• Tidak ada hasil yang ditemukan

paper 10-17-2009. 111KB Jun 04 2011 12:03:06 AM

N/A
N/A
Protected

Academic year: 2017

Membagikan "paper 10-17-2009. 111KB Jun 04 2011 12:03:06 AM"

Copied!
8
0
0

Teks penuh

(1)

SUFFICIENT CONDITIONS FOR UNIVALENCE OF A GENERAL INTEGRAL OPERATOR

C.Selvaraj and K.R.Karthikeyan

Abstract. Using Dziok-Srivastava operator, we define a new family of integral operators. For this general integral operator we study some interesting univalence properties, to which a number of univalent conditions would follow upon specializing the parameters involved.

2000 Mathematics Subject Classification: 30C45.

Keywords and Phrases: Analytic functions, univalent functions, Hadamard product (or convolution), integral operators.

1. Introduction, Definitions And Preliminaries

Let A1 =A denote the class of functions of the form

f(z) =z+ ∞

X

n=2

anzn an≥0, (1)

which are analytic in the open disc U = {z : z ∈ C | z |< 1} and S be the

class of function f(z)∈ A which are univalent in U.

Forαj ∈C (j = 1,2, . . . , q) and βj ∈C\ {0,−1,−2, . . .}(j = 1,2, . . . , s),

the generalized hypergeometric function qFs(α1, . . . , αq; β1, . . . , βs;z) is

de-fined by the infinite series

qFs(α1, α2, . . . , αq; β1, β2, . . . , βs;z) =

X

n=0

(α1)n . . .(αq)n

(β1)n . . . (βs)n

zn n!

(2)

where (x)n is the Pochhammer symbol defined by

(x)n= (

1 if n= 0

x(x+ 1)(x+ 2) . . . (x+n−1) if n∈N ={1,2, , . . .}. Corresponding to a function h(α1, . . . , αq; β1, . . . , βs;z) defined by

h(α1, . . . , αq; β1, . . . , βs;z) := zqFs(α1, α2, . . . , αq; β1, β2, . . . , βs;z),

the Dziok and Srivastava operator H(α1, . . . , αq; β1, . . . , βs;z)f(z) is defined

by the Hadamard product

H(α1, . . . , αq; β1, . . . , βs;z)f(z) := h(α1, . . . , αq; β1, . . . , βs;z)∗f(z)

=z+ ∞

X

n=2

(α1)n−1 . . .(αq)n−1 (β1)n−1 . . .(βs)n−1

anzn

(n−1)! (2) For convenience, we write

Hsq(α1, β1)f := H(α1, . . . , αq; β1, . . . , βs;z)f(z).

The linear operatorHsq(α1, β1)f includes (as its special cases) various other linear operators which were introduced and studied by Hohlov, Carlson and Shaffer, Ruscheweyh. For details see [1].

Using Dziok-Srivastava operator, we now introduce the following:

Definition 1. Forγ ∈C. We now define the integral operatorFγ(α1, β1;z) : An −→ A

Fγ(α1, β1;z) = 1 +n(γ−1)

Z z

0

Hsq(α1, β1)f1(t)γ−1 . . . (3)

Hsq(α1, β1)fn(t) γ−1

dt

!1+n(1γ−1)

,

where fi ∈ A and Hsq(α1, β1)f(z) is the Dziok-Srivastava operator.

(3)

1. Let q = 2, s = 1, α1 = β1 and α2 = 1, then the operator Fγ(α1, α1;z) reduces to an integral operator

Fγ(z) =

(n(γ−1) + 1)

Z z

0

f1(t)γ−1 . . . fn(t) γ−1

dt.

(n(γ−1)+1)1

, (4) studied by D.Breaz and N.Breaz [2].

2. When q = 2, s = 1, α1 = 2, β1 = 1 and α2 = 1, the integral operator Fγ(2,1;z) reduces to an operator of the form

Fγ(z) =

(n(γ−1)+1)

Z z

0

tn(γ−1) f1′(t)γ−1 . . . fn′(t)γ−1dt.

(n(γ−1)+1)1

,

(5) where γ ≥0.

We now state the following lemma which we need to establish our results in the sequel.

Lemma 1.[3]If f ∈ A satisfies the condition

z2f′(z) f2(z) −1

≤1, for all z ∈ U, (6)

then the function f(z) is univalent in U.

Lemma 2.(Schwartz Lemma) Let f ∈ A satisfy the condition |f(z)|≤1, for all z ∈ U, then

|f(z)|≤|z |, for all z ∈ U,

and equality holds only if f(z) =ǫz, where |ǫ|= 1.

Pascu [4, 5] has proved the following result

Lemma 3. Let β ∈C, Reβ α >0. If f ∈ A satisfies

1− |z |2Re α

Re α

zf′′(z) f′

(z)

≤1 (z ∈ U),

then the integral operator

Fβ(z) =

β

Z z

0

tβ−1f′(t)dt

(4)

is univalent.

Lemma 4. Let g ∈ A satisfies the condition (6) and let α be a complex number with |α−1|≤ Re α

3 . If |g(z)|≤1, ∀z ∈ U then the function Gα(z) =

α

Z z

0

g(α−1)(t)dt

α1

belongs to S.

2.Main Results

Theorem 1. Let fi ∈ A, γ ∈C. If

z2(Hq

s(α1, β1)fi(z))

(Hsq(α1, β1)fi(z))2

−1

≤1, |γ−1|≤ Re γ

3n , and |H

q

s(α1, β1)fi(z)|≤1

for all z ∈ U then Fγ(α1, β1;z) given by (3) is univalent.

Proof. From the definition of the operator Hq

s(α1, β1)f(z), it can be easily seen that

Hq

s(α1, β1)f(z)

z 6= 0 (z ∈ U) and moreover for z = 0, we have

Hq

s(α1, β1)f1(z) z

γ−1 . . .

Hq

s(α1, β1)fn(z)

z

γ−1 = 1 From (3), we have

Fγ(α1, β1;z) = 1 +n(γ−1)

Z z

0

tn(γ−1)

Hsq(α1, β1)f1(t) t

γ−1 . . .

Hq

s(α1, β1)fn(t)

t

γ−1 dt

!1+n(1γ−1)

.

We consider the function h(z) =

Z z

Hq

s(α1, β1)f1(t)

t

γ−1 . . .

Hq

s(α1, β1)fn(t)

t

γ−1

(5)

The function h is regular inU and from (7) we obtain

h′(z) =

Hq

s(α1, β1)f1(z)

z

γ−1 . . .

Hq

s(α1, β1)fn(z)

z

γ−1

and

h′′(z) = (γ−1)

(Hq

s(α1, β1)f1(z))

Hsq(α1, β1)f1(z)

− 1

z

h′(z) + . . .

+(γ−1)

(Hq

s(α1, β1)fn(z))

Hsq(α1, β1)fn(z)

− 1

z

h′(z) From the above inequalities we have

zh′′(z) h′

(z) = (γ−1)

z(Hq

s(α1, β1)f1(z))

Hsq(α1, β1)f1(z)

−1

+ . . . (8)

+(γ−1)

z(Hq

s(α1, β1)fn(z))

Hsq(α1, β1)fn(z)

−1

.

On multiplying the modulus of equation (8) by 1−|Re γz|2Re γ >0, we obtain

1− |z |2Re γ

Re γ

zh′′(z) h′ (z)

≤ 1− |z |

2Re γ

Re γ

"

|γ−1|

z(Hq

s(α1, β1)f1(z)) ′

Hsq(α1, β1)f1(z)

+ 1 +

. . .+|γ−1|

z(Hq

s(α1, β1)fn(z))

Hsq(α1, β1)fn(z) + 1 #

≤|γ−1| 1− |z |

2Re γ

Re γ

z2(Hq

s(α1, β1)f1(z)) ′

(Hsq(α1, β1)f1(z))2

|Hq

s(α1, β1)f1(z)|

|z | + 1

+ . . .

+|γ−1| 1− |z |

2Re γ

Re γ

z2(Hq

s(α1, β1)fn(z))

(Hsq(α1, β1)fn(z))2

|Hq

s(α1, β1)fn(z)|

|z | + 1

.

Since Hq

(6)

ap-plying the same on the above inequality, we obtain 1− |z |2Re γ

Re γ

zh′′(z) h′ (z)

≤|γ−1| 1− |z |

2Re γ

Re γ

z2(Hq

s(α1, β1)f1(z)) ′

(Hsq(α1, β1)f1(z))2

−1 +2 +

. . . +|γ−1| 1− |z |

2Re γ

Re γ

z2(Hq

s(α1, β1)fn(z))

(Hsq(α1, β1)fn(z))2

−1 + 2

≤ 3|γ−1|

Re γ + . . . +

3|γ−1|

Re γ =

3n |γ −1|

Re γ .

But |γ−1|≤ Re γ3n , so we obtain for all z ∈ U

1− |z |2Re γ

Re γ

zh′′(z) h′ (z)

≤1. (9)

It follows from Lemma 3 that

1 +n(γ−1) Z z

0

tn(γ−1)h′(t)dt

!1+n(1γ−1)

∈ S

Since

1 +n(γ−1) Z z

0

tn(γ−1)h′(t)dt

!1+n(1γ−1)

=

1 +n(γ−1) Z z

0

Hsq(α1, β1)f1(t)

γ−1

. . . Hsq(α1, β1)fn(t) γ−1

dt

!1+n(1γ−1)

=Fγ(α1, β1;z),

hence Fγ(α1, β1;z)∈ S.

Putting q= 2, s= 1, α1 =β1 and α2 = 1, in Theorem 1, we have Corollary 1. [2] Let fi ∈ A, γ ∈C. If

z2fi′(z) (fi(z))2

−1

≤1, |γ−1|≤ Re γ

(7)

for all z ∈ U then the operator

Fγ(z) =

(n(γ−1) + 1)

Z z

0

f1(t)γ−1 . . . fn(t) γ−1

dt

(n(γ−1)+1)1

is univalent.

Theorem 2. Let f ∈ A satisfy

z2(Hq

s(α1, β1)f(z)) ′

(Hsq(α1, β1)f(z))2

−1

<1, ∀z ∈ U

and γ ∈ C with | γ1 |≤ Re γ

3k . If | H q

s(α1, β1)f(z) |≤ 1, ∀z ∈ U, then the

function

Fγk(α1, β1;z) =

k(γ−1) + 1 Z z

0

(Hsq(α1, β1)f(t))k(γ−1)dt

k(γ−1)+11

(10)

is univalent.

Proof. From (10) we have

Fγk(α1, β1;z) = k(γ−1) + 1

Z z

0

tk(γ−1)

Hq

s(α1, β1)f(t)

t

!k(γ−1) dt

!k(γ−1)+11

and let

h(z) =

Z z

0

Hq

s(α1, β1)f(t)

t

k(γ−1) dt.

From here using arguments similar to those detailed in Theorem 1, we can prove the assertion of the Theorem 2.

We note that on restating the Theorem 2 for the choice of q = 2, s = 1, α1 =β1 and α2 = 1, we have the result proved by D.Breaz and N.Breaz [2].

References

(8)

[2] D. Breaz and N. Breaz, An integral univalent operator, Acta Math. Univ. Comenian. (N.S.), 7, (2007), no. 2, 137–142.

[3] S. Ozaki and M. Nunokawa, The Schwarzian derivative and univalent functions, Proc. Amer. Math. Soc., 33, (1972), 392–394.

[4] N. N. Pascu, On a univalence criterion. II, in Itinerant seminar on functional equations, approximation and convexity (Cluj-Napoca, 1985), 153– 154, Univ. “Babe¸s-Bolyai”, Cluj.

[5] N. N. Pascu, An improvement of Becker’s univalence criterion, in Pro-ceedings of the Commemorative Session: Simion Sto¨ılow (Bra¸sov, 1987), 43– 48, Univ. Bra¸sov, Bra¸sov.

Authors:

C.Selvaraj

Department of Mathematics, Presidency College,

Chennai-600 005, Tamilnadu, India

email: [email protected]

K.R.Karthikeyan

R.M.K.Engineering College R.S.M.Nagar,

Kavaraipettai-601206,

Thiruvallur District, Gummidipoondi Taluk, Tamilnadu,India

Referensi

Dokumen terkait

The object of the present paper is to discuss a convexity property for the integral operator Fn(z) involving k-uniformly starlike functions of order γ.. 2000 Mathematics

Pescar, Univalence conditions for certain integral operators , Journal of Inequalities in Pure and Applied Mathematics, Volume 7, Issue 4, Article 147, 2006... Pescar, On the

Ibrahim, On new classes of univalent harmonic func- tions defined by generalized differential operator , Acta Universitatis Apulensis.. Nakamura, Generalization of Salagean operator

Key words : Analytic function; Hadamard product (or convolution); Univalent function; Convex function; Derivative operator; Differential subordination; Best

Making use of certain linear operator, we define a new subclass of meromorphically uniformly convex functions with positive coefficients and obtain coefficient estimates, growth

Stivastava, Certain subclasses of analytic functions asso- ciated with the generalized hypergeometric function, Integral Transform.. Owa, On the distortion

Pascu, On a univalence criterion II , in Itinerant seminar on func- tional equations, approximation and convexity (Cluj-Napoca, 1985), 153–154, Univ.. Pascu, An improvement of

In this paper we consider an integral operator on analytic functions and prove some preserving theorems regarding some subclasses of analytic functions with negative coefficients..