• Tidak ada hasil yang ditemukan

OPTIMASI PENJADWALAN PEMBANGKITAN UNIT THERMAL DENGAN MEMPERHITUNGKAN RUGI-RUGI SALURAN TRANSMISI BERBASIS ALGORITMA BACK PROPAGATION.

N/A
N/A
Protected

Academic year: 2017

Membagikan "OPTIMASI PENJADWALAN PEMBANGKITAN UNIT THERMAL DENGAN MEMPERHITUNGKAN RUGI-RUGI SALURAN TRANSMISI BERBASIS ALGORITMA BACK PROPAGATION."

Copied!
25
0
0

Teks penuh

(1)

OPTIMASI PENJADWALAN PEMBANGKITAN UNIT THERMAL DENGAN MEMPERHITUNGKAN RUGI-RUGI SALURAN TRANSMISI

BERBASIS ALGORITMA BACK PROPAGATION SKRIPSI

diajukan untuk memenuhi sebagian syarat untuk memperoleh gelar Sarjana Teknik Program Studi Tenik Elektro

Oleh : Mohammad Rizqi

E.5051.1005152

PROGRAM STUDI TEKNIK ELEKTRO DEPARTEMEN PENDIDIKAN TEKNIK ELEKTRO FAKULTAS PENDIDIKAN TEKNOLOGI DAN KEJURUAN

UNIVERSITAS PENDIDIKAN INDONESIA BANDUNG

(2)

OPTIMASI PENJADWALAN PEMBANGKITAN UNIT THERMAL DENGAN MEMPERHITUNGKAN RUGI-RUGI SALURAN TRANSMISI

BERBASIS ALGORITMA BACK PROPAGATION

LEMBAR HAK CIPTA

Oleh :

Mohammad Rizqi

Sebuah skripsi yang diajukan untuk memenuhi salah satu syarat memperoleh gelar sarjana pada fakultas pendidikan teknik dan kejuruan

© Mohammad Rizqi 2015

Universitas Pendidikan Indonesia

Mei 2015

Hak cipta dilindungi undang-undang.

(3)

LEMBAR PENGESAHAN SKRIPSI

Mohammad Rizqi E.5051.1005152

Departemen Pendidikan Teknik Elektro Program Studi Teknik Elektro S-1

OPTIMASI PENJADWALAN PEMBANGKITAN UNIT THERMAL DENGAN MEMPERHITUNGKAN RUGI-RUGI SALURAN TRANSMISI BERBASIS

ALGORITMA BACK PROPAGATION

Menyetujui,

Pembimbing I Pembimbing II

Dr. Jaja Kustija, M.Sc Dr. Hasbullah, S.Pd, MT

NIP. 19591231 198503 1 022 NIP.19740716 200112 1 003

Ketua Departemen PendidikanTeknik Elektro Fakultas Pendidikan Teknologi dan Kejuruan

Universitas Pendidikan Indonesia

(4)

Mohammad Rizqi, 2015

Optimasi Penjadwalan Pembangkitan Unit Thermal Dengan Memperhitungkan Rugi-Rugi Saluran Transmisi Berbasis Algoritma Back Propagation

Universitas Pendidikan Indonesia | repository.upi.edu | perpustakaan.upi.edu ii

ABSTRAK

Dalam pengoperasian sistem tenaga listrik yang terdiri dari beberapa pusat pembangkit listrik, diperlukan suatu koordinasi di dalam penjadwalan besar daya listrik yang dibangkitkan masing-masing pusat pembangkit agar didapatkan suatu pembebanan yang optimal dan lebih ekonomis. Penelitian ini bertujuan untuk melakukan studi penggunaan algoritma back propagation dari jaringan syaraf tiruan dalam penjadwalan optimal pembangkit thermal dengan memperhitungkan rugi – rugi transmisi. Hasil penjadwalan metode ini akan dibandingkan dengan hasil realisasi penjadwalan pembangkit-pembangkit termal dari Pusat Penyaluran dan Pengatur Beban (P3B) PT PLN (Persero) Jawa Bali. Perbandingan ini bertujuan untuk membuktikan apakah metode yang digunakan penulis lebih baik dari penjadwalan yang direalisasi PLN, sehingga ditemukan pula keunggulan dan kelemahan metode back propagation. Setelah dilakukan penelitian, metode ini menghasilkan daya pembangkitan yang lebih optimal, karena besarnya daya yang dihasilkannya sama dengan daya pembangkitan PLN dalam memenuhi permintaan beban yang sama tetapi dengan rugi – rugi transmisi yang lebih kecil dan biaya bahan bakar yang lebih murah. Hasil pembebanan yang optimal akan menghasilkan efisiensi kepada perusahaan listrik sehingga dapat menekan biaya operasional pembangkitan dan tentunya secara tidak langsung akan berdampak pada murahnya biaya produksi listrik

(5)

Mohammad Rizqi, 2015

Optimasi Penjadwalan Pembangkitan Unit Thermal Dengan Memperhitungkan Rugi-Rugi Saluran Transmisi Berbasis Algoritma Back Propagation

Universitas Pendidikan Indonesia | repository.upi.edu | perpustakaan.upi.edu iii

ABSTRACT

In the operation of the power system consisting of several electric plant, required a large scheduling coordination within the electric power generated each plant in order to obtain an optimal loading and more economic. This research aims to study the use of back propagation algorithm from artificial neural network in optimal scheduling of thermal unit by calculating losses in transmission line. The result of this scheduling method will be compared with actual results scheduling of thermal power plants of Distribution and Load Control Center (P3B) PT PLN (Persero) Java Bali. This comparison aims to prove whether the method used by the author better than scheduling realized by PLN, so that was also found that the advantages and disadvantages of back propagation method. After doing research, this method produces a more optimal power generation, because the result of load schedulling by back propagation algorithm is same with schedulling realized by PLN to meet load demand but with less transmission losses and production cost. The optimal loading results will generate electricity efficiency of the electric company in order to reduce the operating costs of generation and of course will indirectly impact on the low cost of electricity production

(6)

Mohammad Rizqi, 2015

Optimasi Penjadwalan Pembangkitan Unit Thermal Dengan Memperhitungkan Rugi-Rugi Saluran Transmisi Berbasis Algoritma Back Propagation

Universitas Pendidikan Indonesia | repository.upi.edu | perpustakaan.upi.edu vii

DAFTAR ISI

PERNYATAAN... i

ABSTRAK... ii

KATA PENGANTAR... iv

UCAPAN TERIMA KASIH... v

DAFTAR ISI... vii

DAFTAR TABEL... ix

DAFTAR GAMBAR... x

DAFTAR LAMPIRAN... xi

BAB I PENDAHULUAN... 1

1.1 Latar Belakang Penelitian... 1

1.2 Rumusan Masalah Penelitian... 2

1.3 Tujuan Penelitian... 3

1.4 Manfaat Penelitian... 4

1.5 Sistematika Penulisan... 4

BAB II KAJIAN PUSTAKA / LANDASAN TEORITIS... 5

2.1 Operasi Sistem Tenaga Listrik... 5

2.2 Karakteristik Input/Output Pembangkit Listrik Tenaga Termal 5 2.3 Economic Dispatch... 7

2.4 Unit Commitment... 9

2.5 Optimasi Termal dengan Metode Langrange Multiplier... 11

2.6 Algoritma backpropagation... 18

2.6.1.Arsitektur Jaringan... 19

2.6.2 Fungsi aktifasi... 19

2.6.3 Pelatihan standar back propagation... 20

BAB III METODE PENELITIAN... 24

3.1 Pengumpulan Data Pembangkit... 24

(7)

Mohammad Rizqi, 2015

Optimasi Penjadwalan Pembangkitan Unit Thermal Dengan Memperhitungkan Rugi-Rugi Saluran Transmisi Berbasis Algoritma Back Propagation

Universitas Pendidikan Indonesia | repository.upi.edu | perpustakaan.upi.edu viii

3.3 Penjadwalan Pembangkit Thermal dengan algoritma back

propagation... 31

BAB IV TEMUAN DAN PEMBAHASAN... 34

4.1 Data Sistem Interkoneksi 500 kV jawa bali... 34

4.2 Pembebanan dengan Rugi-Rugi Transmisi... 35

4.3 Perolehan Fungsi Biaya Bahan Bakar Unit Thermal... 38

4.4 Penjadwalan Optimal Pembangkit Menggunakan Algoritma bakpropagation... 40

4.5. Hasil Optimasi Penjadwalan Pembangkit Termal Dengan Memperhitungkan Rugi Transmisi Menggunakan Metode Back Propagation... 42 BAB V SIMPULAN, IMPLIKASI DAN REKOMENDASI... 44

5.1 Simpulan... 44

5.2 Implikasi dan Rekomendasi... 45

DAFTAR PUSTAKA... 46

LAMPIRAN

RIWAYAT HIDUP PENULIS

(8)

1

Mohammad Rizqi, 2015

Optimasi Penjadwalan Pembangkitan Unit Thermal Dengan Memperhitungkan Rugi-Rugi Saluran Transmisi Berbasis Algoritma Back Propagation

Universitas Pendidikan Indonesia | repository.upi.edu | perpustakaan.upi.edu

BAB I PENDAHULUAN 1.1. Latar Belakang Penelitian

Pada masa modern seperti sekarang ini, Indonesia negara yang memiliki

jumlah populasi penduduknya besar dan perkembangan industrinya mengalami

peningkatan tentunya memiliki tingkat kebutuhan akan sumber energi listrik yang

besar pula. Terutama di negara berkembang seperti Indonesia, biaya bahan bakar

merupakan faktor utama dalam perencanaan, pengoperasian, dan pengontrolan

sistem tenaga listrik. Dengan kebutuhan energi listrik yang terus bertambah, maka

dibutuhkan sistem tenaga listrik dengan beberapa pembangkit listrik yang saling

interkoneksi untuk dapat memenuhi akan kebutuhan tersebut.

Dalam pengoperasian sistem tenaga listrik yang terdiri dari beberapa pusat

pembangkit listik, diperlukan suatu koordinasi di dalam penjadwalan besar daya

listrik yang dibangkitkan masing-masing pusat pembangkit agar didapatkan suatu

pembebanan yang optimal dan lebih ekonomis. Hal ini berarti dalam

pembangkitan dan penyaluran energi itu harus dilakukan secara ekonomis dan

rasional (Saadat, 1999).

Terdapat dua permasalahan yang harus dipecahkan dalam operasi

ekonomis pembangkitan pada sistem tenaga listrik yaitu pengaturan unit

pembangkit (unit commitment) dan penjadwalan ekonomis (economic dispatch).

Unit commitment bertujuan menentukan unit pembangkit yang paling optimum

dioperasikan dalam menghadapi beban yang diberikan untuk mencapai biaya

bahan bakar minimum . Sedangkan economic dispatch digunakan untuk membagi

beban di antara unit-unit thermal yang beroperasi agar dicapai biaya bahan bakar

yang minimum (Mohatram & Kumar, 2006).

Ada beberapa metode baik deterministic maupun undeterministic yang

dapat digunakan untuk menyelesaikan permasalahan penjadwalan pembangkit

yang ekonomis. Pendekatan deterministic berdasarkan matematika teknik

(9)

2

Mohammad Rizqi, 2015

Optimasi Penjadwalan Pembangkitan Unit Thermal Dengan Memperhitungkan Rugi-Rugi Saluran Transmisi Berbasis Algoritma Back Propagation

Universitas Pendidikan Indonesia | repository.upi.edu | perpustakaan.upi.edu

probabilitas. Solusi deterministic di antaranya adalah metoda Lagrange relaxation

(Luh, Wang, & Zhao, 1999), metode Lagrange multiplier (Dike, Adinfono, & Ogu,

2013), metode Dynamic programming (Pang & Chen, 1976). Sedangkan solusi

undeterministic berdasarkan pendekatan heuristik di antaranya adalah Fuzzy logic

(Abu-jasser, 2011), simulated annealing (Wong & Fung, 1993), particle swarm

optimation (Kanata, Sarjiya, & Pramono Hadi, 2013), dan masih banyak metode

lain yang dikembangkan oleh para pakar dalam bidang kelistrikan seperti metode

jaringan saraf tiruan (artificial neural network). Dalam beberapa tahun terakhir ini

metode optimasi dengan menggunakan jaringan saraf tiruan menjadi sangat

penting dalam menyelesaikan permasalahan-permasalahan dalam sistem tenaga

listrik, antara lain penjadwalan unit-unit pembangkit (unit commitment), alokasi

pembebanan ekonomis (economic load dispatch), peramalan beban (load

forecasting), dsb (Haque & Kashtiban, 2007).

Pada Tugas Akhir Skripsi ini, penulis mencoba menggunakan metode

jaringan saraf tiruan (JST) untuk optimasi penjadwalan pembangkit unit thermal

berbasis algoritma back propagation (BP). Dengan rugi-rugi pada saluran

transmisi diperhitungkan (Nagaraja, 2011). Dimana hasil optimasi menggunakan

back propagation akan dibandingkan dengan kondisi riil di lapangan sehingga

dapat menarik kesimpulan metode mana yang dianggap paling optimal untuk

menghasilkan optimasi yang baik. Dengan demikian tingkat ekonomis

pembangkitan yang tinggi dalam suatu sistem tenaga listrik dapat tercapai.

1.2. Rumusan Masalah Penelitian

Masalah yang akan dibahas Skripsi ini adalah optimasi penjadwalan unit

thermal dengan memperhitungkan rugi – rugi saluran transmisi menggunakan

algoritma back propagation. Maka penulis merumuskan beberapa rumusan

masalah sebagai berikut :

1. Bagaimana cara mendapatkan fungsi biaya bahan bakar pembangkit?

2. Bagaimana penjadwalan optimal pembangkit unit thermal dengan

(10)

3

Mohammad Rizqi, 2015

Optimasi Penjadwalan Pembangkitan Unit Thermal Dengan Memperhitungkan Rugi-Rugi Saluran Transmisi Berbasis Algoritma Back Propagation

Universitas Pendidikan Indonesia | repository.upi.edu | perpustakaan.upi.edu

3. Bagaimana perbandingan biaya (cost) dan rugi (losses) dalam hasil

penjadwalan optimal pembangkit unit thermal antara algoritma back

propagation dengan data riil sistem PLN ?

Berdasarkan pada rumusan masalah tersebut, penulis memberi

batasan-batasan agar pembahasan masalah penelitian tidak melebar, seperti terpapar di

bawah ini:

1. Data yang digunakan untuk penjadwalan optimal pembangkit unit thermal

adalah menggunakan data dari Penyaluran dan Pusat Pengaturan Beban

(P3B) PT. PLN (Persero) jawa-bali.

2. Pembangkit yang digunakan adalah unit thermal sebanyak 6 pembangkit

yaitu suralaya, Muaratawar, Tanjung Jati, Gresik, Paiton, dan Grati.

3. Algoritma JST yang digunakan adalah algoritma backpropagation (BP).

4. Software pendukung untuk merancang program digunakan MATLAB ver.

R2010a dari The MathWorks, Inc.

1.3. Tujuan Penulisan

Tujuan penulisan Skripsi ini adalah sebagai berikut :

1. Mengetahui proses mendapatkan fungsi biaya bahan bakar pembangkit?

2. Mengetahui penjadwalan optimal pembangkit unit thermal dengan

memperhitungkan rugi-rugi saluran transmisi menggunakan algoritma

back propagation?.

3. Membandingkan hasil biaya (cost) dan rugi (losses) di dalam hasil

optimasi penjadwalan pembangkit unit thermal antara algoritma back

(11)

4

Mohammad Rizqi, 2015

Optimasi Penjadwalan Pembangkitan Unit Thermal Dengan Memperhitungkan Rugi-Rugi Saluran Transmisi Berbasis Algoritma Back Propagation

Universitas Pendidikan Indonesia | repository.upi.edu | perpustakaan.upi.edu

1.4. Manfaat penelitian

Manfaat yang diharapkan dari penelitian ini adalah sebagai berikut:

1. Melalui penerapan algoritma back propagation didapatkan penjadwalan

pembangkit thermal system 500 KV Jawa-Bali yang optimal sehingga biaya

operasi dapat minimum.

2. Penelitian ini diharapkan dapat mempermudah perusahaan pembangkitan

tenaga listrik dalam melakukan penjadwalan pembangkit, baik untuk jangka

pendek, jangka menengah maupun jangka panjang.

1.5. Struktur organisasi skripsi

Penyajian sistematika penulisan yang tersusun pada skripsi ini adalah seperti

di bawah ini:

1. BAB I PENDAHULUAN

Bab ini berisi tentang latar belakang penelitian, rumusan masalah penelitian,

tujuan penelitian dan manfaat penelitian.

2. BAB II KAJIAN PUSTAKA

Bab ini berisi tentang konsep-konsep, teori-teori dan model-model dalam

bidang yang dikaji serta penelitian terdahulu yang relevan dengan bidang yang

diteliti.

3. BAB III METODE PENELITIAN

Metode pembuatan model, data-data riil di lapangan, mengemukakan mengenai

pembuatan penjadwalan pembangkit termal dengan kekangan rugi - rugi

saluran transmisi, dan algoritma metode back propagation .

4. BAB IV TEMUAN DAN PEMBAHASAN

Bab ini berisi tentang pengolahan atau analisis data dan pembahasan atau

analisis temuan.

5. BAB V SIMPULAN, IMPLIKASI DAN REKOMENDASI

analisis temuan penelitian sekaligus mengajukan hal-hal penting yang dapat

(12)

24

Mohammad Rizqi, 2015

Optimasi Penjadwalan Pembangkitan Unit Thermal Dengan Memperhitungkan Rugi-Rugi Saluran Transmisi Berbasis Algoritma Back Propagation

Universitas Pendidikan Indonesia | repository.upi.edu | perpustakaan.upi.edu

BAB III

Gambar 3.1. Pemodelan Sistem Interkoneksi 500 KV Jawa-Bali

Data yang digunakan dalam menentukan koordinasi pembangkit adalah

data heat rate pembangkit thermal sistem 500kV Jawa-Bali dan data pembebanan

(Logsheet) pada tanggal 7 mei 2013. Data-data tersebut akan dijadikan variabel

input untuk pengujian algoritma BP untuk optimasi dalam koordinasi

pembangkitan unit thermal dengan menggunakan perangkat lunak MATLAB

(13)

25

Mohammad Rizqi, 2015

Optimasi Penjadwalan Pembangkitan Unit Thermal Dengan Memperhitungkan Rugi-Rugi Saluran Transmisi Berbasis Algoritma Back Propagation

Universitas Pendidikan Indonesia | repository.upi.edu | perpustakaan.upi.edu Tabel 3.1 Data heat rate pembangkit thermal sistem 500kV

Pembangkit Daya Pembangkitan (MW) Heat Rate (Mbtu/kWh)

1 2 3 4 1 2 3 4

Suralaya 1703 2221 2561 3247 76,49 74,49 73,45 71,79

Muaratawar 666 826 993 1140 112,58 112,25 100,78 98,18

Tanjungjati 1227 1525 1812,8 1982,8 28,8 28,48 28,19 27,97

Gresik 1061 1355 1675 1993 224.04 222.57 221,87 221,26

Paiton 2071,5 2792,5 3358,75 4005 76,16 73,01 70,84 68,89

Grati 330 402 527 746,6 105,51 95,37 92,91 91,10

Tabel 3.2 Data biaya bahan bakar masing-masing pembangkit

Pembangkit Biaya Bahan bakar ($/Jam)

Suralaya 296,1916

Muaratawar 475,3932

Tanjungjati 158,4425

Gresik 323,4908

Paiton 333,3285

Grati 335,2737

Tabel 3.1 merupakan data heat reat (laju panas) pembangkit thermal

sistem 500 KV Jawa-Bali. Setiap unit pembangkit terdiri dari empat titik heat rate

yang diperoleh dari hasil percobaan. Apabila data tersebut didekati dengan fungsi

polynomial maka akan diperoleh persamaan laju panas dari pembangkit thermal

dalam MMbtu/h. Perkalian persaman laju panas dengan biaya bahan bakar akan

menghasilkan persamaan baru yang menggambarkan karakteristik biaya bahan

bakar pembangkit thermal. Tabel 3.2 merupakan harga biaya bahan bakar dari

masing-masing pembangkit ($/jam). Untuk mendapatkan biaya bahan bakar

pembangkit yang akan dikalikan dengan persamaan laju panas dapat digunakan

(14)

26

Mohammad Rizqi, 2015

Optimasi Penjadwalan Pembangkitan Unit Thermal Dengan Memperhitungkan Rugi-Rugi Saluran Transmisi Berbasis Algoritma Back Propagation

Universitas Pendidikan Indonesia | repository.upi.edu | perpustakaan.upi.edu

FC = (3-1)

Dimana :

FC : Biaya bahan bakar ($/MMbtu)

BB : Biaya bahan bakar ($/jam)

Q : Hasil kali antara heat rate dengan daya pembangkitan (MWbtu/Wh)

Tabel 3.3 Biaya bahan bakar masing-masing pembangkit ($/MMbtu)

Pembangkit Biaya bahan bakar

($/MMbtu)

Suralaya 0,4131

Muaratawar 1,25199

Tanjungjati 0,854832

Gresik 0,2392

Paiton 0,3807

Grati 1,7632

Salah satu tujuan dari operasi sistem tenaga listrik yaitu sistem harus

mempunyai keandalan yang memenuhi standar dan dapat memenuhi permintaan

secara continue sepanjang waktu, maka dalam mengoperasikan pembangkit listrik

haruslah memperhatikan batas-batas dari pembangkit tersebut agar sistem tetap

dalam keadaan stabil. Salah satu batas-batas yang harus diperhatikan dalam

mengoperasikan pembangkit listrik adalah batas daya minimum dan daya

maksimum yang dimiliki oleh pembangkit tersebut, yang berarti bahwa suatu

pembangkit listrik tidak dapat dioperasikan dibawah daya minum dan juga diatas

(15)

27

Mohammad Rizqi, 2015

Optimasi Penjadwalan Pembangkitan Unit Thermal Dengan Memperhitungkan Rugi-Rugi Saluran Transmisi Berbasis Algoritma Back Propagation

Universitas Pendidikan Indonesia | repository.upi.edu | perpustakaan.upi.edu Tabel 3.4 Batas pengoperasian daya pembangkit

Pembangkit Pmin Pmaks

Suralaya 1600 3400

Muaratawar 600 1400

Tanjungjati 1200 2700

Gresik 900 2100

Paiton 1800 4300

Grati 290 800

Dalam optimasi pada sistem tenaga listrik khususnya pada masalah

koordinasi pembangkit, diharuskan mencari kombinasi dari beberapa unit

pembangkit dengan biaya yang paling murah tersebut. Salah satu cara untuk

mencari biaya termurah tersebut dapat dilakukan dengan membuat urutan

prioritas, yang akan merepresentasikan pembangkit-pembangkit dari biaya yang

paling murah hingga biaya yang paling mahal. Urutan prioritas diurutkan

berdasarkan biaya rata-rata beban maksimum (full load average) yang paling

murah. Cara untuk mendapatkan biaya rata-rata yang paling murah dapat

dilakukan dengan mengalikan persamaan laju pertambahan biaya bahan bakar

(incremental fuel cost) masing-masing unit pembangkit dengan daya maksimum

dari pembangkit tersebut (Abdellah & Djamel, 2012). Urutan prioritas

pembangkit sistem 500kV Jawa-Bali dapat dilihat pada tabel dibawah ini.

Tabel 3.5 Urutan prioritas pembangkit sistem 500kV Jawa-Bali

Pembangkit Harga produksi

($/kWh)

Urutan

Suralaya 0,0265871 3

Muaratawar 0,0553004 5

Tanjungjati 0,021724 2

Gresik 0,0523438 4

Paiton 0,0216168 1

(16)

28

Mohammad Rizqi, 2015

Optimasi Penjadwalan Pembangkitan Unit Thermal Dengan Memperhitungkan Rugi-Rugi Saluran Transmisi Berbasis Algoritma Back Propagation

Universitas Pendidikan Indonesia | repository.upi.edu | perpustakaan.upi.edu

Data uji yang akan digunakan dalam penelitian ini adalah Logsheet pada

hari selasa tanggal 7 mei 2013 yang diperoleh dari PT.PLN (Persero) P3B

Gandul-Depok, grafik pembebanan pada gari tersebut dapat dilihat pada gambar

dibawah ini.

Gambar 3.2 Grafik beban unit thermal sistem 500kV selasa, 7 mei 2013

Beban pembangkit unit thermal sistem 500kV Jawa-Bali terdiri dari 24

jam yang kemudian dibagi menjadi 8 periode, dimana tiap periodenya merupakan

beban rata-rata selama 3 jam. Dari grafik beban tersebut dapat dilihat bahwa

beban berubah-ubah tiap periodenya, oleh sebab itu diperlukan koordinasi dari

pembangkit unit thermal untuk mensuplai kebutuhan daya tetapi dengan harga

minimum. Data riil sistem dapat dilihat pada tabel dibawah ini yang merupakan

pembebanan pembangkit unit thermal yang dimana pembebanan tersebut telah

dibagi kedalam 8 periode. 0

2000 4000 6000 8000 10000 12000 14000 16000 18000

(17)

29

Mohammad Rizqi, 2015

Optimasi Penjadwalan Pembangkitan Unit Thermal Dengan Memperhitungkan Rugi-Rugi Saluran Transmisi Berbasis Algoritma Back Propagation

Universitas Pendidikan Indonesia | repository.upi.edu | perpustakaan.upi.edu

Menghitung incremental

fuel cost

Mulai

Menghitung konstanta a, b, dan c

Membentuk karakteristik I/O

Baca

Tabel 3.6 Penjadwalan pembangkit unit thermal sistem500kV sebelum optimasi

Pukul Suralaya M.

Tawar T. Jati Gresik Paiton Grati total

01-03 2985 926 2416 1327 2915 392 10961

04-06 2996 992 2216 1393 2863 394 10854

07-09 2978 1214 2225 1422 3009 406 11254

10-12 2974 1338 2358 1584 2980 403 11637

13-15 2866 1307 2370 1493 3008 401 11445

16-18 2903 1075 2544 1335 3055 402 11314

19-21 3005 1317 2631 1536 3056 414 11959

22-24 2950 956 2550 1420 3060 407 11343

3.2. Tahap Perhitungan Fungsi Bahan Bakar

Dalam penjadwalan pembangkit termal dengan metode BP diperlukan

penentuan persamaan biaya bahan bakar terlebih dahulu yang diperoleh dengan

mengolah data heat rate dari masing-masing unit pembangkit. Di bawah ini

adalah tahapan-tahapan untuk menentukan persamaan biaya bahan bakar (Harun,

2011) :

(18)

30

Mohammad Rizqi, 2015

Optimasi Penjadwalan Pembangkitan Unit Thermal Dengan Memperhitungkan Rugi-Rugi Saluran Transmisi Berbasis Algoritma Back Propagation

Universitas Pendidikan Indonesia | repository.upi.edu | perpustakaan.upi.edu

Keluaran fungsi biaya bahan

Menghitung fungsi biaya bahan bakar / persamaan incremental fuel cost unit pembangkit termal Fi(Pit) = ai + bi Pit + ci Pit

2

x incremental fuel cost

Selesai

Gambar 3.2 flow chart perhitungan fungsi bahan bakar

1. Membaca data heat rate pembangkit pada tabel 3.1

2. Menghitung konstanta α, ,dan input/output dari tiap unit

pembangkitdengan mengolah data heat rate dan daya pembangkit dan

membentuk matriks seperti dibawah ini :

(19)

31

Mohammad Rizqi, 2015

Optimasi Penjadwalan Pembangkitan Unit Thermal Dengan Memperhitungkan Rugi-Rugi Saluran Transmisi Berbasis Algoritma Back Propagation

Universitas Pendidikan Indonesia | repository.upi.edu | perpustakaan.upi.edu

Penentuan parameter αi , Pi , i dapat ditemukan dengan cara

eliminasi

3. Membuat persamaan input/output dari konstanta α, ,dan

4. Menghitung persamaan biaya bahan bakar dari masing-masing

pembangkit dengan perkalian antara persamaan input/output

pembangkit dengan harga biaya bahan bakar pembangkit.

Persamaan biaya bahan bakar Fi(Pi) = αi+ Pi+ i2 (3-3)

3.3. Penjadwalan Pembangkit Thermal dengan algoritma back propagation

Dalam algoritma penjadwalan pembangkit termal dengan kekangan

transmisi menggunakan metode back propagation harus terlebih dahulu

menentukan data yang digunakan sebagai data training yang digunakan sebagai

data pembanding sehingga dapat dihasilkan keluaran dengan error yang terkecil

(Mohatram & Kumar, 2006).

Berikut ini adalah diagram alir (flow chart) yang digunakan dalam

penjadwalan unit thermal menggunakan algoritma back propagation :

Mulai

Tentukan state awal, Hitung pembebanan dengan lamda, Hitung Total Cost

(TCi) dan simpan sebagai data training

Membangun Jaringan syaraf tiruan dengan

menggunakan algoritma BP

Inisialisasi persamaan biaya bahan bakar, batas

operasional pembangkit dan permintaan daya

(20)

32

Mohammad Rizqi, 2015

Optimasi Penjadwalan Pembangkitan Unit Thermal Dengan Memperhitungkan Rugi-Rugi Saluran Transmisi Berbasis Algoritma Back Propagation

Universitas Pendidikan Indonesia | repository.upi.edu | perpustakaan.upi.edu Tidak

Gambar 3.3 Flowchart Algoritma Back Propagation Penjadwalan Pembangkit Termal

1. Menentukan kombinasi awal pembangkit

2. Menghitung pembebanan unit pembangkit dengan lamda dan dengan

kekangan: Menentukan maksimum epoh , learning rate

(21)

33

Mohammad Rizqi, 2015

Optimasi Penjadwalan Pembangkitan Unit Thermal Dengan Memperhitungkan Rugi-Rugi Saluran Transmisi Berbasis Algoritma Back Propagation

Universitas Pendidikan Indonesia | repository.upi.edu | perpustakaan.upi.edu

3. Evaluasi pembebanan unit pembangkit dengan persamaan kekangan

5. Simpan kombinasi dan pembebanan unit pembangkit tersebut sebagai

Data training

6. Masukan data permintaan beban dan batas minimum dan maksimum

generator sebagai input dari jaringan BP.

7. Menentukan parameter-parameter untuk pelatihan jaringan BP diantaranya

adalah parameter maximum pelatihan (max epochs), parameter kinerja

tujuan (target error), parameter learning rate, dan parameter momentum

yang fungsinya akan memperbaiki bobot-bobot jaringan.

8. Simulasi jaringan dilakukan untuk mengetahui error dan unjuk kerja.

Gunakan perintah sim untuk melakukan simulasi jaringan sehingga dapat

ditemukan outputnya.

9. Analisis hasil pelatihan menggunakan fungsi postreg sehingga dapat

dievaluasi hasil pelatihannya.

10.Hitung Rugi transmisi yang terjadi dengan memasukan hasil dari

pembebanan menggunakan algoritma BP ke persamaan losses sehingga

dapat diketahui rugi transmisi yang terjadi dengan menggunakan

(22)

44

Mohammad Rizqi, 2015

Optimasi Penjadwalan Pembangkitan Unit Thermal Dengan Memperhitungkan Rugi-Rugi Saluran Transmisi Berbasis Algoritma Back Propagation

Universitas Pendidikan Indonesia | repository.upi.edu | perpustakaan.upi.edu

BAB V

SIMPULAN, IMPLIKASI DAN REKOMENDASI

5.1 Simpulan

Berdasarkan penelitian skripsi yang telah dilakukan oleh penulis,

didapat beberapa kesimpulan sebagai berikut:

1. Dengan mengolah data heat rate mengolah data heat rate pembangkit

menggunakan pendekatan fungsi polynomial akan didapatkan hasil

karateristik input/output bahan bakar, dan jika hasil yang didapat

dikalikan dengan biaya bahan bakar maka akan didapatkan fungsi biaya

bahan bakar pembangkit thermal 500 sistem jawa – bali.

2. Dalam penjadwalan optimal dengan menggunakan algoritma back

propagation harus menentukan nilai learning rate , maksimum epoch ,

jumlah hidden layer dan fungsi aktifasi yang digunakan sehingga

didapatkan hasil yang optimal.

3. Biaya bahan bakar yang dikeluarkan pada allgoritma BP lebih murah

7,84 % atau sebesar US$ 321.263 dari biaya bahan bakar yang

digunakan PLN. Dan rugi – rugi yang dihasilkan menggunakan

algoritma BP juga lebih kecil walaupun menghasilkan daya

pembangkitan Pit yang sama dengan data riil PLN dengan selisih 21%

atau sebesar 428 MW.

5.2 Implikasi dan Rekomendasi

Di bawah ini merupakan beberapa saran penulis terhadap penelitian

skripsi ini:

1. Penggunaan algoritma BP pada penjadwalan pembangkit termal yang

memperhitungkan rugi – rugi transmisi dapat digunakan sebagai

alternatif dalam penjadwalan optimal pada sub sistem Jawa Bali yang

memiliki kapasitas operasi yang besar.

2. Kelemahan algoritma BP adala dibutuhkannya data training yang

(23)

45

Mohammad Rizqi, 2015

Optimasi Penjadwalan Pembangkitan Unit Thermal Dengan Memperhitungkan Rugi-Rugi Saluran Transmisi Berbasis Algoritma Back Propagation

Universitas Pendidikan Indonesia | repository.upi.edu | perpustakaan.upi.edu

training harus berhati – hati karena akan mempengaruhi hasil

penjadwalan.

3. Algoritma BP dapat dikombinasikan dengan metode lain, agar metode

yang dikombinasikan dengan algoritma BP ini mungkin dapat menutupi

kelemahannya dalam penjadwalan pembangkit.

4. Jenis pembangkit yang dioperasikan diperluas, tidak hanya pembangkit

(24)

46

Mohammad Rizqi, 2015

Optimasi Penjadwalan Pembangkitan Unit Thermal Dengan Memperhitungkan Rugi-Rugi Saluran Transmisi Berbasis Algoritma Back Propagation

Universitas Pendidikan Indonesia | repository.upi.edu | perpustakaan.upi.edu DAFTAR RUJUKAN

Abdellah, D., & Djamel, L. (2012). Power System Economic Dispatch Using

Traditional and Neural Networks Programs, 3(4), 1–5.

Anireh, V. I. E. (2014). Cost Minimization of Power System Generation Using

Artificial Neural Network ( ANN ), 7(1), 49–58.

Chen, P., & Chen, H. (2006). Application of Evolutionary Neural Network to

Power System Unit Commitment, 1296–1303.

Dike, D. O., Adinfono, M. I., & Ogu, G. (2013). Economic Dispatch of Generated

Power Using Modified Lambda- Iteration Method, 7(1), 49–54.

Gupta, R., Chandra, R., Chaudhary, V., & Saxena, N. (2013). OPTIMAL LOAD

DISPATCH USING B- COEEFICIENT, 3(2), 53–56.

Haque, M., & Kashtiban, A. (2007). Application of neural networks in power

systems; a review. International Journal of Electrical, Robotics, Electronics

and Comunications Engineering, 1(6), 889 – 893.

Harun, N. (2011). Perancangan Pembangkitan Tenaga Listrik.

I.J, N., & D.P, K. (1994). Modern Power System Engineering. TMH.

Kumar, S. S., & Palanisamy, V. (2007). A dynamic programming based fast

computation Hopfield neural network for unit commitment and economic

dispatch. Electric Power Systems Research, 77, 917–925.

doi:10.1016/j.epsr.2006.08.005

Luh, P. B., Wang, Y. W. Y., & Zhao, X. Z. X. (1999). Lagrangian relaxation

neural network for unit commitment. IEEE Power Engineering Society. 1999

Winter Meeting (Cat. No.99CH36233), 1, 2–7.

(25)

47

Mohammad Rizqi, 2015

Optimasi Penjadwalan Pembangkitan Unit Thermal Dengan Memperhitungkan Rugi-Rugi Saluran Transmisi Berbasis Algoritma Back Propagation

Universitas Pendidikan Indonesia | repository.upi.edu | perpustakaan.upi.edu

Mohatram, M., & Kumar. (2006). Application of Artificial Neural Network in

Economic Generation Scheduling of Thermal Power Plants. Proceedings of

the National Conference, 8, 1–9.

Pang, C. K., & Chen, H. C. (1976). Optimal short-term thermal unit commitment.

IEEE Transactions on Power Apparatus and Systems, 95(June).

doi:10.1109/T-PAS.1976.32228

Panta, S., & Premrudeepreechacharn, S. (2007). Economic dispatch for power

generation using artificial neural network ICPE’07 conference in Daegu,

Korea. 2007 7th Internatonal Conference on Power Electronics, 558–562.

doi:10.1109/ICPE.2007.4692450

Saadat, H., Power System Analysis, Tata McGraw Hill Publishing Company,

New Delhi, 2001.3

Shamisi, M. H. Al, Assi, A. H., & Hejase, H. a N. (2011). Using MATLAB to

Develop Artificial Neural Network Models for Predicting Global Solar

Radiation in Al Ain City – UAE. Engineering Education and Research

Using MATLAB, 219–238.

Siang,J.J., (2005). Jaringan Syaraf Tiruan dan Pemogramannya Menggunakan

MATLAB, Yogyakarta: ANDI.

Stevenson, W., 1984. Analisis Sistem Tenaga Listrik (Edisi Keempat). Jakarta: Erlangga

Yung-Chung Chang, Wei-Tzen Yang, & Chun-Chang Liu. (1994). A new method

for calculating loss coefficients [of power systems]. IEEE Transactions on

Gambar

Gambar 3.1. Pemodelan Sistem Interkoneksi 500 KV Jawa-Bali
Tabel 3.2 Data biaya bahan bakar masing-masing pembangkit
Tabel 3.3 Biaya bahan bakar masing-masing pembangkit ($/MMbtu)
Tabel 3.5 Urutan prioritas pembangkit sistem 500kV Jawa-Bali
+5

Referensi

Dokumen terkait

Hasil terbaik pengujian program untuk sistem 30 bus dengan metode algoritma genetik didapatkan biaya pengoperasian pembangkit sebesar 572.74 $/h dan