• Tidak ada hasil yang ditemukan

paper 07-17-2009. 81KB Jun 04 2011 12:03:06 AM

N/A
N/A
Protected

Academic year: 2017

Membagikan "paper 07-17-2009. 81KB Jun 04 2011 12:03:06 AM"

Copied!
7
0
0

Teks penuh

(1)

NEW SUFFICIENT CONDITIONS FOR ANALYTIC AND UNIVALENT FUNCTIONS

Basem A. Frasin

Abstract. The object of the present paper is to obtain new sufficient con-ditions on f′′′(z) which lead to some subclasses of univalent functions defined in the open unit disk.

2000 Mathematics Subject Classification: 30C45.

1. Introduction and definitions

Let A denote the class of functions of the form : f(z) =z+a2z

2

+a3z 3

+· · ·, (1)

which are analytic in the open unit disk U = {z : |z| < 1}. A function f(z) ∈ A is said to be in the class S(α), the class of starlike functions of order α, 0α <1,if and only if

Re zf ′(z) f(z)

!

> α (z ∈ U). (2)

Then S= S(0) is the class of starlike functions in U. Further, if f(z) ∈ A

satisfies

argzf ′(z) f(z)

< απ

2 , (z∈ U) (3)

for some 0< α1, then f(z) said to be strongly starlike function of order α in U, and this class denoted by S∗(α). Note that S∗(1) =S∗.

(2)

Re 1 + zf ′′(z) f′(z)

!

> α (z ∈ U), (4)

and K = K(0) is the class of convex functions in U. Further, if f(z) ∈ A

satisfies

arg 1 + zf ′′(z) f′(z)

!

< απ

2 , (z ∈ U) (5)

for some 0< α1,thenf(z) said to be strongly convex function of orderαin U, and this class denoted byK(α). Note that K(1) =Kand if zf′(z)∈ S(α) then f(z)∈ K(α).

Furthermore, a function f(z) ∈ A is said to be in the class R(α) if and only if

Re{f′(z)}> α (0α <1; z ∈ U), (6) Also, let R(α) be the subclasses ofA which satisfies

|argf′(z)|< απ

2 , (z ∈ U) (7)

for some 0< α1.

All the above mentioned classes are subclasses of univalent functions inU. There are many results for sufficient conditions of functions f(z) which are analytic in U to be starlike, convex, strongly starlike and strongly convex functions have been given by several researchers. ([1], [2], [3], [4], [5], [6], [7], [8], [9]). In this paper we will study λ such that the condition|f′′′(z)| ≤ λ, z ∈ U, implies thatf(z) belongs to one of the classes defined above.

In order to prove our main result, we shall need the following lemmas obtained by Tuneski ([9]).

Lemma 1. If f(z)∈ A satisfies

|f′′(z)| ≤ 2(1−α)

1α (z∈ U; 0≤α <1) (8)

then f(z)∈ S(α).

Lemma 2. If f(z)∈ A satisfies

|f′′(z)| ≤ 2 sin(απ/2)

(3)

then f(z)∈ S (α).

Lemma 3. If f(z)∈ A satisfies

|f′′(z)| ≤ 1−α

2α (z ∈ U; 0≤α <1) (10)

then f(z)∈ K(α).

Lemma 4. If f(z)∈ A satisfies

|f′′(z)| ≤1α (z ∈ U; 0α <1) (11)

then f(z)∈ R(α).

Lemma 5. If f(z)∈ A satisfies

|f′′(z)| ≤sinαπ

2 (z ∈ U; 0< α≤1) (12)

then f(z)∈ R(α).

As a consequence of Theorem 3 in [10], we obtain the following lemma: Lemma 6. If f(z)∈ A, satisfies

|f′(z) +αzf′′(z)1|<(1 +α)q(α1)/(α2

+ 3α) (z ∈ U) (13)

where α >1,then f(z)∈ K(1/2).

2.Main Result

Theorem 1. If f(z) =z+a2z 2

+a3z 3

+· · · ∈ A satisfies

|f′′′(z)| ≤ 2(1−α)

1α −2|a2| (z ∈ U; 0≤α <1) (14)

then f(z)∈ S(α).

(4)

|f′′(z)| −2|a2| ≤ |f′′(z)−2a2| = z Z 0

f′′′(σ)dσ

≤ |z|

Z

0

f

′′′(te

) dt

and thus,

|f′′(z)| ≤ |z|

Z

0

f

′′′(te

)

dt+ 2|a2|

≤ 2(11 −α)

−α −2|a2|

! |z| Z

0

dt+ 2|a2|

≤ 2(1−α)

1α −2|a2|

!

|z|+ 2|a2|

≤ 2(11 −α) −α .

Then by Lemma 1, we have f(z)∈ S(α).

Corollary 1. Let f(z)∈ A with f′′(0) = 0 . Then

(i)|f′′′(z)| ≤2 implies f(z)∈ S;

(ii)|f′′′(z)| ≤4/5 implies f(z)∈ S(1/3);

(iii)|f′′′(z)| ≤2/3 implies f(z)∈ S(1/2); and

(iv)|f′′′(z)| ≤1/2 implies f(z)∈ S(2/3).

Applying the same method as in the proof of Theorem 1 and using Lemmas 2-5 instead of Lemma 1, we obtain the following theorems, respectively.

Theorem 2. If f(z) = z+a2z 2

+a3z 3

+· · · ∈ A satisfies

|f′′′(z)| ≤ 2 sin(απ/2)

1 + sin(απ/2)−2|a2| (z ∈ U; 0< α≤1) (15)

(5)

Corollary 2. Let f(z)∈ A with f (0) = 0 . Then

(i)|f′′′(z)| ≤1 implies f(z)∈ S;

(ii)|f′′′(z)| ≤2/3 implies f(z)∈ S(1/3);.

(iii)|f′′′(z)| ≤2(21) = 0.8284. . . implies f(z)∈ S(1/2); and (iii)|f′′′(z)| ≤2(233) = 0.9282. . . implies f(z)∈ S(2/3). Theorem 3. If f(z) = z+a2z

2

+a3z 3

+· · · ∈ A satisfies

|f′′′(z)| ≤ 1−α

2α −2|a2| (z ∈ U; 0≤α <1) (16)

then f(z)∈ K(α).

Corollary 3. Let f(z)∈ A with f′′(0) = 0 . Then

(i)|f′′′(z)| ≤1/2 implies f(z)∈ K;.

(ii)|f′′′(z)| ≤2/5 implies f(z)∈ K(1/3);.

(iii)|f′′′(z)| ≤1/3 implies f(z)∈ K(1/2); and

(iv)|f′′′(z)| ≤1/4 implies f(z)∈ K(2/3).

Theorem 4. If f(z) = z+a2z 2

+a3z 3

+· · · ∈ A satisfies

|f′′′(z)| ≤1α2|a2| (z ∈ U; 0≤α <1) (17)

then f(z)∈ R(α).

Corollary 4. Let f(z)∈ A with f′′(0) = 0 . Then

(i)|f′′′(z)| ≤1 impliesRef(z)>0;

(i)|f′′′(z)| ≤2/3 implies f(z)∈ R(1/3);.

(ii)|f′′′(z)| ≤1/2 implies f(z)∈ R(1/2); and

(iii)|f′′′(z)| ≤1/3 implies f(z)∈ R(2/3). Theorem 5. If f(z) = z+a2z

2

+a3z 3

+· · · ∈ A satisfies

|f′′′(z)| ≤sinαπ

2 −2|a2| (z ∈ U; 0< α≤1) (18)

then f(z)∈ R(α).

Corollary 5. Let f(z)∈ A with f′′(0) = 0 . Then

(i)|f′′′(z)| ≤1/2 implies f(z)∈ R(1/3);

(6)

Theorem 6. If f(z)∈ A, satisfies

|f′′(z)|<q(α1)/(α2 + 3α) (z

∈ U) (19)

where α >1,then f(z)∈ K(1/2).

Proof. It follows that

|f′(z) +αzf′′(z)1| ≤ |f′(z)1||zf′′(z)|

z

Z

0

f′′(t)dt

|zf′′(z)|

≤ |z|

Z

0

|f′′(t)dt|+αq(α1)/(α2

+ 3α)|z| ≤ (1 +α)q(α1)/(α2

+ 3α)|z| < (1 +α)q(α1)/(α2+ 3α),

Using Lemma 6, we have f(z)∈ K(1/2).

References

[1] B.A. Frasin, New Sufficient Conditions for Strongly Starlikeness and

Strongly Convex Functions, Kyungpook Math. J. 46(2006), 131-137.

[2] P.T. Mocanu, Some starlikeness conditions for analytic functions, Rev.

Roumaine Math. Pures. Appl. 33 (1988), 117-124.

[3] P.T. Mocanu,Two simple conditions for starlikeness,Mathematica (Cluj).

34 (57) (1992), 175-181.

[4] P.T. Mocanu, Some simple criteria for for starlikeness and convexity,

Libertas Mathematica, 13 (1993), 27-40.

[5] M. Nunokawa, On the order of strongly starlikeness of strongly convex

functions, Proc. Japan. Acad., Sec.A 68 (1993), 234-237.

[6] M. Nunokawa, S. Owa, Y. Polato˘glu, M. Ca˘glar and E. Yavuz,Some

suf-ficient conditions for starlikeness and convexity, International Short Joint

(7)

[7] M. Obradoviˇc, Simple sufficients conditions for starlikeness,

Matemat-icki Vesnik. 49 (1997), 241-244.

[8] G. Oros, A condition for convexity, Gen. Math.Vol. 8, No. 3-4 (2000),15-21.

[9] S. N. Tuneski, On simple sufficient conditions for univalence,

Mathe-matica Bohemica, Vol. 126, No. 1, (2001), 229-236.

[10] S. Ponnusamy and S. Rajasekaran, New sufficient conditions for

star-like and univalent functions,Soochow J. Math. 21 (2) (1995), 193-201.

Author:

Basem A. Frasin

Department of Mathematics Al al-Bayt University

P.O. Box: 130095 Mafraq, Jordan

Referensi

Dokumen terkait

Upaya yang dilakukan perusahaan untuk meningkatkan kinerja karyawan melalui pemberian kompensasi yang finansial maupun non finansial masih belum mendapatkan hasil

Para karyawan di P.T. Graha Cendana Abadi Mitra yang akan mengikuti pelatihan, telah memiliki ketrampilan dasar sebelumnya, yang meliputi dapat membaca, menulis,

Ini berarti perusahaan harus lebih memperhatikan insentif yang diberikan kepada karyawan.Perusahaan harus memberikan dorongan pada karyawan agar mau bekerja dengan

Dengan ini diberitahukan bahwa, setelah diadakan penelitian dan perhitungan referensi tenaga ahli oleh Pokja Jasa Konsultansi Pekerjaan Revisi Rencana Tata Ruang Wilayah

Hasil penelitian menunjukkan bahwa budaya organisasi memiliki peran dalam membangun employee relations melalui karakteristik dominan, gaya kepemimpinan, penekanan

Dari landasan teori yang digunakan, Anand (2008) mengatakan bahwa perusahaan tidak dapat mengatur eksekutif perusahaan dengan baik, adanya timpang tindih pekerjaan

Unit Layanan Pengadaan Kota Banjarbaru mengundang penyedia Pengadaan Barang/Jasa untuk mengikuti Pelelangan Umum pada Pemerintah Kota Banjarbaru yang dibiayai dengan Dana APBN

Perusahaan konsultan yang berminat harus m konsultan yang bersangkutan memenuhi syarat untuk m sunan daftar pendek konsultan (short-list) adalah: (1) san