• Tidak ada hasil yang ditemukan

14-21.2010. 123KB Jun 04 2011 12:07:32 AM

N/A
N/A
Protected

Academic year: 2017

Membagikan "14-21.2010. 123KB Jun 04 2011 12:07:32 AM"

Copied!
8
0
0

Teks penuh

(1)

A SUBCLASS OF M-W-STARLIKE FUNCTIONS

M. K. Aouf, A. Shamandy, A. O. Mostafa, S. M. Madian

Abstract. In 1999, Kanas and Ronning introduced the classes of functions starlike and convex, which are normalized with f(w) = f′

(w)−1 = 0 and w is a fixed point in U. The aim of this paper is to continue the investigation of the univalent normalized with f(w) =f′

(w)−1 = 0, wherew is a fixed point in U by using the method of Briot-Bouquet differentail subordination.

2000Mathematics Subject Classification: 30C45.

Keywords and phrases: Univalent, starlike, Briot-Bouquet differentail subordi-nation.

1. Introduction

LetH(U) be the class of functions which are regular in the unit disc U ={z ∈ C : |z| < 1}, A = {f H(U) : f(0) = f

(0)−1 = 0} and S = {f ∈ A : f is univalent inU}.

We recall here the definitions of the well-known classes of starlike and convex functions:

S∗

=

f ∈A: Re

zf′

(z) f(z)

>0, z∈U

,

Sc =

f ∈A: Re

1 +zf

′′

(z) f′(z)

>0, z ∈U

.

Letw be a fixed point inU and A(w) ={f ∈H(U) :f(w) =f′

(w)−1 = 0}. In [7], Kanas and Ronning introduced the following classes:

(2)

ST(w) =S∗

(w) =

f ∈S(w) : Re(z−w)f

(z)

f(z) >0, z ∈U

,

CV(w) =Sc(w) =

f ∈S(w) : 1 + Re(z−w)f

′′

(z)

f′(z) >0, z∈U

.

It is obvious that the natural ” Alexander relation ” between the classesS∗

(w) andSc(w) is as follows:

g∈Sc(w) ⇔ f(z) = (z−w)g′

(z)∈S∗

(w). (1.1)

It is easy to see that a function f ∈A(w) has the series of expansion:

f(z) = (z−w) +a2(z−w)2+... . (1.2) In [2], Acu and Owa defined the following classes:

D(w) =

z∈U : Rew z

<1 and Re

z(1 +z) (z−w)(1−z)

>0

,forD(0) =U; s(w) ={f :D(w)−→C} ∩S(w), s

(w) =S∗

(w)∩s(w) where wis a fixed point in U.

Also Acu and Owa [2] considerd the integral operatorLa:A(w)−→A(w) defined by

f(z) =LaF(a) =

1 +a (z−w)a

z

Z

w

F(t)(t−w)a−1

dt, a∈R, a0. (1.3)

Let f ∈ A(w), w be a fixed point in U, m∈ N0 =N∪ {0},N={1,2, ...}, λ 0 and l≥ 0,we define the following differential operator Iwm(λ, l) :A(w) −→ A(w) as follows:

Iw0(λ, l)f(z) =f(z), (1.4)

Iw1(λ, l)f(z) =Iw(λ, l)f(z) =Iw0(λ, l)f(z)

(1−λ+l) (1 +l) + I

0

w(λ, l)f(z)

′ λ(z−w)

(1 +l) = (z−w) +

∞ X

n=2

1 +λ(n−1) +l 1 +l

an(z−w)n, (1.5)

Iw2(λ, l)f(z) =Iw(λ, l)f(z)

(1−λ+l)

(1 +l) + (Iw(λ, l)f(z))

′ λ(z−w)

(1 +l) = (z−w) +

∞ X

n=2

1 +λ(n−1) +l 1 +l

2

(3)

and (in general)

Iwm(λ, l)f(z) =Iw(λ, l)(Iwm−1(λ, l)f(z))

= (z−w) +

∞ X

n=2

1 +λ(n−1) +l 1 +l

m

an(z−w)n (m∈N0;λ≥0;l≥0). (1.7) From (1.7) it is easy to verify that

λ(z−w) (Iwm(λ, l)f(z))′

= (1 +l)Iwm+1(λ, l)f(z)−(1−λ+l)Iwm(λ, l)f(z) (λ >0), (1.8) Iwm1(λ, l)(Iwm2(λ, l)f(z)) =Iwm2(λ, l)(Iwm1(λ, l)f(z)),

for all integers m1and m2.

Remark 1. (i) For λ= 1 andl= 0,the operator Dm

w =Iwm(1,0)was introduced and studied by Acu and Owa [3];

(ii) For w = 0 the operator Im(λ, l) = I0m(λ, l) was introduced and studied by C˘ata¸s et al. [4];

(iii) For w = 0, l = 0 and λ ≥ 0, the operator Dmλ = I0m(λ,0) was introduced and studied by Al-Oboudi [1];

(iv) For w= 0, l= 0 and λ= 1,the operator Dm=Im

0 (1,0)was introduced and studied by S˘al˘agean [11];

(v) For w= 0 and λ= 1,The operator Im(l) =I0m(1, l) was studied recently by Cho and Kim [5] and Cho and Srivastava [6];

(vi) For w = 0 and l = λ = 1, The operator Im = I0m(1,1) was studied by Uralegaddi and Somanatha [12].

Definition 1. Let w be a fixed point in U, m ∈ N0, λ 0, l 0 and f S(w).Then the function f(z) is said to be an l-λ-m-w-starlike function if

Re

Iwm+1(λ, l)f(z) Im

w(λ, l)f(z)

>0, z ∈U. (1.9)

The class of all these functions is denoted by S∗

m(λ, l, w). Remark 2. (i) S∗

m(1,0, w) = Sm∗(w), m ∈ N0, where Sm∗(w) is the class of m−w−starlike functions introduced by Acu and Owa [3];

(ii) S∗

0(1,0, w) = S

(w) and S∗

m(1,0,0) = S

m, m ∈ N0, where Sm∗ is the class of m−starlike functions introduced by S˘al˘agean [11];

(iii) If f ∈S∗

m(λ, l, w) and we denote Iwm(λ, l)f(z) =g(z),we obtain g(z)∈S

(w); (iv) Using the class s(w),we obtain s∗

m(λ, l, w) =S

(4)

Also we note that: (i) S∗

m(λ,0, w) =P

m(λ, w)

=

f ∈S(w) : Re

Im+1

w (λ)f(z) Im

w(λ)f(z)

>0, λ≥0, m∈N0, zU

; (1.10)

where

Iwm(λ)f(z) = (z−w) +

∞ X

n=2

[1 +λ(n−1)]man(z−w)n; (ii) S∗

m(1, l, w) =P

m(l, w)

=

f ∈S(w) : Re

Iwm+1(l)f(z) Im

w(l)f(z)

>0 , l≥0, m∈N0, zU

; (1.11)

where

Iwm(l)f(z) = (z−w) +

∞ X

n=2

n+l 1 +l

m

an(z−w)n.

2. Main results

In order to prove our main results, we shall need the following lemmas. Lemma 1 [7]. Let f ∈S∗

(w) and f(z) = (z−w) +b2(z−w)2+... .Then |b2| ≤

2

1−d2, |b3| ≤

3 +d (1−d2)2,

|b4| ≤ 23.

(2 +d) (3 +d)

(1−d2)3 , |b5| ≤ 1 6.

(2 +d) (3 +d) (3d+ 5) (1−d2)4 ,

(2.1)

where d=|w|.

Remark 3. It is clear that the above lemma provides bounds for the coefficients of functions in the class Sc(w),due to the relation between Sc(w) and S∗

(w). Lemma 2 ( [8], [9] and [10] ). Let h be convex in U and Re[βh(z) +γ] > 0, z∈U.If p∈H(U)withp(0) =h(0)and psatisfied the Briot-Bouquet differentail subordination

p(z) + zp

(z)

(5)

then p(z)≺h(z).

Theorem 1. Let w be a fixed point in U and m ∈ N0, l 0 and λ > 0. If f ∈s∗

m+1(λ, l, w) then f ∈s

m(λ, l, w).This means s∗

m+1(λ, l, w)⊂s

m(λ, l, w). (2.3)

Proof. Since f ∈ s∗

m+1(λ, l, w),then we have Re

n

Im+2

w (λ,l)f(z)

Im+1

w (λ,l)f(z)

o

>0, z∈U. We denote p(z) = I

m+1

w (λ,l)f(z)

Im w(λ,l)f(z)

, where p(0) = 1 and p(z) ∈ H(U). By using (1.8), we obtain

Iwm+2(λ, l)f(z) Iwm+1(λ, l)f(z)

= I 1

w Iwm+1(λ, l)f(z)

I1

w(Iwm(λ, l)f(z)) = (1−λ+l)I

m+1

w (λ, l)f(z) +λ(z−w) Iwm+1(λ, l)f(z)

(1−λ+l)Im

w (λ, l)f(z) +λ(z−w) (Iwm(λ, l)f(z))

and

p′

(z) = I m+1

w (λ, l)f(z)

Im

w(λ, l)f(z)−(Iwm(λ, l)f(z))

Im+1

w (λ, l)f(z) (Im

w(λ, l)f(z))2

,

(2.4) = I

m+1

w (λ, l)f(z)

(Im

w(λ, l)f(z))

′ .

(Iwm(λ, l)f(z))′

Im

w(λ, l)f(z)

−p(z)(I m

w(λ, l)f(z))

Im

w(λ, l)f(z) .

Thus, we have λ(z−w)

1 +l p

(z) =

p(z)−(1−λ+l) 1 +l

Im+1

w (λ, l)f(z)

(Im

w(λ, l)f(z))

′ −

p(z)−(1−λ+l) 1 +l

p(z),

Iwm+1(λ, l)f(z)′

(Im

w(λ, l)f(z))

′ =p(z) +

λ(z−w)p′

(z)

p(z)(1 +l)−(1−λ+l). (2.5) Since Re

(

Iwm+2(λ, l)f(z)

Iwm+1(λ, l)f(z)

)

>0,we obtain

p(z) + λ(z−w) p(z)(1 +l)p

(z)≺ 1 +z 1−z or

p(z) + zp

(z)

{(1 +l)/λ[1−(w/z)]}p(z) ≺ 1 +z

(6)

By hypothesis, we have Renλ[1(1+(w/zl) )]p(z)o>0,and from Lemma 2, we obtain that,p(z)≺h(z) or Re{p(z)}>0.This means f ∈s∗

m(λ, l, w). Remark 4. From Theorem 1, we obtain

s∗

m(λ, l, w)⊂s

0(1,0, w)⊂S

(w) (m∈N;l0;λ >0). Theorem 2. If F(z)∈s∗

m(λ, l, w) (λ >0),thenf(z) =LaF(z)∈Sm∗(λ, l, w) (λ > 0),where La is the integral operator defined by (1.3).

Proof. From (1.3), we obtain

(1 +a)F(z) =af(z) + (z−w)f′

(z). (2.7)

By means of the application of the operatorIm+1

w (λ, l),we obtain

λ(1+a)Iwm+1(λ, l)F(z) = [λa−(1−λ+l)]Iwm+1(λ, l)f(z)+(1+l)Iwm+2(λ, l)f(z) (λ >0). (2.8) Similarly, be means of application of the operatorIwm(λ, l),we obtain

λ(1+a)Iwm(λ, l)F(z) = [λa−(1−λ+l)]Iwm(λ, l)f(z)+(1+l)Iwm+1(λ, l)f(z) (λ >0). (2.9) Thus, we have

Iwm+1(λ, l)F(z) Im

w (λ, l)F(z) =

(1+l) 

 Im+2

w (λ, l)f(z) Iwm+1(λ, l)f(z) 

. 

 Im+1

w (λ, l)f(z) Im

w(λ, l)f(z) 

+[λa−(1−λ+l)] 

 Im+1

w (λ, l)f(z) Im

w(λ, l)f(z) 

(1+l) 

 Im+1

w (λ, l)f(z) Im

w(λ, l)f(z) 

+[λa−(1−λ+l)]

.

(2.10) Using the notationp(z) = I

m+1

w (λ,l)f(z)

Im w(λ,l)f(z)

,with p(0) = 1,we have λ(z−w)p′

(z) p(z)(1 +l) =

Iwm+2(λ, l)f(z) Iwm+1(λ, l)f(z)

−p(z) (2.11)

or

Iwm+2(λ, l)f(z) Iwm+1(λ, l)f(z)

=p(z) +λ(z−w)p

(z)

p(z)(1 +l) . (2.12)

Thus, we have

Iwm+1(λ, l)F(z) Im

w (λ, l)F(z)

=p(z) + zp

(z) (1+l)

λ[1−(w/z)]p(z) +

[λa−(1λ+l)]

λ[1−(w/z)]

(7)

Since F(z)∈s∗

m(λ, l, w),we obtain Iwm+1(λ, l)F(z)

Im

w (λ, l)F(z)

≺ 1 +z

1−z ≡h(z) or

p(z) + zp

(z) (1+l)

λ[1−(w/z)]p(z) +

[λa−(1−λ+l)]

λ[1−(w/z)]

≺h(z). (2.14)

By hypothesis, we have Renλ[1(1+−(w/zl) )]p(z) +

[λa−(1λ+l)]

λ[1−(w/z)] o

>0 and from Lemma 2, we obtain p(z) ≺ h(z) or RenI

m+1

w (λ,l)f(z)

Im w(λ,l)f(z)

o

> 0, z ∈ U. This means f(z) = La F(z)∈S∗

m(λ, l, w).

Remark 5. (i) Putting w=l= 0 and λ= 1 in Theorem 2, we obtain that, the integral operator defined by (1.3) preserves the class of m-starlike functions;

(ii) Putting w = m = l = 0 and λ = 1 in Theorem 2, we obtain the integral operator defined by (1.3) preserves the well known class of starlike functions.

Theorem 3. Let w be a fixed point in U and m ∈ N0, λ > 0, l 0 and f ∈S∗

m(λ, l, w) with f(z) = (z−w) +

∞ P

n=2

an(z−w)n.Then, we have

|a2| ≤ 2 (1−d2)

1 +l 1 +λ+l

m

,

|a3| ≤ 3 +d (1−d2)2

1 +l 1 + 2λ+l

m

, (1)

|a4| ≤ 2 3

(2 +d)(3 +d) (1−d2)3

1 +l 1 + 3λ+l

m

,

|a5| ≤ 1 6

(2 +d)(3 +d)(3d+ 5) (1−d2)4

1 +l 1 + 4λ+l

m

,

where d=|w|.

Proof. From Remark 2 for f ∈S∗

m(λ, l, w),we obtain Dw,λm f(z) =g(z)∈S∗

(w). (2.16)

If we considerg(z) = (z−w) +

∞ P

n=2

bn(z−w)n,from (2.16) we obtain

1 +λ(n−1) +l 1 +l

m

(8)

Thus, we have

an=

1 +l 1 +λ(n−1) +l

m

bn, n= 2,3, ...

and from the estimates (2.1) of Lemma 1 and Remark 1, we get the result. Reference

[1] F.M. Al-Oboudi, On univalent functions defined by a generalized S˘al˘agean operator, J. Math. Math. Sci., 27 (2004), 1429-1436.

[2] M. Acu and S. Owa, On some subclasses of univalent functions, J. Inequal. Pure Appl. Math., 6 (2005), no. 3, Art. 70, 1-6.

[3] M. Acu and S. Owa,On a subclass ofn- starlike functions, Internat. J. Math. Math. Sci., 17 (2005), 2841-2846.

[4] A. C˘ata¸s, G.I. Oros and G. Oros,Differential subordinations associated with multiplier transformations, Abstract Appl. Anal., 2008 (2008), ID 845724, 1-11.

[5] N.E. Cho and T.H. Kim, Multiplier transformations and strongly close-to-convex functions, Bull. Korean Math. Soc., 40 (2003), no. 3, 399-410.

[6] N.E. Cho and H.M. Srivastava,Argument estimates of certain analytic func-tions defined by a class of multiplier transformafunc-tions, Math. Comput. Modelling, 37 (1-2) (2003), 39-49.

[7] S. Kanas and F. Ronning,Uniformly starlike and convex functions and other related classes of univalent functions, Ann. Univ. Mariae Curie-Sklodowska Sect. A, 53 (1999), 95-105.

[8] S. S. Miller and P. T. Mocanu, Differential subordinations and univalent functions, Michigan Math. J., 28 (1981), no. 2, 157-172.

[9] S. S. Miller and P. T. Mocanu, On some classes of first-order differential equations, J Differential Equations, 56 (1985), no. 3, 297-372.

[10] S. S. Miller and P. T. Mocanu,Univalent solutions of Briot-Bouquet differ-ential equations, J. Differential Equations, 56 (1985), no. 3, 297-309.

[11] G. S. S˘al˘agean,Subclasses of univalent functions, Lecture Notes in Math.,(Springer-Verlag) 1013 , (1983), 362-372.

[12] B.A. Uralegaddi and C. Somanatha,Certain classes of univalent functions, in: H.M. Srivastava and S. Owa (Eds.), Current Topics in Analytic Function Theory, World Scientific Publishing Company, Singaporr, New Jersey, London, Hong Kong, 1992, 371-374.

M. K. Aouf, A. Shamandy, A. O. Mostafa, S. M. Madian Department of Mathematics, Faculty of Science,

Mansoura University, Mansoura 35516, Egypt

Referensi

Dokumen terkait

[r]

Dalam penelitian ini akan menggunakan proses pembelajaran sebagai acuan dan sebagai perbandingan dengan hasil dari pengenalan pola tanda tangan yang dilakukan

Kabupaten Hulu Sungai Selatan dengan berpedoman pada peraturan yang berlaku telah menetapkan Pemenang Lelang untuk pekerjaan di atas melalui surat Penetapan Pemenang

Penelitian menggunakan tikus putih jantan berumur 3 bulan, berat 170-214 gram, dibagi 6 kelompok yaitu kelompok I kontrol, kelompok II (induksi dan dosis kombinasi ekstrak daun

dapat memberikan kontribusi teoritis dengan menunjukkan bahwa hegemoni pemaknaan (norma) liberal majoritarian dalam demokrasi dan perwakilan telah menjadi penghambat utama

Pada Hari Senin tanggal Dua Puluh Sembilan bulan Mei tahun Dua Ribu Tujuh Belas (Senin, 29-05- 2017), Pokja Unit Layanan Pengadaan Kantor Kesyahbandaran Dan Otoritas

Dengan memiliki pengetahuan yang integral tersebut penegak hukum tidak hanya memahami hukum sebagai kumpulan teks-teks dalam peraturan perundang-undangan semata, tetapi memahami

Pada spektrum yang lebih luas, hukum difungsikan tidak hanya untuk memeriksa keadilan, tetapi sudah seharusnya menghasilkan keadilan, bahkan keadilan jenis baru ( new kind