• Tidak ada hasil yang ditemukan

ON CLASSES OF ANALYTIC FUNCTIONS CONTAINING GENERALIZATION OF INTEGRAL OPERATOR | Darus | Journal of the Indonesian Mathematical Society 11 34 1 PB

N/A
N/A
Protected

Academic year: 2017

Membagikan "ON CLASSES OF ANALYTIC FUNCTIONS CONTAINING GENERALIZATION OF INTEGRAL OPERATOR | Darus | Journal of the Indonesian Mathematical Society 11 34 1 PB"

Copied!
10
0
0

Teks penuh

(1)

Vol. 17, No. 1 (2011), pp. 29–38.

ON CLASSES OF ANALYTIC FUNCTIONS

CONTAINING GENERALIZATION OF INTEGRAL

OPERATOR

Maslina Darus

1,∗

and Rabha W. Ibrahim

2

1School of Mathematical Sciences, Faculty of Science and Technology,

Universiti Kebangsaan Malaysia Bangi 43600, Selangor Darul Ehsan, Malaysia, [email protected]

2School of Mathematical Sciences, Faculty of Science and Technology,

Universiti Kebangsaan Malaysia Bangi 43600, Selangor Darul Ehsan,

Malaysia, [email protected]

Abstract. New classes containing generalization of integral operator are intro-duced. Characterization and other properties of these classes are investigated. Fur-ther, Fekete-Szeg¨o functional for these classes are also given.

Key words and Phrases: Integral operator, analytic functions, differential operator, Fekete-Szeg¨o functional, distortion theorem.

Abstrak.Pada paper ini diperkenalkan kelas baru yang memuat perumuman dari operator integral. Kemudian karakterisasi dan sifat lain juga dikaji dari kelas. Lebih lanjut, fungsional Fekete-Szeg¨o untuk kelas ini juga diberikan.

Kata kunci: Perumuman operator integral, fungsi analitik, operator diferensial, fungsional Fekete-Szeg¨o, teorema distorsi.

1. Introduction

LetHbe the class of functions analytic in U andH[a, n] be the subclass of Hconsisting of functions of the formf(z) =a+anzn+an+1zn+1+... .LetAbe the subclass ofHconsisting of functions of the form

f(z) =z+

X

n=2

anzn, z ∈U. (1)

2000 Mathematics Subject Classification: 30C 45.

Received: 17-12-2010, revised: 07-04-2011, accepted: 09-04-2011. *Corresponding author

(2)
(3)

And letFk(−1)be defined such that

Note that Fk(−1) is needed to get the integral operator from differential operator.

Then

k= 0 gives Noor integral operator [15,16].

Some of relations for this integral operator are discussed in the next lemma.

Lemma 1.1. Let f ∈ A.Then

Note that (ii) is the type of Bernardi integral[21].

Definition 1.1. Let f(z) ∈ A. Thenf(z) ∈Sk,α,βλ,δ (µ)if and only if

(4)

sharp upper bound of |a2| and of the Fekete-Szeg¨o functional |a3−νa22| for the

2. General Properties of Jk,α,βλ,δ

In this section we study the characterization properties and distortion theo-rems for the functionf(z) ∈ Ato belong to the classesSλ,δk,α,β(µ) andCk,α,βλ,δ (µ) by obtaining the coefficient bounds.

Theorem 2.1. Letf(z) ∈ A. If forα≥0, β≥1, δ≥0 andλ≥0

Proof. Suppose that (4) holds. Since

1−µ≥

then this implies that

1 +P∞n=2[(βn)α+(nn1)(βn)|an| αλ]kC(δ,n)

We also note that the assertion (4) is sharp and the extremal function is given by

(5)

In the same way we can verify the following results

Theorem 2.2. Letf(z) ∈ A. If forα≥0, β≥1, δ≥0 andλ≥0

X

n=2

n(n−µ)|an|

[(βn)α+ (n1)(βn)αλ]kC(δ, n) ≤1−µ, 0≤µ <1, (5)

thenf(z) ∈Ck,α,βλ,δ (µ).The result (8) is sharp.

Theorem 2.3. Let the hypotheses of Theorem 2.1 be satisfy. Then forz ∈U and 0≤µ <1

|Jk,α,βλ,δ f(z)| ≥ |z| −1−µ 2−µ

and

|Jk,α,βλ,δ f(z)| ≤ |z|+1−µ 2−µ.

Proof. By using Theorem 2.1, one can verify that

(2−µ)

X

n=2

|an|

[(βn)α+ (n1)(βn)αλ]kC(δ, n)

X

n=2

(n−µ)|an|

[(βn)α+ (n1)(βn)αλ]kC(δ, n)

≤1−µ

then

X

n=2

|an|

[(βn)α+ (n1)(βn)αλ]kC(δ, n) ≤ 1−µ

2−µ.

Thus we obtain

|Jk,α,βλ,δ f(z)| ≤ |z|+

X

n=2

|an|

[(βn)α+ (n1)(βn)αλ]kC(δ, n)|z| n

≤ |z|+

X

n=2

|an|

[(βn)α+ (n1)(βn)αλ]kC(δ, n)|z| 2

≤ |z|+ [1−µ 2−µ]|z|

(6)

The other assertion can be proved as follows

This complete the proof.

Theorem 2.4.Let the hypotheses of Theorem 2.21 be satisfy. Then forz ∈U and 0≤µ <1

Theorem 2.5. Let the hypotheses of Theorem 2.1 be satisfy. Then

(n−µ)

Proof. In virtue of Theorem 2.1, we have

(7)

Thus we obtain

|f(z)|=|z+

X

n=2 anzn|

≤ |z|+

X

n=2

|an||z|2

≤ |z|+ (1−µ)|z|2 The other assertion can be proved as follows

|f(z)| ≥ |z−

X

n=2 anzn|

≥ |z| −

X

n=2

|an||z|2

≥ |z| −(1−µ)|z|2.

This complete the proof.

Theorem 2.6. Let the hypotheses of Theorem 2.2 be satisfy. Then (n−µ)

[(βn)α+ (n1)(βn)αλ]kC(δ, n) ≥1,∀n≥2 and0≤µ <1 poses

|f(z)| ≥ |z| − (1−µ) 2 |z|

2

and

|f(z)| ≤ |z|+(1−µ) 2 |z|

2 .

3. Fekete-Szeg¨o for the Classes Sk,α,βλ,δ (µ)andCk,α,βλ,δ (µ)

In this section we determine the sharp upper bound for |a2| for the classes

Sk,α,βλ,δ (µ) andCk,α,βλ,δ (µ).Moreover, we calculate the Fekete-Szeg¨o|a3−νa22| func-tional for them.

Theorem 3.1. Let the hypotheses of Theorem 2.1 be satisfy. Then

|a2| ≤

2(1−µ)[(β2)α(1 +λ)]kC(δ,2) 1 +µ

and for allν ∈Cthe following bound is sharp

|a3−νa22| ≤2(1−µ)[(3β)α(1 + 2λ)]kC(δ,3)

maxn1,|1 + 2(1−µ)

(1 +µ)[(3β)α(1 + 2λ)]kC(δ,3)

−2ν 1−µ

(1 +µ)2

{[(2β)α(1 +λ)]kC(δ,2)}2 [(3β)α(1 + 2λ)]kC(δ,3) |

o

(8)

Proof. Sincef ∈Sk,α,βλ,δ (µ) then the condition

ℜnz[J

k,α,β λ,δ f(z)]′

Jk,α,βλ,δ f(z)

o

> µ, 0≤µ <1, z ∈U

is equivalent to

z[Jk,α,βλ,δ f(z)]′= (1−µ)p(z)Jk,α,βλ,δ f(z), z ∈U,

for somep ∈ P.Equating coefficients we obtaina2=(1−1+µµ)Ap1, a3= (1−µ)B(p2+ (1−µ)

2+µ p 2

1) where A := [(2β)α(1 +λ)]kC(δ,2), B := [(3β)α(1 + 2λ)]kC(δ,3) and further, for C:= (11+µ−µ)2 +(1−2µ)B −ν((11+µ−µ)A)2 and by using Lemma 1.2 we have

|a3−νa22| ≤ H(x) = 2(1−µ)B+ (C− (1−µ)B

2 )x

2, x := |p

1|. Consequently, we receive

|a3−νa22|=

 

H(0) = 2(1−µ)B, C ≤(1−2µ)B

H(2) = 4C, C > (1−2µ)B.

Equality is attained for functions given by

z[Jk,α,βλ,δ f(z)]′

Jk,α,βλ,δ f(z) =

1 +z2(12µ) 1−z2

and

z[Jk,α,βλ,δ f(z)]′

Jk,α,βλ,δ f(z) =

1 +z(1−2µ) 1−z

respectively.

Forµ= 0 we receive the following corollary.

Corollary 3.1. Let the assumptions of Theorem 3.1 hold. Then forµ= 0

|a2| ≤2[(2β)α(1 +λ)]kC(δ,2) and

|a3−νa22| ≤2[(3β)α(1 + 2λ)]kC(δ,3)

maxn1,|1 + 2

[(3β)α(1 + 2λ)]kC(δ,3)

−2ν{[(2β)

α(1 +λ)]kC(δ,2)}2 [(3β)α(1 + 2λ)]kC(δ,3) |

o

.

In the similar manner we can prove the following result.

Theorem 3.2. Let the hypotheses of Theorem 2.2 be satisfy. then

|a2| ≤

(9)

and for allν ∈Cthe following bound is sharp

|a3−νa22| ≤

2(1−µ) 3(2 +µ)[(3β)

α(1 + 2λ)]kC(δ,3)

maxn1,|1 2+

2(1−µ) (3 +µ)

−3ν(1−µ) (3 +µ)2 {[(2β)

α(1 +λ)]kC(δ,2)}2|o .

Forµ= 0 we receive the following corollary.

Corollary 3.2. Let the assumptions of Theorem 3.2 hold. Then forµ= 0

|a2| ≤ 2 3[(2β)

α(1 +λ)]kC(δ,2)

and

|a3−νa22| ≤ 1 3[(3β)

α(1+2λ)]kC(δ,3)maxn1,|1 2+

2 3−

ν

3{[(2β)

α(1+λ)]kC(δ,2)}2|o.

Acknowledgement: The work here is fully supported by MOHE: UKM-ST-06-FRGS0244-2010.

References

[1] Al-Oboudi, F., ”On univalent functions defined by a generalized Salagean operator”, I.J.M.M.S,27(2004), 1429–1436.

[2] Al-Shaqsi, K. and Darus, M., ”An operator defined by convolution involving polylogarithms functions”,Journal of Mathematics and Statistics,4(2008), 46–50.

[3] Darus, M. and Ibrahim, R.W., ”Generalization of differential operator”,Journal of Mathe-matics and Statistics,4(2008), 138–144.

[4] Darus, M. and Ibrahim, R.W., ”On subclasses of uniformly Bazilevic type functions involving generalised differential and integral operators”,Far East Journal of Mathematical Sciences (FJMS),33(2009), 401–411.

[5] Darus, M. and Ibrahim, R.W., ”On subclasses for generalized operators of complex order”, Far East Journal of Mathematical Sciences (FJMS),33(2009), 299–308.

[6] Darus, M. and Ibrahim, R.W., ”On inclusion properties of generalized integral operator involving Noor integral”, Far East Journal of Mathematical Sciences (FJMS),33(2009), 309–321.

[7] Darus, M. and Ibrahim, R.W., ”Ibrahim and Iqbal H. Jebril, Bounded turning for generalized integral operator”,Int. J. Open Problems Complex Analysis,1( 2009), 1–10.

[8] Darus, M. and Ibrahim, R.W., ”New Classes Containing Generalization of Differential Op-erator”,Applied Mathematical Sciences,3:51(2009), 2507–2515.

[9] Darus, M. and Ibrahim, R.W., ”Integral operator defined byk−th Hadamard product”,ITB J. Sci.,42:2(2010), 135–152.

(10)

[11] Darus, M. and Ibrahim, R.W., ”Multivalent functions based on linear integral operator”, Miskolc N.N,11:1(2010), 43–52.

[12] Darus, M. and Ibrahim, R.W., ”Operator defined by convolution with Zeta functions”,Far East Journal of Mathematical Sciences,40:1(2010), 93–105.

[13] Darus, M. and Ibrahim, R.W., ”On univalent functions defined by a generalized differential operator”,J. Anal. Appl.,16:2(2010), 305–313.

[14] Duren, P.L.,Univalent functions, Springer-Verlag, New York, 1983.

[15] Noor, K.I., ”On new classes of integral operators”,J. Nat. Geomet.,16(1999), 71–80. [16] Noor, K.I. and Noor, M.A., ”On integral operators”, J. of Math. Anal. Appl.,238(1999),

341–352.

[17] Ruscheweyh, S., ”New criteria for univalent functions”,Proc. Amer. Math. Soc.,49(1975), 109–115.

[18] Sˇalˇagean, G. S., ”Subclasses of univalent functions”,Lecture Notes in Math., 1013, Springer-Verlag, Berlin, 1983, 362–372.

[19] Srivastava, H. M., Darus, M., and Ibrahim, R.W., ”Classes of analytic functions with frac-tional powers defined by means of a certain linear operator”,Integ. Tranc. Special Funct., 22(2011), 17–28.

[20] Darus M. and Al-Shaqsi K., ”Differential sandwich theorem with generalised derivative op-erator”,Int. J. Comput. Math. Sci.,2:2(2008), 75–78.

Referensi

Dokumen terkait