• Tidak ada hasil yang ditemukan

Tinjauan Pustaka. Banjir pada dasarnya adalah surface runoff yang merupakan salah satu bagian dari siklus hidrologi. The Hydrologic Cycle

N/A
N/A
Protected

Academic year: 2021

Membagikan "Tinjauan Pustaka. Banjir pada dasarnya adalah surface runoff yang merupakan salah satu bagian dari siklus hidrologi. The Hydrologic Cycle"

Copied!
17
0
0

Teks penuh

(1)

Bab II

Tinjauan Pustaka

II.1 Banjir di Perkotaan

Banjir pada dasarnya adalah surface runoff yang merupakan salah satu bagian dari

siklus hidrologi. Sun Evaporation from soi l fr o m o ce an tr anp irat io n from str eam s tran pira tion from veg etat ion from vege tatio n while failling

Surface Runoff

Ground water Water Table Percolation

Soil Rock

Deep Percolation Ocean Infiltration

PRECIPITATION

Rain Formation Rain Clouds

The Hydrologic Cycle

Gambar II.1 Siklus hidrologi (Kusuma, M. S. B., 2005)

Ilustrasi di atas menggambarkan secara sederhana siklus hidrologi. Kondisi yang terjadi sebenarnya di alam lebih kompleks. Pada gambar terlihat hujan yang turun sebagian akan mengalami proses infiltrasi dan sebagian lagi mengalir diatas permukaan. Aliran yang ada di permukaan akan tereduksi juga dengan adanya evaporasi dan transpirasi oleh tumbuhan.

Pemodelan aliran limpasan permukaan akibat hujan telah dilakukan oleh Dantje K., et. al., (2005). Model numerik yang dikembangkan dapat mensimulasikan aliran limpasan permukaan dengan baik. Hal ini terbukti melalui perbandingan yang dilakukan dengan solusi analitik. Hasil yang diperoleh melalui simulasi

(2)

pada kontur alam dapat mewakili kondisi sebenarnya yang terjadi. Akan tetapi, model-model ini belum memiliki kemampuan untuk mensimulasikan adanya daerah kering dan basah. Simulasi banjir dengan menggunakan adanya batasan kering basah dilakukan oleh Tawatchai Tingsanchal (1999) untuk kasus banjir akibat dambreak dengan hasil yang baik.

Jika dikaitkan dengan siklus hidrologi, maka banjir merupakan surface runoff yang tidak lagi tertampung di dalam saluran. Parameter penting dari banjir adalah luas genangan, durasi genangan, kedalaman, dan arah aliran. Besarnya parameter tersebut tergantung dari volume dan waktu banjir yang terjadi dan lahan yang tergenang. Untuk daerah perkotaan, ada beberapa hal yang perlu diperhatikan. Arah aliran yang terjadi tidak sepenuhnya bergantung kepada topografi lahan dikarenakan adanya bangunan.

Gambar II.2 Siklus hidrologi pada urban area

Besarnya infiltrasi sangat tergantung pada faktor penutup lahan. Di daerah perkotaan dimana kondisi penutup lahan pada umumnya adalah beton atau aspal, nilai infiltrasi sangat kecil. Demikian juga halnya dengan nilai transpirasi. Minimnya jumlah tanaman di daerah perkotaan menyebabkan nilai transpirasi

(3)

infiltrasi, transpirasi, dan evaporasi pada daerah perkotaan dapat diabaikan. Pada kota-kota yang dilintasi oleh sungai-sungai besar, seringkali air meluap akibat besarnya debit dari hulu dan menyebabkan terjadinya banjir .

Dari uraian diatas, dapat disimpulkan bahwa besarnya banjir di daerah perkotaan dipengaruhi oleh:

- Hujan

- Debit dari luar, dalam hal ini outflow dari upper catchment

Salah satu permasalahan dalam memodelkan banjir di perkotaan adalah pengaruh adanya bangunan terhadap rambatan banjir. Pemodelan banjir akibat debit di sungai di daerah perkotaan telah dilakukan oleh C. Beffa (1998). Bangunan dimodelkan sebagai syarat batas dinding. Skema numerik yang digunakan adalah

finite volume. Skema ini dipilih agar grid dapat menyesuaikan dengan dinding

bangunan. Hasil dari studi ini menunjukkan komparasi yang baik dengan data lapangan.

Pada studi yang dilakukan oleh Alemseged Tamiru Haile, et. al (2005), dilakukan beberapa alternatif pemodelan bangunan, yang pertama sebagai dinding, dalam hal ini kecepatan arah tegak lurus bangunan diberi nilai nol. Model ini serupa dengan model yang dikembangkan oleh C. Beffa. Alternatif lainnya dalam memodelkan bangunan adalah sebagai suatu area dengan nilai manning sangat tinggi (>1) dan nilai kontur yang diberikan adalah elevasi tanah. Alternatif terakhir dalam memodelkan bangunan adalah sebagai kontur dengan memberikan elevasi bangunan, dan nilai manning sesuai dengan kondisi bangunan. Model disimulasikan dengan adanya debit banjir dari hulu. Ketiga tipe model yang bangunan memberikan hasil yang tidak terlalu jauh berbeda.

II.2 Banjir Akibat Hujan

Pada umumnya, banjir akibat hujan terjadi akibat saluran drainase yang ada tidak dapat menampung beban akibat hujan yang terjadi. Banjir yang terjadi akibat

(4)

daerah tangkapan dan tingkat intensitasnya. Karakteristik banjir yang terjadi akibat hujan dengan intensitas kecil dalam durasi yang lama tidak akan sama dengan banjir yang terjadi akibat hujan dengan intensitas besar dalam durasi yang sebentar.

II.2.1 Curah Hujan

Curah hujan yang terjadi pada suatu daerah pada umumnya diwakili oleh nilai rata-rata dari beberapa titik pengukuran di daerah tersebut dan sekitarnya. Ada tiga cara pendekatan untuk menghitung hujan rata-rata wilayah sebagai berikut: 1. Rata-rata Aljabar

2. Poligon Thiessen 3. Isohyet

Metoda isohyet merupakan metoda terbaik akan tetapi memerlukan banyak titik pengukuran, sedangkan metoda polygon thiessen pada umumnya digunakan di daerah pegunungan.

Metoda rata-rata aljabar adalah metoda yang paling sederhana dan dapat diterapkan di daerah perkotaan. Berdasarkan metoda ini, hujan rata-rata dapat dihitung sebagai berikut.:

R

H

H

i i n

=

1

n

=1 dimana:

Hi = hujan pada masing-masing stasiun 1,2,…., n dalam areal yang ditinjau,

n = jumlah stasiun stasiun pengamat RH= rata-rata hujan

(5)

Salah satu masalah dalam besarnya hujan yang turun adalah sebaran pola distribusi hujan yang terjadi. Masalah ini dapat diatasi dengan menggunakan pendekatan kurva intensitas hujan.

II.2.2 Intensitas Hujan

Intensitas hujan diperlukan untuk mendapatkan gambaran besarnya hujan diskrit yang terjadi. Untuk memperolehnya, diperlukan data curah hujan jangka pendek, misalnya 5 menit, 30 menit, 60 menit dan jam-jaman. Data curah hujan jangka pendek ini biasanya hanya didapatkan dari data pengamatan curah hujan otomatik. Seandainya data curah hujan yang ada hanya curah hujan harian, maka dapat digunakan pendekatan yang disampaikan oleh Dr. Mononobe sebagai berikut :

I = R t 24 2 3 24 24 ⎛ ⎝⎜ ⎞⎠⎟ / dimana :

I = intensitas curah hujan (mm/jam) t = lamanya curah hujan (jam)

R24 = curah hujan maksimum dalam 24 jam (mm)

IDF 0.000 100.000 200.000 300.000 400.000 500.000 600.000 700.000 0 50 100 150 200 250 300 t (menit) I (mm/ ja m)

(6)

II.3 Banjir Akibat Debit dari Hulu (Upper Catchment)

Ada kalanya banjir terjadi ketika besar debit dari hulu melebihi kapasitas saluran. Banjir ini sering kali kita kenal dengan sebutan banjir kiriman. Besarnya banjir

yang terjadi akan ditentukan oleh volume banjir dari hidrograf banjir yang terjadi. Secara garis besar, volume banjir yang terjadi akan sama dengan volume hidrograf yang memiliki debit lebih besar dari kapasitas saluran.Besarnya debit yang masuk akan ditentukan oleh luas daerah tangkapan di bagian upper cathment, kondisi penutup lahan, dan besarnya hujan yang terjadi.

II.3.1 Kurva Hidrograf Aliran

Salah satu paramater banjir di perkotaan adalah debit yang datang dari hulu (upper catchment). Besarnya debit dapat didekati dengan menggunakan hidrograf

aliran sungai. Pada dasarnya, hidrograf aliran sungai terdiri atas baseflow dan hidrograf akibat hujan.

Gambar II.4 Hidrograf

Adanya source dari upper catchment dapat diwakili oleh hidrograf aliran sungai

yang membawanya. Hidrograf dapat diperoleh dari pengukuran maupun dari pendekatan dengan menggunakan metoda-metoda yang sudah ada.

Beberapa parameter yang menentukan dari hidrograf aliran adalah : - Debit puncak, maksimum debit yang terjadi

(7)

- Time peak, waktu saat terjadinya debit puncak

- Time base, durasi pengaruh hidrograf dari mulai naik hingga kembali ke normal

- Kurva naik, kurva dari mulai naik hingga debit puncak

- Kurva turun, kurva dari mulai debit puncak hingga kembali ke normal

Volume banjir yang terjadi dapat dihitung dengan menggunakan integral dari kurva hidrograf.

Saluran meluap pada saat debit yang terjadi melebihi kapasitas saluran. Hal ini berarti, dalam pemodelan banjir dengan adanya pengaruh debit dari luar, hidrograf source dapat diambil sebagian saja dari mulai besarnya debit saat ketinggian air di saluran sudah berada di bibir saluran (debit masuk lebih besar dari pada kapasitas saluran).

II.3.2 Hidrograf Sintetik Metoda Rasional

Salah satu formula hujan-limpasan yang banyak digunakan untuk keperluan desain drainase adalah Metoda Rasional, yang merupakan formula untuk memprediksikan debit puncak (Qp) akibat suatu kejadian hujan.

Q = k C I A Dimana :

k = koefisien konversi = 0,278

C = koefisien aliran (non dimensional) I = intensitas hujan (mm/jam)

A = luas daerah aliran sungai (km2) Q = debit puncak (m3/det)

(8)

Dalam metoda rasional ini diasumsikan bahwa hujan adalah konstan dalam ruang dan waktu. Dengan demikian, metoda ini hanya berlaku pada DAS yang kecil. Menurut Weather Bureau US Deptartment of Commerce, luas DAS yang masih dianggap homogen berkisar antara 0,65 – 12,5 km2, dan menurut Subarkah 0,4 – 0,8 km2. Penggunaan Metoda Rasional untuk area yang lebih luas dapat dilakukan dengan membagi DAS menjadi beberapa Sub-DAS, dengan tetap mempertimbangkan ruas saluran eksisting yang ada.

Koefisien aliran (C) merupakan harga yang konstan, merupakan perbandungan antara hujan yang mengalir di permukaan dan hujan yang jatuh. Hujan yang mengalir di permukaan diperoleh dari dari hujan yang jatuh dikurangi infiltrasi, evaporasi, intersepsi, penurunan tampungan air dalam tanah, dsb. Nilai C dapat diasumsikan menurut tata guna lahan yang ada di DAS.

Tabel II.1 Koefisien runoff

Keadaan Daerah Aliran Koefisien Runoff bergunung dan curam

pegunungan tersier

sungai berhutan dibagian atas dan bawahnya tanah datar yang ditanami

sawah waktu diairi sungai bergunung sungai dataran 0,75 - 0,90 0,70 - 0,80 0,50 - 0,75 0,45 - 0,60 0,70 - 0,80 0,75 - 0,85 0,45 - 0,75

(9)

Tabel II.2 Koefisien Manning dari beberapa bahan ground cover

Kondisi Ground Cover nd

Cement Concrete and asphalt concrete Smooth and imprevious surface Smooth and tight surface

Poor grassland, cultivated land, and bare lot with a suitable surface roughness Meadow land and ordinary grassland

Deciduous forest land

Coniferous forest land, and dense deciduous forest land with dese or spares undergress 0.013 0.02 0.10 0.20 0.40 0.60 0.80

II.3.3 Hidrograf Sintetik Metoda Nakayasu

Untuk memprediksi unit hidrograf dari suatu DAS berdasarkan data-data karakteristik fisik DAS sungai yang bersangkutan, dapat digunakan metoda unit hidrograf sintetik. Salah satu metoda yang umum dipakai adalah metoda Nakayasu.

Rumus dari hidrograf satuan sintetik Nakayasu adalah sebagai berikut:

) . 3 , 0 ( 6 , 3 . . 3 , 0 0 T T R A C Q p p + = dimana:

Qp = debit puncak banjir (m3/det) Ro = hujan satuan (mm)

Tp = tenggang waktu dari permulaan hujan sampai puncak banjir (jam) T0,3 = waktu yang diperlukan oleh penurunan debit, dari puncak sampai

(10)

A = luas daerah pengaliran sampai outlet C = koofisien pengaliran

Untuk menentukan Tpdan T0,3 digunakan pendekatan rumus sebagai berikut.

Tp = tg + 0,8 tr T0,3 = α tg

tr = 0,5 tg sampai tg

tg adalah time lag yaitu waktu antara hujan sampai debit puncak banjir (jam)

dimana tg dihitung dengan ketentuan sebagai berikut:

- Sungai dengan panjang alur L > 15 km : tg = 0,4 + 0,058 L.

- Sungai dengan panjang alur L < 15 km : tg = 0,21 L0,7.

dimana

tr = satuan waktu hujan (jam)

α = parameter hidrograf, untuk

α= 2 → pada daerah pengaliran biasa

α= 1,5 → pada bagian naik hidrograf lambat dan turun cepat

α= 3 → pada bagian naik hidrograf cepat, dan turun lambat Pada waktu kurva naik : 0 < t < Tp

p p t Q T t Q =( )2,4 dimana

(11)

Pada waktu kurva turun a. Selang nilai: t≤(Tp +T0,3) 3 , 0 ) ( ) ( .0,3 T T t p t p Q Q − = b. Selang nilai: (Tp +T0,3)≤t≤(Tp +T0,3 +1,5T0,3) 3 . 0 3 , 0 5 , 1 ) 5 , 0 ( ) ( .0,3 T T T t p t p Q Q + − = c. Selang nilai: t >(Tp+T0,3+1,5 T0,3) 3 , 0 3 , 0 2 ) 5 , 0 ( ) ( .0,3 T T T t p t p Q Q + − = Q i tr t lengkung turun lengkung naik tg 0,8 tr 0,32 QP 0,3 QP QP 1,5 TO.3 TO.3 TP

(12)

II.4 Persamaan Pengatur

II.4.1 Persamaan Kontinuitas (Hukum Kekekalan Massa)

Konsep control volume (ruang tilik) digunakan dalam menurunkan persamaan

kontinuitas mengikuti Hukum Kekekalan Massa dimana:

“Laju massa air yang masuk RT – Laju massa air yang keluar RT = Laju akumulasi massa air dalam RT”.

Pada gambar II.6 dapat dilihat ilustrasi yang menggambarkan definisi dari Hukum Kekekalan Massa.

v4

Gambar II.6 Ruang tilik

Volume air pada kotak hanya dapat berubah jika kedalaman air berubah, maka laju perubahan volume adalah:

A . ∆h ; dimana A = ∆x . ∆y

Dari gambar diatas, laju massa masuk adalah

x v h x v h y u h y u h ∆ − ∆ + ∆ − ∆ = 1 1 2 2 3 3 4 4

Penerapan kekekalan massa dapat ditulis sebagai berikut u2

v3

u1

∆y

(13)

x v h x v h y u h y u h t h y x ∆ − ∆ + ∆ − ∆ = ∆ ∆ ∆ ∆ 4 4 3 3 2 2 1 1

Persamaan diatas ditulis kembali ke dalam bentuk

y v h v h x u h u h t h ∆ − + ∆ − = ∆ ∆ ( 1 1 2 2) ( 3 3 4 4) Atau 0 ) ( ) ( = ∆ ∆ + ∆ ∆ + ∆ ∆ y hv x hu t h Untuk ∆tÆ0 0 ) ( ) ( = ∂ ∂ + ∂ ∂ + ∂ ∂ y hv x hu t h

II.4.2 Persamaan Momentum (Hukum Kekekalan Momentum)

F4

M4

P1 P2

Gambar II.7 Titik kontrol

P1 dan P2 adalah gaya akibat tekanan air pada sisi kubus, Pb gaya tekan akibat

F6 M2 F3 M3 F5 M1 Fb ∆y Pb ∆x

(14)

dan F5, F6 adalah gaya normal. Pada gambar diatas, gaya akibat angin dan coriolis

diabaikan.

Berdasarkan hokum kekekalan momentum, laju perubahan momentum pada arah x adalah: 5 6 3 4 2 1 4 3 2 1 ) ( ) ( ) (M M M M P P P F F F F F t M b b x = − + − + − + − + − + − ∆ ∆

Momentum adalah massa dikalikan dengan kecepatan (M. V) sedangkan massa adalah volume dikalikan dengan massa jenisnya, maka laju perubahan momentum dapat ditulis sebagai:

t HU y x t Mx ∆ ∆ ∆ ∆ = ∆ ∆ ρ ( )

Dengan asumsi bahwa tidak ada perbedaan kecepatan dalam arah vertical (depth average), maka: 2 1 1 1 yHU M = ρ∆ 2 2 2 2 yHU M =ρ∆ 3 3 3 3 xHUV M =ρ∆ 4 4 4 4 xH UV M = ρ∆

Dengan mengasumsikan tekanan sebagai tekanan hidrostatis akibat kedalaman, maka: 2 2 1 1 H y g P = ρ ∆ 2 2 2 2 H y g P =ρ ∆ yHS x g P =ρ ∆ ∆ 0

(15)

Sox adalah kemiringan dasar dalam arah x.

Gaya geser pada sisi dan dasar kotak serta gaya normal dapat dihitung sebagai:

y x Fbbx∆ ∆ 3 3 3 xH xy F =∆ τ 4 4 4 xH xy F =∆ τ 5 5 5 yH xy F =∆ τ 6 6 6 yH xy F =∆ τ

Suku-suku F3, F4, F5, dan F6 dalam hal ini disebut juga sebagai suku-suku turbulen

yang dalam hal ini diabaikan.

Dengan mensubstitusikan semua persamaan diatas kedalam persamaan kekekalan momentum arah x dengan ∆tÆ0

(

)

fx ghS x z h gh U y V U x U t U − = ∂ + ∂ + ∂ ∂ + ∂ ∂ + ∂ ∂ Dimana 3 / 4 2 2 2 H V U U n Sfx = +

Dengan cara yang sama maka untuk arah y didapatkan

(

)

fy ghS y z h gh V y V V x U t V = ∂ + ∂ + ∂ ∂ + ∂ ∂ + ∂ ∂

(16)

Bab II Tinjauan Pustaka ... II-1 II.1 Banjir di Perkotaan... II-1 II.2 Banjir Akibat Hujan ... II-3 II.2.1 Curah Hujan ... II-4 II.2.2 Intensitas Hujan... II-5 II.3 Banjir Akibat Debit dari Hulu (Upper Catchment) ... II-6

II.3.1 Kurva Hidrograf Aliran... II-6 II.3.2 Hidrograf Sintetik Metoda Rasional ... II-7 II.3.3 Hidrograf Sintetik Metoda Nakayasu ... II-9 II.4 Persamaan Pengatur ... II-12

II.4.1 Persamaan Kontinuitas (Hukum Kekekalan Massa)... II-12 II.4.2 Persamaan Momentum (Hukum Kekekalan Momentum) ... II-13

Gambar II.1 Siklus hidrologi (Kusuma, M. S. B., 2005)... II-1 Gambar II.2 Siklus hidrologi pada urban area... II-2

Gambar II.3 Kurva IDF ... II-5 Gambar II.4 Hidrograf... II-6 Gambar II.5 Hidrograf sintetik Nakayasu ... II-11 Gambar II.6 Ruang tilik... II-12 Gambar II.7 Titik kontrol ... II-13

(17)

Tabel II.1 Koefisien runoff ... II-8 Tabel II.2 Koefisien Manning dari beberapa bahan ground cover ... II-9

Gambar

Gambar II.1  Siklus hidrologi (Kusuma, M. S. B., 2005)
Gambar II.2  Siklus hidrologi pada urban area
Gambar II.3  Kurva IDF
Gambar II.4  Hidrograf
+4

Referensi

Dokumen terkait

PTSP di MAN Kota Batu pun sudah sangat sesuai standart pendidikan yang telah di tetapkan, bisa diambil kesimpulan bahwa kinerja staff di PTSP layanan terpadu satu pintu sudah

Banyaknya antusias masyarakat untuk belajar dan menghafal Al-Qur‟an. Maka, tidak dipungkiri lagi maraknya lembaga-lembaga tahfizh Al-Qur‟an yang bermunculan di

Sementara untuk instrumen tes hasil belajar matematika yang kedua, terdapat 1 soal yang termasuk ke dalam kategori cukup baik, dan 4 soal dengan kategori sangat baik

Dalam mendeskripsikan hasil penelitian digunakan matriks SWOT dengan menganalisis faktor Intenal dan eksternal yang dilakukan dengan memberikan gambaran umum

Dari beberapa definisi tentang basis data yang telah disebutkan diatas, dapat disimpulkan bahwa basis data merupakan kumpulan data yang terhubung secara logis dan

Kreativitas mendasari semua organisasi bisnis yang terlihat dari munculnya gagasan yang menciptakan produk, pelayanan, usaha, ataupun model terbaru yang dihasilkan

berhak dengan kebijakan mutlaknya untuk membatalkan, mengurungkan, menutup, memperbaiki, mengembalikan, atau mengambil tindakan lain yang mungkin dianggap perlu terkait

Dari paparan diatas maka dapat dijelaskan bahwa proses dalam mempromosikan MTsS Darul Aman Aceh Besar yaitu proses promosi pertama guru-guru membuat dan