• Tidak ada hasil yang ditemukan

11-21.2010. 109KB Jun 04 2011 12:07:23 AM

N/A
N/A
Protected

Academic year: 2017

Membagikan "11-21.2010. 109KB Jun 04 2011 12:07:23 AM"

Copied!
8
0
0

Teks penuh

(1)

COEFFICIENT INEQUALITIES FOR CERTAIN CLASSES OF ANALYTIC FUNCTIONS INVOLVING

SALAGEAN OPERATOR

Yong Sun, Wei-Ping Kuang and Zhi-Gang Wang

Abstract. The main purpose of this paper is to derive some coefficient in-equalities for certain classes of analytic functions which are defined by means of the Salagean operator. Relevant connections of the results presented here with those given in earlier works are also pointed out.

2000Mathematics Subject Classification: 30C45.

Keywords and phrases: Analytic functions; Coefficient inequalities; Salagean operator.

1. Introduction

LetA denote the class of functions of the form: f(z) =z+

X

k=2

akzk (z∈U), (1)

which are analyticin theopenunit disk

U:={z: zC and |z|<1}.

LetS denote the subclass ofA whose members are analytic and univalent func-tions in U. For 0 ≦β < 1, We denote by S∗(β) and K(β) the usual subclasses of A consisting of functions which are, respectively, starlike of order β and convex of order β inU.

Salagean [1] once introduced the following operator which called the Salagean operator:

(2)

and

Dnf(z) =D(Dn−1f(z)) (n∈N:={1,2, . . .}). We note that

Dnf(z) =z+

X

k=2

knakzk (n∈N0:=N∪ {0}). (2)

A functionf ∈ Ais said to be in the classNm,n(α, β) if it satisfies the inequality:

Dmf(z)

Dnf(z)

> α

Dmf(z)

Dnf(z) −1

+β (α≧0, 0≦β <1; m∈N, nN0). (3) Also let Ms

m,n(α, β)(s∈ N0) be the subclass of A consisting of functions f which

are satisfied the condition: f ∈ Ms

m,n(α, β)⇐⇒Dsf ∈ Nm,n(α, β). (4)

It is easy to see that if s = 0, then M0

m,n(α, β) ≡ Nm,n(α, β). We observe that,

by specializing the parameters m, n, α and β, we obtain the following subclasses studied by various authors.

(1)N1,0(0, β)≡ S∗(β) and N2,1(0, β)≡ K(β) (see Silverman [2]).

(2)N1,0(α, β)≡ SD(α, β) andN2,1(α, β)≡ KD(α, β) (see Shamset al. [3], Owa et al. [4]).

(3)Nm,n(0, β)≡ Km,n(β) and Ms

m,n(0, β)≡ Msm,n(β) (see Eker and Owa [5]).

The function classes Nm,n(α, β) and Ms

m,n(α, β) were introduced and

investi-gated by Eker and Owa [6] (see also Srivastava and Eker [7]). They obtained many interesting results associated with them. In this paper, we aim at proving some co-efficient inequalities for the function classes Nm,n(α, β) and Ms

m,n(α, β). Relevant

connections of the results presented here with those given in earlier works are also pointed out.

2. Main Results

In order to prove our main results, we need the following lemma.

Lemma 1. Let δ >0, m∈N and nN0. Suppose also that the sequence{Bk}

k=1 is defined by

B1= 1, B2 = δ

(3)

and

Bk =

δ

|kmkn| k−1 X

j=1

jnBj (k∈N\ {1,2}). (5)

Then

Bk =

δ

|kmkn| k−1 Y

j=2

1 + δj

n

|jmjn|

(k∈N\ {1,2}). (6)

Proof. We make use of the principle of mathematical induction to prove the assertion (6).

Fork= 3, we know that

B3 = δ

|3m3n|(1 + 2 nB

2) = δ

|3m3n|

2 Y

j=2

1 + δj

n

|jmjn|

,

which implies that (6) holds fork= 3.

We now suppose that (6) holds fork= 3,4,· · · , r. Then

Br=

δ

|rmrn| r−1 Y

j=2

1 + δj

n

|jmjn|

. (7)

Combining (5) and (7), we find that Br+1 =

δ

|(r+ 1)m(r+ 1)n| r

X

j=1 jnBj

= δ

|(r+ 1)m(r+ 1)n| r−1 X

j=1

jnBj +

δrn

|(r+ 1)m(r+ 1)n|Br

= δ

|(r+ 1)m(r+ 1)n|

|rm−rn|

δ Br+

δrn

|(r+ 1)m(r+ 1)n|Br

= |r

mrn|+δrn |(r+ 1)m(r+ 1)n|

δ

|rmrn| r−1 Y

j=2

1 + δj

n

|jmjn|

= δ

|(r+ 1)m(r+ 1)n|

1 + δr

n

|rmrn|

r−1 Y

j=2

1 + δj

n

|jmjn|

= δ

|(r+ 1)m(r+ 1)n| r

Y

j=2

1 + δj

n

|jmjn|

(4)

which shows that (6) holds for k = r + 1. The proof of Lemma 1 is evidently completed.

Theorem 1. If f ∈ Nm,n(α, β), then

|a2|≦ 2(1−β)

|1−α| |2m2n|, (8)

and

|ak|≦ 2(1−β)

|1−α| |kmkn| k−1 Y

j=2

1 + 2(1−β)j

n

|1−α| |jmjn|

(k∈N\ {1,2}). (9)

Proof. Letf ∈ Nm,n(α, β) and suppose that

p(z) := (1−α)

Dm

f(z)

Dnf

(z) −(β−α)

1−β (z∈U). (10)

Then p is analytic in Uwith

p(0) = 1 and ℜ(p(z))>0 (z∈U). We now set

p(z) = 1 +p1z+p2z2+· · · . (11) Combining (10) and (11), we find that

Dmf(z) =Dnf(z) 1 +1−β 1−α

X

k=1 pkzk

! ,

which implies that (km−kn)ak=

1−β

1−α[pk−1+ 2

na

2pk−2+· · ·+ (k−1)nak−1p1] (k∈N\{1}). (12) On the other hand, it is well known that

|pk|≦2 (k∈N). (13)

Combining (12) and (13), we obtain

|ak|≦ 2(1−β)

|1−α| |kmkn| k−1 X

j=1

(5)

Suppose that δ = 2(1|1−α|−β) > 0, m ∈ N and n N0. We define the sequence

{Bk}∞ k=1 by

B1 = 1, B2= δ

|2m2n|,

and

Bk=

δ

|kmkn| k−1 X

j=1

jnBj (k∈N\ {1,2}). (15)

In order to prove that

|ak|≦Bk (k∈N\ {1}),

we use the principle of mathematical induction. By noting that

|a2|≦

2(1−β)

|1−α| |2m2n| =B2. (16)

Thus, assuming that

|ak|≦Bk (k∈ {2,3, . . . , r}),

we find from (14) and (15) that

|ar+1|≦

2(1−β)

|1−α| |(r+ 1)m(r+ 1)n| r

X

j=1 jn|aj|

≦ δ

|(r+ 1)m(r+ 1)n| r

X

j=1

jnBj =Br+1.

Therefore, we have

|ak|≦Bk (k∈N\ {1}) (17)

as desired.

By virtue of Lemma 1 and (15), we know that

Bk=

2(1−β)

|1−α| |kmkn| k−1 Y

j=2

1 + 2(1−β)j

n

|1−α| |jmjn|

(k∈N\ {1,2}). (18)

Combining (16), (17) and (18), we readily arrive at the coefficient inequalities (8) and (9) asserted by Theorem 1.

(6)

Corollary 1. If f(z)∈ Ms

m,n(α, β), then |a2|≦

2(1−β)

|1−α| |2m+s2n+s|,

and

|ak|≦ 2(1−β)

|1−α| |km+skn+s| k−1 Y

j=2

1 + 2(1−β)j

n

|1−α| |jmjn|

(k∈N\ {1,2}).

Remark 1. By specializing the parameters m and n, we get the corresponding results obtained by Owa et al. [4].

By means of Theorem 1 and Corollary 1, we easily get the following distortion theorems.

Corollary 2. If f ∈ Nm,n(α, β), then

max  

0, |z| − 2(1−β) |1−α|

X

k=2 Qk−1

j=2

1 +|1−α||j2(1−βm)−jjnn|

|kmkn| |z| k

 

≦|f(z)|≦|z|+2(1−β)

|1−α| ∞

X

k=2 Qk−1

j=2

1 +|1−α||j2(1−βm)−jjnn|

|kmkn| |z| k , and max   

0, 1−2(1−β) |1−α|

X

k=2 Qk−1

j=2

1 +|1−α||j2(1−βm)−jjnn|

|km−1kn−1| |z|

k−1  

≦ f′(z)

≦1 +

2(1−β)

|1−α| ∞

X

k=2 Qk−1

j=2

1 +|1−α||j2(1−βm)−jjnn|

|km−1kn−1| |z|

k−1.

Corollary 3. If f ∈ Ms

m,n(α, β), then

max  

0,|z| −2(1−β) |1−α|

X

k=2 Qk−1

j=2

1 +|1−α||j2(1−βm)jn

−jn

|

|km+skn+s| |z| k

 

≦|f(z)|≦|z|+2(1−β)

|1−α| ∞

X

k=2 Qk−1

j=2

1 +|1−α||j2(1−βm)−jjnn|

(7)

and

max  

0,1−2(1−β) |1−α|

X

k=2 Qk−1

j=2

1 +|1−α||j2(1−βm)−jjnn|

|km+s−1kn+s−1| |z|

k−1  

≦ f′(z)

≦1 +

2(1−β)

|1−α| ∞

X

k=2 Qk−1

j=2

1 +|1−α||j2(1−βm)−jjnn|

|km+s−1kn+s−1| |z|

k−1.

Acknowledgements. The present investigation was supported by the Science Fund of Huaihua Universityunder Grant HHUQ2009-03 and theScientific Research Fund of Hunan Provincial Education Department under Grant 08C118 of the Peo-ple’s Republic of China.

References

[1] G. S. Salagean, Subclasses of univalent functions, Lecture Notes in Math. Springer-Verlag, 1013 (1983), 362–372.

[2] H. Silverman, Univalent functions with negative coefficients, Proc. Amer. Math. Soc. 51 (1975), 109–116.

[3] S. Shams, S. R. Kulkarni and J. M. Jahangiri, Classes of uniformly starlike and convex functions, Int. J. Math. Math. Sci. 2004 (2004), 2959–2961.

[4] S. Owa. Y. Polatoˇglu and E. Yavuz, Coefficient inequalities for class of uniformly starlike and convex functions, J. Inequal. Pure Appl. Math. 7 (2006), Article 160, pp. 1–5 (electronic).

[5] S. S. Eker and S. Owa, New applications of classes of analytic functions in-volving the Salagean operator, Proceedings of the International Symposium on Com-plex Function Theory and Applications, Transilvania University of Brasov Printing House, Brasov, Romania, 2006, 21–34.

[6] S. S. Eker and S. Owa,Certain classes of analytic functions involving Salagean operator, J. Inequal. Pure Appl. Math. 10 (2009), Article 22, pp. 1–12 (electronic). [7] H. M. Srivastava and S. S. Eker,Some applications of a subordination theorem for a class of analytic functions, Appl. Math. Lett. 21 (2008), 394–399.

Yong Sun and Wei-Ping Kuang Department of Mathematics, Huaihua University,

(8)

email: sy785153@126.com

email: kuangweipingppp@163.com

Zhi-Gang Wang

School of Mathematics and Computing Science, Changsha University of Science and Technology, Yuntang Campus, Changsha 410114, Hunan, People’s Republic of China

Referensi

Dokumen terkait

Pokja IV ULP pada Pemerintah Kabupaten Hulu Sungai Selatan akan melaksanakan Pelelangan Umum dengan pascakualifikasi untuk paket pekerjaan konstruksi sebaqai

Berdasarkan pada hasil analisis SWOT dan melakukan formulasi strategi pengembangan bisnis terhadap usaha Artharaga fitness center, maka pengembangan bisnis yang

Berdasarkan hasil penelitian terhadap persepsi mengenai gaya kepemimpinan Dahlan Iskan di Jawa Pos oleh narasumber dan sumber tertulis, maka dapat disimpulkan

Berdasarkan Berita Acara Hasil Pelelangan (BAHP) Pekerjaan Pembangunan Drainase Lingkungan Desa Karang Indah Kec. VII Desa Batuah Kecamatan Kusan Hilir Kabupaten

Dan metode pelatihan terkahir yang digunakan oleh pabrik kecap Wie Sin adalah sesuai dengan metode yang dikemukakan oleh (Dessler, 2003, p.222) yaitu on the job

Maka bersama ini diumumkan bahwa Pelaksana Pekerjaan tersebut adalah sebagai berikut: Nama Perusahaan : CV.. Bumi

Restrukturisasi organisasi yang dilakukan oleh PT. Samudra Alam Raya dilakukan untuk mencari solusi atau jalan keluar bagi masalah menurunnya kinerja

Strategi pengembangan bisnis yang dapat dilakukan perusahaan dengan melalui fungsi sumber daya manusia yang dimiliki oleh perusahaan adalah dengan meningkatkan