecil karena h2 kecil, sehingga β2 bisa berharga 900 untuk

semua kasus.

Gambar 3.6 Perbandingan dua diagram kecepatan

3.3.2 Radial Rim Width

Pada gambar 3.4, tebal s1 (jet entrance) ditentukan oleh jarak antar sudu (blade

spacing) t :

(10)

10 Pemaparan Hasil Litbang 2003

Dengan asumsi β2 = 900 , maka jarak antar sudu bagian dalam (inner exit blade spacing)

diketahui untuksetiap rim width (a)

S2 = t (r1/r2) ( 3.16 )

Selama (a) kecil, maka ruang antar sudu tidak akan dipenuhi oleh pancaran air. Jika harga (a) membesar , s2 mengecil sehingga (a) harus dibatasi oleh :

S2 = W1s1 / W2’ ( 3.17 )

Dianjurkan untuk tidak menaikkan harga (a) sampai melebihi batas tersebut karena jumlah air yang membentur sudu tidak akan dapat mengalir melalui suatu penampang yang terlalu kecil dan juga akan menimbulkan tekanan balik. Selain itu juga menimbulkan inefisiensi karena pancaran air yang terpisah akan mengalir melalui spacing antar sudu pada lingkaran dalam.

Untuk menentukan rim width (a) diperlukan W2’ yang diakibatkan oleh gaya

sentrifugal (lihat gambar 3.5).

(W1)2 - (W2’)2 = (U1)2 – (U2’)2 atau (W2’)2 = (U2’)2 – (U1)2 + (W1)2 ( 3.18 ) dan W2’ = W1 (s1 / s2) = W1 (r1 / r2) ( 3.19 ) U2’ = U1 (r2 / r1) karena : x = (r2 / r1)2 X2 - [ 1- (W1 / U1)2 ] x – (W1 / U1)2 sin2β1 = 0 ( 3.20 )

Jika kecepatan ideal roda turbin adalah U1 = ½ cos α1 ,

maka : W1 / U1 = 1 / cos β1 ( 3.21 )

Dengan asumsi : α1 = 160 dan β1 = 300

Maka : W1 / U1 = 1/ 0,866 = 1,15

(W1 / U1)2 = 1,33

1 - (W1 / U1)2 = - 0,33 ; sin2β1 = ¼

Sehingga persamaan (3.20) menjadi : X2 + 0,33 x – 0,33 = 0

x = 0,435

x0,5 = r2 / r1 = 0,66

2 r1 = D1

Sehingga a = 0,17 D1 = radial rim width , dimana D1 adalah diameter luar roda turbin.

(11)

Kedeputian Ilmu Pengetahuan Teknik 11

(W2’)2 = (r2 / ra) (U1)2 + (W1)2 – (U1)2 ( 3.18 )

dan W2’ = W1 (r1 / r2) sin β1 ( 3.19 )

Sudut pusat bOC (gambar 3.7) bisa ditentukan dari persamaan (3.18 )

α2’ = bOC/2 W1 = U1 / cos β1 = U1 / 0,866 R1/r2 = 0,66 W2’ = U1 [ (0,66)2 + 1.33 – 1 ] 0,5 W2’ = 0,875 U1 ( 3.23 ) tan α2’ = W2’ / U2’ ( 3.24 ) = 0,875 U1 / 0,66 U1 = 1,326 α2’ = 530 sudut bOC = 1060 ( 3.25 )

Tebal jet (y) di sebelah dalam roda turbin bisa dihitung dari persamaan kontinuitas aliran (gambar 3.7), C1 s0 = C2’ y ( 3.26 ) C2’ cos α2’ = U2’ = (r2 / r1) U1 = (r2 / r1) C1 /2 cos α1 y = 2 cos α2’ s0 (r2 / r1) cos α1 ( 3.27 ) y = (3,03).(0,6) s0 / 0,961 y = 1.69 s0 ( 3.28 )

Jarak antara sisi sebelah dalam dari jet saat melalui roda turbin dan poros roda turbin adalah y1, (gambar 3.7)

Y1 = r2 sin (90-α2’) – 1,89 s0 /2 – d/2 ( 3.29 )

karena : s1 = kD1

maka : y1 = (o,1986-0,945k)D1– d/2 ( 3.30 )

Secara analog, jarak antara sisi sebelah luar dari jet dengan keliling dalam, y2 ,

Y2 = (0,1314-0,945k)D1 (3.31 )

Untuk banyak kasus , k = 0,075 s.d 0,10 maka y1 + d/2 = 0,128 D1 s.d 0,104 D1

Y2 = 0,0606 D1 s.d 0,0369 D1

(12)

12 Pemaparan Hasil Litbang 2003

Gambar 3.7 Lintasan jet dalam roda turbin

Diameter roda

Diameter roda bisa ditentukandari persamaan berikut :

U1 = π D1 N / (12) (60) ( 3.32 )

1/2 C1 cos α1 = π D1 N / (12) (60)

1/2 (2gH)1/2 cos α

1 = π D1 N / (12) (60)

D1 = 360 C (2gH)1/2 cos α1 / πN ( 3.33 )

dimana D1 adalah diameter roda turbin (dalam inch) dan untuk α1 = 160, C = 0,98

D1 = 862 H1/2 / N ( 3.34 )

Ketebalan s0 dari pancaran air (jet) di nosel bergantung pada dua kondisi yang saling

berpengaruh. Harga s0 yang besar akan menguntungkan karena rugi karena filling and

emptying roda turbin kecil. Tetapi harga s0 yang besar juga akan menyebabkan angle of

attack of the outer filamen roda turbin akan bervariasi tidak lagi 160. Oleh karena itu harga s0 yang memuaskan harus ditentukan melalui eksperimen.

Dalam menentukan wheel breadth (L) perhatikan persamaan-persamaan di bawah ini :

Q = (Cs0L / 144)(2gH)1/2 ( 3.35 )

= C(kD1L / 144)(2gH)1/2

D1 = 144Q / CkL (2gH)1/2

= (862 / N) H1/2 ( 3.36 )

(13)

Kedeputian Ilmu Pengetahuan Teknik 13

L = 144QN / 862 H1/2 C k (2gH)1/2 = 0.283 QN / H hingga 0.212 QN / H dimana : k = 0,075 dan 0,10

Kurva sudu

Kurva sudu bisa dipilih dari suatu lingkaran yang pusatnya terletak pada perpotongan antara garis yang tegak lurus pada kecepatan relatif w1 (di titik A) dan garis yang tegak

lurus pada jari-jari dan berpotongan di titik B (gambar 3.8).

Gambar 3.8 Kurva sudu Dari segitiga AOC dan BOC,

1 2 2 2 2 ( ) ( ) ( ) 2( ).( )cos ) ( ) (CO = OB + BC = AO + ACAO AC β karena : AO = r1 OB = r2 AC = BC = ρ ρ = [(r1)2 – (r2)2] / 2 r1 cos β1

Untuk : r2 = (0,66 r1) dan cos β1 = cos 300 = 0,866

(14)

14 Pemaparan Hasil Litbang 2003 Sudut pusat

r1/r2 = sin (1800 – 1/2δ) / sin (900 – (1/2δ + β1)

= sin (1/2δ) / cos (1/2δ + β1)

tan (1/2δ) = cos β1 / (sin β1 + r2/r1) δ = 730 28

Geometri sudu

Untuk dapat mendisain runner turbin cross flow dengan benar, penentuan geometri sudu menjadi sangat penting. Untuk itu diasumsikan bahwa parameter-parameter berikut ini telah dipilih berdasarkan segitiga kecepatan yang diinginkan :

R1 = radius roda turbin luar

R2 = radius roda turbin dalam β1 = sudut sudu luar

β2 = sudut sudu dalam

Juga biasa diasumsikan pada turbin cross flow bahwa sudu merupakan suatu segmen/bagian dari suatu lingkaran. Parameter geometri yang lain yang penting adalah :

Rb radius kurva sudu

rp radius lingkaran pitch

δ sudut segmen sudu

Untuk menyatakan hubungan geometri antara parameter R1, R2, β1, β1, rb, rp dan δ,

sejumlah parameter tambahan diperlukan seperti terlihat pada gambar 3.9, yaitu : ε, ξ, φ, c, d. Gambar tersebut menunjukkan penyelesaian secara grafis masalah geometri sudu. Urutan penggambaran sebagai berikut :

Pertama-tama gambar lingkaran luar roda turbin dengan radius R1 dan lingkaran dalam

dengan radius R2. Sudut (β1+β2) digambar dari pusat roda turbin sedemikian hingga satu

vektor memotong lingkaran dengan radius R1 di titik A dan vektor yang lain memotong

lingkaran dengan radius R2 di titik B. Garis yang menghubungkan titik perpotongan di R1

dan R2 disebut garis c. Garis c memotong lingkaran dengan radius R2 pada jarak 2d dari

titik perpotongan lingkaran dengan radius R1. Dengan menarik garis melalui setengah AB

(15)

Kedeputian Ilmu Pengetahuan Teknik 15

Selanjutnya gambar garis yang membentuk sudut β1 terhadap tangensial dari lingkaran

dengan radius R1, lalu buat garis yang tegak lurus dengan garis yang baru saja kita gambar.

Garis yang paling akhir kita gambar tersebut akan memotong garis yang merupakan lokasi pusat radius kurva sudu (yang sebelumnya telah kita gambar) pada jarak radius lingkaran pitch (rp) dan titik potongnya sekaligus merupakan pusat kurva sudu yang mempunyai

radius rb.

Gambar 3.9 Penentuan kurva blade secara grafis

Sekarang kita sudah dapat menggambar kurva sudu yang merupakan segmen dari lingkaran sudu dengan radius rb dan melalui titik A dan B. Jika dari masing-masing titik

tersebut ditarik garis ke pusat lingkaran sudu maka kedua garis tersebut akan membentuk sudut δ. Selanjutnya dengan mudah dapat ditentukan sudut φ yang dibentuk oleh garis AO dan garis BO.

Di bawah ini terdapat daftar rumus-rumus yang diperlukan untuk menghitung parameter-parameter δ, rb, dan rp berdasarkan parameter-parameter yang telah diketahui sebelumnya,

(16)

16 Pemaparan Hasil Litbang 2003

yaitu R1, R2, β1, dan β2. Konstruksi geometri sudu secara grafis bisa dipakai untuk

mengoreksi kebenaran angka hasil perhitungan. Rumus-rumus tersebut adalah :

(

1 2

)

1 2 2 2 1 + −2 cos β +β = R R R R c ( 3.38)     + = c R

arc sin 2sin(β1 β2 )

ε ( 3.39 ) ) ( 1800 β1 β2 ε ξ = − + + ( 3.40 ) ) 2 180 ( 0 2 1 β ξ β µ = + − − ( 3.41 ) ) 180 ( sin 2 sin 0 1 ε φ − = R d ( 3.42 ) ) ( 2 1800 β1 ε δ = − + ( 3.43 ) ) ( cos β1+ε = d rb ( 3.44 ) 1 1 2 1 2 R 2 r R cosβ r rp = b + − b ( 3.45 ) Inlet Width

Flow admission area adalah hasil perkalian antara inlet widh bo dan pangjang L dari sudut admission, seperti terlihat pada gambar 3.10

A = b0 . L ( 3.46 )

dimana panjang busur admisi L ditentukan oleh sudut busur admisi φ dan diameter roda turbin D1. L = 0 0 360 . . 1π φ D ( 3.47 ) Luas admisi aliran yang diperlukan bergantung pada laju aliran yang diinginkan melalui turbin dengan kondisi head spesifik, berdasarkan persamaan :

Q = A . V ( 3.48 )

dimana : Q = laju aliran melalui turbin (m3/s) A = luas admisi aliran

(17)

Kedeputian Ilmu Pengetahuan Teknik 17

Gambar 3.10 Luas admisi aliran dari Turbin Cross Flow

Komponen kecepatan yang tegak lurus luas aliran admisi adalah sama dengan komponen kecepatan absolut dalam arah meridional, cm , karena itu :

Q = A . cm ( 3.49 )

Komponen kecepatan absolut dalam arah meridional, cm juga bisa dinyatakan oleh

hubungan :

cm = c . sin α ( 3.50 )

dimana : α = sudut kecepatan absolut c = kecepatan absolut

Jika kita substitusikan komponen kecepatan absolut dengan kecepatan pancaran air dengan tidak memperhitungkan rugi karena gesekan aliran, c bisa dinyatakan dalam :

c = 2gH

dimana : g = konstanta gravitasi H = head bersih

Dengan mempertimbangkan hal-hal di atas maka laju aliran melalui turbin bisa ditulis dengan cara yang berbeda :

Q = A . cm Q = b0 . L . cm Q = 0 0 0 360 . . . 1 .D cm b π φ Q = 0 1 0 0 360 sin . . . 1 .D π φ c α b ( 3.51 )

(18)

18 Pemaparan Hasil Litbang 2003 HASIL

Hasil Perhitungan Hidrodinamik

Hasil perhitungan ditabelkan sebagai berikut :

Symbol Value Unit

Data Teknis

1. Net Head Hnet 40,0 m

2. Total discharge Q 0,400 m^3/s

3. Nozzle efficiency C 98,0 %

4. Blade efficiency 98,0 %

5. Mechanical efficiency 75,0 %

6. Rotation speed N 630,0 rpm

7. Absolut velocity angle 1 16,0 deg

8. Admission angle 70,0 deg

9. Shaft diameter ds 0,100 m 10. Eff. Generator 0,980 % Constants 1. Density of water 1000,0 kg/m^3 2. Constant of gravity g 9,810 m/s^2 3. PI 3,140 - 4. Contant 0,1 -

5. Diameter runner Do' 0,400 meter

Calculation Result

1. Power available Pav 156,96 kW

2. Total efficiency tot 72,03 %

3. Power developed Ps 113,06 kW

4. Absolut velocity C1 27,45 m/s

5. Relative velocity angle  30,00 deg

6. Tangensial velocity U1 13,195 m/s

7. Runner outside diameter D1 0,400 m

8. Runner inside diameter D2 0,264 m

9. Rim width a 0,068 m

10. Number of blade z 29,000 -

11. Blade spacing t 0,244 m

14. Original thickness of jet s0 0,070 m

15. Thickness of jet y 0,132 m

16. The distance 1-shaft y1 0,001 m

(19)

Kedeputian Ilmu Pengetahuan Teknik 19 Hasil Perancangan Konstruksi Turbin

Hasil perancangan berdasarkan hasil perhitungan hidrodinamik turbin dituangkan dalam laporan gambardesain. Untuk komponen runner dilakukan analisis tegangan menggunakan software Nastran.

gambar 4.2. Perhitungan pada runner turbin

Pembuatan prototipe

Setelah dihitung secara hidrodinamik dan analisis kekuatan struktur dan dibuat blue print/ gambar desain dibuatlah prototipe.

(20)

20 Pemaparan Hasil Litbang 2003

Gambar 4.3.3 Prototipe susunan pembangkit listrik tenaga mikro Hidro 100KW

KESIMPULAN

Dari hasil perhitungan hidrodinamik dan perhitungan konstruksi di peroleh prototipe turbin dengan konstruksi handal dan kokoh terutama pada bagian sistem bearing, hal ini merupakan perbaikan dari sistem yang ada dilapangan dimana sistem ini dirancang untuk mempermudah pebaikan.

Saran :

Konstruksi ini perlu diuji lapangan agar benar-benar dapat diuji kehandalanya.

Perbaikan perbaikan desain berdasarkan pengalaman lapangan sangat diperlukan. Selain dari kekuatan dan effisiensi masalah pemasangan dan perakitan sangat penting sebagai pertimbangan perancangan turbin

DAFTAR PUSTAKA

Alex Arter. (1990), “Hydraulic Engineering Manual”, SKAT, Switzerland

A.T. Sayers. (1992), “Hydraulic and Compressible Flow Turbomachines”, McGraw-Hill Book Company, London.

T.R. Banga. (1977), “Hydraulic Machines”, Khanna Publishers, New Delhi. M.M. Dandekar. (1991), “Pembangkit Listrik Tenaga Air”, Penerbit UI, Jakarta.

Gambar

Gambar 2.1.  Aliran pada kondisi tunak
Gambar 3.1  Lintasan air melalui turbin
Gambar 3.2  Aliran air dalam roda turbin saling berinterferensi
Gambar 3.4.  Jarak antar sudu (blade spacing)
+7

Referensi

Dokumen terkait