• Tidak ada hasil yang ditemukan

PENGARUH UKURAN BUTIR DAN PENEMPATAN PROPPANT TERHADAP OPTIMASI PEREKAHAN HIDRAULIK SUMUR MINYAK

N/A
N/A
Protected

Academic year: 2021

Membagikan "PENGARUH UKURAN BUTIR DAN PENEMPATAN PROPPANT TERHADAP OPTIMASI PEREKAHAN HIDRAULIK SUMUR MINYAK"

Copied!
12
0
0

Teks penuh

(1)

JTM Vol. XVII No. 2/2010

107

PENGARUH UKURAN BUTIR DAN PENEMPATAN PROPPANT

TERHADAP OPTIMASI PEREKAHAN HIDRAULIK SUMUR

MINYAK

Sudjati Rachmat 1, Sapto Edi Nugroho 1 Sari

Produktivitas sumur pasca perekahan hidraulik terutama ditentukan oleh daerah rekahan efektif yang terbentuk, yaitu bagian dari rekahan yang memberikan konduktivitas lebih tinggi dari reservoir untuk meningkatkan kapasitas aliran fluida reservoir ke lubang sumur. Penempatan proppant yang baik dan peningkatan permeabilitas proppant pack merupakan upaya yang dapat ditempuh untuk mencapai tujuan tersebut. Dari sisi fluida pembawa proppant dikenal istilah fluida perfect support yang memberikan sifat suspensi yang baik pada proses proppant transport dan jenis fluida banking yang menghasilkan pengendapan proppant yang lebih tinggi. Sementara penggunaan proppant dengan ukuran butir lebih besar diketahui memberikan peningkatan permeabilitas proppant pack yang lebih tinggi sehingga konduktivitas rekahan yang diperoleh akan meningkat. Pada umumnya penggunaan fluida perfect support lebih banyak dipilih untuk menjamin distribusi proppant yang lebih merata ke dalam rekahan. Namun dari sisi keekonomian, biaya material untuk fluida jenis ini jauh lebih mahal bila dibandingkan dengan fluida jenis banking. Dalam hal inilah adanya optimasi desain perekahan diperlukan untuk menghasilkan sebuah desain yang akan memberikan keuntungan ekonomi maksimal. Dengan bantuan sebuah simulator perekahan hidraulik pseudo-3D, studi kasus dilakukan pada perekahan dengan model pertumbuhan tinggi rekahan ke bawah dari zona target yang berbeda. Simulasi dan evaluasi dilakukan untuk melihat efektifitas dan pengaruh dari penggunaan jenis fluida pembawa dan ukuran proppant yang berbeda, terhadap nilai keekonomian perekahan yang dihasilkan. Hasil simulasi menunjukkan bahwa penggunaan fluida banking pada perekahan dengan model pertumbuhan tinggi rekahan ke bawah yang terbatas menghasilkan nilai keekonomian lebih tinggi. Sedangkan penggunaan proppant dengan ukuran yang lebih besar pada tiap jenis fluida, seperti diduga akan menghasilkan permeabilitas proppant pack yang lebih tinggi, sehingga konduktivitas efektif rekahan juga meningkat.

Kata Kunci: perfect support , banking, penempatan proppant

Abstract

Productivity of hydraulic fractured wells is mainly determined by the effective area formed, which is part of the fractures that give a higher conductivity of the reservoir to increase the capacity of the reservoir fluid flow into the wellbore. Good placement of proppant and proppant pack permeability increase an effort that can be taken to achieve that goal. From the side of the carrier fluid proppant known perfect fluid term support which provides good suspension properties on the process of proppant transport and banking type of fluid that produces a higher proppant deposition. While the use of proppant with larger grain size is known to increase permeability of the proppant pack conductivity fracture obtained wll be increase. In general, use more support perfect fluid is selected to ensure a more equitable distribution of proppant into the fracture. But in terms of economic, material costs for this type of fluid is much more expensive when compared with the fluid type of banking. In this case the fracture design optimization is required to produce a design that will provide maximum economic benefits. Using a pseudo-3D hydraulic hydraulic fracturing simulator, case studies performed on fracturing with high growth model to the bottom of the fracture zone of a different target. Simulation and evaluation done to see the effectiveness and impact of the use of a carrier fluid types and sizes of different proppant, to the economic value offracture generated. The simulation results show that the use of fracturing fluid banking on high-growth model with finite cracks down produces a higher economic value. While the use of proppant with a larger size on the each type of fluid, such as permeability is expected to generate higher proppant pack, so that the effective fracture conductivity also increases

Keywords: perfect support, banking, proppant placement.

1) Program Studi Teknik Perminyakan, Institut Teknologi Bandung

Jl. Ganesa No. 10 Bandung 40132, Telp :+62 22-2504955, Fax.: +62 22-2504955, email: sudjati@tm.itb.ac.id

I. PENDAHULUAN

Parameter kesuksesan pekerjaan perekahan terutama dipengaruhi oleh terciptanya daerah rekahan efektif yang mempunyai konduktivitas rekahan yang lebih besar dari konduktivitas reservoir. Berkaitan dengan hal ini proppant sebagai material pengganjal rekahan berperan penting untuk menghasilkan konduktivitas aliran yang cukup besar untuk meminimalkan kehilangan tekanan dalam rekahan saat sumur diproduksikan kembali. Proppant yang berada dalam rekahan nantinya akan menjadi bagian

yang menyatu pada sistem komplesi sumur karena berfungsi sebagai penghubung aliran hidrokarbon dari reservoir ke lubang sumur. Optimasi dari konduktivitas rekahan atau luas daerah rekahan efektif perlu dilakukan mengingat produksi hidrokarbon yang dihasilkan sumur adalah berasal dari daerah yang direkahkan tersebut. Parameter ini ditentukan oleh tinggi rekahan yang terisi proppant pada selang zona produksi dengan panjang rekahan efektif yang tercipta. Penempatan proppant

(2)

108 dalam rekahan kemidian menjadi faktor penentu.

Dalam kerangka inilah pemilihan fluida perekah sebagai pembawa proppant menjadi hal yang sangat penting. Pada proses proppant transport dan placement dikenal istilah fluida perfect support dan banking ke seluruh daerah rekahan yang lebih baik karena mempunyai daya topang terhadapproppant yang terkandung di dalamnya. Sebaliknya fluida banking lebih cenderung untuk menimbulkan pengendapan selama proses penempatan proppant (Economies, 1989). Sementara penggunaan proppant dengan ukuran lebih besar secara teoritis akan meningkatkan konduktivitas rekahan, namun pertimbangan dari segi proppant admittance dan pengaruh in-situ stress batuan harus dipertimbangkan, karena makin besar ukuran proppant kecenderungan untuk hancur (crush) saat terkena beban dan akan menghasilkan kotoran (fine) yang justru akan menurunkan permeabilitas proppant pack (Economies, 1989).

Studi ini bertujuan untuk melakukan analisa pengaruh ukuran butir dan penempatan proppant

pada kasus perekahan dengan model

pertumbuhan tinggi rekahan yang berbeda. Kondisi yang dimaksud adalah adanya pertumbuhan tinggi rekahan ke arah bawah lapisan target yang terbatasi (downward height growth containment) dan berlebihan (extensive downward height growth). Parameter keekonomian NPV tiap skenario yang berbeda digunakan sebagai tolok ukur perbandingan studi kasus untuk menentukan pemilihan jenis fluida dan proppant yang menghasilkan nilai keekonomian terbaik.

Data studi kasus diambil dari dua pekerjaan perekahan sumur minyak yang dilakukan pada lapangan X yang menunjukkan perbedaan pertumbuhan tinggi rekahan sesuai dengan tujuan penelitian dimaksud. Data reservoir, parameter perekahan dan data penunjang lainnya dikumpulkan sebagai masukan simulator untuk membuat sebuah model geometri rekahan. Parameter fluida, proppant, jadwal injeksi dan parameter keekonomian pada skenario dasar tiap sumur menggunakan parameter umum yang biasa digunakan di lapangan ini.

I. TINJAUANPUSTAKA 2.1 Optimasi Perekahan Hidraulik

Produktivitas sumur hasil perekahan hidraulik secara umum tergantung pada dua tahap yaitu menerima fluida dari formasi dan menyalurkan fluida tersebut ke lubang sumur. Efisiensi tahap pertama tergantung dari dimensi rekahan (panjang dan tinggi rekahan), sedangkan yang kedua tergantung dari permeabilitas rekahan. Hubungan kedua tahap ini dapat dianalisa

dengan menggunakan konsep konduktivitas rekahan, yang pertama kali diperkenalkan oleh Prats (1961).

ܨܥܦ = ௞೑.௪

௞.௫೑ (1)

dimana:

ܨ஼஽ = konduktivitas rekahan, dimensionless

݇௙ = permeabilitas rekahan, md

w = lebar rekahan, ft ݔ௙ = panjang rekahan, ft

Pada tahap desain perekahan, nilai FCD ditentukan untuk mencapai keseimbangan antara kapasitas aliran rekahan dan deliverabilitas reservoir dalam rangka optimasi dimensi perekahan dan keekonomian.

Plot antara indikator keekonomian NPV vs panjang rekahan (ݔ) adalah salah satu alat bantu yang dipergunakan dalam tahap optimasi desain perekahan. Beberapa paper yang telah diterbitkan yang mengulas hal ini, menjadi dasar dikembangkannya modul optimasi perekahan dalam banyak simulator desain perekahan saat ini. Konsep optimasi perekahan yang menggabungkan variabel reservoir dan respon produksi pasca perekahan dengan volume treatment yang diperlukan untuk variasi panjang rekahan tertentu, akan menghasilkan nilai

maksimum pada kurva NPV yang

mengindikasikan panjang rekahan optimum. Secara skematis, konsep ini ditunjukkan pada Gambar 1.

Gambar 1. Konsep optimasi keekonomian perekahan hidraulik pada simulator 2.2 Fluida perekah dan proppant

Pemilihan fluida perekah dan proppant merupakan faktor penting dalam sebuah desain perekahan. Besar dan jumlah dari material serta model pemompaannya akan menentukan ukuran rekahan yang dihasilkan. Pemilihan fluida perekah terutama berdasarkan dua kriteria, yang

pertama adalah untuk membuat dan

mengembangkan rekahan sekaligus sekaligus mengangkut dan menempatkan proppant dalam

(3)

Pengaruh Ukuran Butir dan Penempatan Proppant terhadap Optimasi Perekahan Hidraulik Sumur Minyak

109 rekahan. Kriteria kedua adalah pengaruh

kerusakan residu yang mungkin ditimbulkannya pada tumpukan proppant (proppant pack) yang terbentuk harus diusahakan seminimal mungkin. Kriteria pemilihan fluida perekah antara lain harus memenuhi persyaratan sebagai berikut: - Fluid loss yang rendah untuk meningkatkan

efisiensi fluida dalam menciptakan area rekahan yang cukup selama injkesi dan penempatan proppant dalam rekahan. - Viskositas yang cukup untuk membuat

rekahan dan membawa dan menempatkan proppant dalam rekahan. Fluida perekah yang baik haruslah dapat mempertahankan viskositas selama proses injeksi dan mudah pecah saat pekerjaan selesai untuk memudahkan proses clean up.

- Kesesuaian dengan fluida dan batuan formasi untuk meyakinkan bahwa fluida yang merembes ke formasi tidak meyebabkan kerusakan formasi yang justru akan menurunkan efisiensi perekahan.

- Menimbulkan tekanan gesek minimal untuk menghindari tekanan pemompaan yang terlalu tinggi dan melampaui batas kekuatan tubular.

- Ekonomis, dengan memperhitungkan efektifitas fluida perekah tersebut terhadap peningkatan produksi pasca perekahan.

Pemilihan proppant ditekankan pada

peningkatan permeabilitas proppant pack yang terjadi pada kondisi tegangan in-situ batuan untuk menghasilkan konduktivitas rekahan yang cukup guna meningkatkan kapasitas aliran dalam rekahan. Untuk membuat dan mengembangkan sebuah rekahan, pengaruh tegangan in-situ harus diperhitungkan. Jika kekuatan proppant tidak mampu mengatasi tegangan penutupan rekahan, butiran proppant akan hancur dan menurunkan permeabilitas rekahan. Proppant dengan ukuran yang lebih besar umumnya akan memberikan permeabilitas rekahan yang lebih baik karena nilai permeabilitas akan meningkat seiring

dengan bertambahnya diameter dari

butiran.Namun penggunaannya pada sumur yang dalam perlu dikaji lebih jauh karena tegangan in-situ yang bekerja pada rekahan lebih besar sehingga butir proppant cenderung lebih mudah hancur (makin besar ukuran proppant, kekuatannya akan makin menurun). Hal lain yang mungkin timbul adalah masalah penempatan proppant dalam rekahan (proppant admittance). Ukuran yang lebih besar menuntut lebar rekahan yang lebih besar dan kecepatan pengendapan partikel yang bertambah. Tingkat

kebulatan proppant berpengaruh pada

keseragaman distribusi tegangan agar kekuatan tumpukan proppant lebih tinggi. Densitas proppant berpengaruh pada proses pengangkutan proppant karena laju pengendapan akan linear terhadap berat jenis partikel. Penempatan

proppant dapat ditingkatkan dengan dua cara yaitu dengan menggunakan fluida berviskositas tinggi dan menaikkan laju injeksi dengan mengunakan fluida berviskositas rendah untuk mengurangi waktu pemompaan dan waktu suspensi yang lebih diperlukan (Economides, 1998) dan (Economies, 1989).

2.3 Penempatan proppant

Pengangkutan proppant menjadi pertimbangan penting dalam desain perekahan agar penempatan proppant dalam zona produksi menjadi efektif. Pengangkutan proppant dan suspensi oleh fluida rekahan selama perekahan berpengaruh langsung pada luas daerah rekahan terisi proppant (propped area) yang tercipta. Pengangkutan proppant yang tidak baik akan

membuat pengendapan proppant yang

berlebihan, seringkali pada daerah di bawah rekahan yang terjadi (di bawah interval produksi), sehingga menghasilkan panjang rekahan efektif yang relatif pendek dan tinggi rekahan yang tidak mencakup ketebalan reservoir pada zona produktifnya. Faktor ini akan berujung pada penurunan efisiensi stimulasi sehingga peningkatan produksi setelah perekahan juga tidak akan optimal. Analisa produksi setelah perekahan seringkali menunjukkan bahwa daerah rekahan efektif lebih kecil daripada yang diharapkan dalam desain perekahan, yang mencerminkan proppant tidak ditempatkan secara efektif dalam rekahan ataupun adanya kerusakan proppant pack yang berlebihan. Optimasi luas rekahan pada prinsipnya difokuskan pada peningkatan kemampuan pengangkutan proppant dan proses pembersihan fluida dalam rekahan setelah injeksi selesai dilakukan. Penempatan proppant dalam rekahan terutama dipengaruhi oleh laju pengendapan proppant sebagai fungsi dari komposisi fluida dan kondisi selama proses injeksi. Hukum Stoke untuk menentukan kecepatan pengendapan patikel dalam sebuah kolom fluida digunakan untuk menggambarkan laju pengendapan proppant (Economides, 1998) sebagai berikut: v୲= 1.15x10ଷቀୈ౦౨౥౦

ஜϐౢ౫౟ౚቁ ൫γ୮୰୭୮− γϐ୪୳୧ୢ൯ (2)

dimana v adalah kecepatan pengendapan (terminal velocity), Dprop adalah diameter

rata-rata proppant, ߤ௙௟௨௜ௗ adalah viskositas fluida, dan ߛ௣௥௢௣ serta ߛ௙௟௨௜ௗ adalah berat jenis proppant dan fluida perekah.

Dari persamaan di atas terlihat dengan menaikkan viskositas fluida perekah dan atau

menurunkan diameter proppant dapat

meningkatkan kemampuan pengangkutan

proppant. Berat jenis proppant, ߛ௣௥௢௣ adalah faktor pertimbangan lain yang dalam proses penempatan proppant. Persamaan Stokes menunjukkan bahwa partikel yang lebih ringan

(4)

akan mengalami pengendapan lebih lambat, artinya dengan menurunkan berat jenis proppant sampai mendekati berat jenis fluida akan terjadi kondisi buoyansi netral dan kecepatan pengendapan proppant akan mendekati nol. Berkaitan dengan mekanisme proppant transport dan dikenal jenis fluida perfect support dan fluida banking. Fluida perfect support memiliki viskositas tinggi yang memberikan sifat suspense yang baik dalam membawa proppant dan meminimalkan pengendapan yang mungkin terjadi. Umumnya penambahan bahan pengikat silang (crosslinking agent) antara lain borate, titanate, dan zirconate dilakukan untuk meningkatkan viskositas fluida. Sementara fluida banking yang memiliki viskositas lebih rendah memiliki karakterisitik yang menyebabkan kecepatan pengendapan proppant yang lebih tinggi. Dari segi biaya tentu saja lebih murah karena minimnya penambahan bahan viscosifier terutama bahan pengikat silang.

II. SIMULASI DAN PEMBAHASAN STUDI KASUS

Studi kasus mengambil contoh perekahan pada dua sumur dengan model pertumbuhan tinggi rekahan ke bawah lapisan target yang berbeda.

Simulasi menggunakan simulator perekahan dengan model geometri pseudo-3D dengan data masukan yang diperoleh dari data perekahan yang dilakukan pada dua sumur. Pada masing-masing sumur digunakan jenis fluida perfect support, yang akan dipakai sebagai kasus dasar dengan pemakaian ukuran proppant tipikal. Sebagai pembanding akan disimulasikan penggunaan fluida banking dan ukuran proppant dengan diameter lebih besar.

Metode optimasi oleh simulator dilakukan untuk mendapatkan nilai keekonomian (NPV) terhadap variasi panjang rekahan yang terjadi untuk melihat efektivitas penggunaan masing-masing jenis fluida dan ukuran proppant.

3.1 Studi Kasus Sumur A

Jadwal injeksi perekahan sebagai input simulator menggunakan jadwal injeksi yang biasa dipakai pada lapangan ini. Data fluida perekah dan proppant yang digunakan dalam simulasi ditunjukkan pada Tabel 1 dan Tabel 2. Hasil simulasi yang menghasilkan geometri rekahan dan konsentrasi proppant dalam rekahan untuk masing-masing penggunaan fluida dan proppant yang berbeda ditunjukkan pada Gambar 2 sampai Gambar 5.

(5)

Gambar 3. Profil rekahan sumur A menggunakan fluida perfect support dan proppant HSP 12/18 mesh

Gambar 4. Profil rekahan sumur A - fluida banking dengan proppant HSP – 20/40

Gambar 5. Profil rekahan sumur A - fluida banking dengan proppant HSP – 12/18 Geometri rekahan pada penggunaan fluida

perfect support dan proppant HSP 20/40 mesh, menunjukkan terjadinya pertumbuhan tinggi

pada kedalaman 7714 ft dan level terbawah pada 7817 ft. Dapat diamati bahwa pertumbuhan tinggi rekahan lebih banyak ke arah bawah dari

(6)

112 perbedaan kontras tegangan antara lapisan batas

atas yang lebih besar daripada lapisan batas bawah. Total pertumbuhan tinggi ini mencapai lebih dari tiga kali lipat tinggi zona produktifnya.

Sementara penggunaan fluida banking

menunjukkan geometri rekahan yang serupa. Perbedaan terlihat pada distribusi proppant yang terkonsentrasi pada bagian bawah dari daerah rekahan yang terbentuk, yang mengindikasikan terjadinya pengendapan proppant akibat proses pengangkutan proppant yang kurang baik. Panjang rekahan yang terisi proppant juga mengalami penurunan drastis dibandingkan jika menggunakan fluida perfect support. Dengan panjang rekahan yang terbentuk sebesar 244 ft, proppant hanya mengisi 156 ft dari total panjang

rekahan. Akibat terjadinya pengendapan ini lebar rekahan yang terjadi di dekat lubang sumur menjadi lebih besar (0.104 inci) dengan konsentrasi proppant lebih tinggi pada daerah di dekat lubang sumur.

Sementara penggunaan proppant dengan ukuran lebih besar yaitu HSP mesh 12/18 menghasilkan konduktivitas rekahan yang terjadi menkadi meningkat pada masing-masing fluida perekah. Hal ini terutama diakibatkan oleh permeabilitas proppant pack yang dihasilkan lebih tinggi sehingga berpengaruh pada meningkatnya konduktivitas rekahan efektif. Perbandingan konduktivitas rekahan untuk fluida perfect support dapat dilihat pada Gambar 6.

Gambar 6. Perbandingan konduktivitas efektif rekahan tiap skenario sumur A

Gambar 7. Kurva NPV vs panjang rekahan masing-masing skenario sumur A – periode analisa 1 tahun Dari kurva NPV vs panjang rekahan yang

ditunjukkan Gambar 7, menunjukkan

penggunaan fluida perfect support menghasilkan nilai keekonomian lebih tinggi dibandingkan fluida banking. Nilai keekonomian tertinggi

diperoleh pada penggunaan fluida perfect support dengan proppant berukuran lebih besar HSP 12/18 mesh. Untuk skenario ini diperoleh NPV maksimum selama masa analisa 1 tahun sebesar 2.731.607 US$ pada panjang rekahan

0 2.000 4.000 6.000 8.000 10.000 12.000 14.000 16.000 18.000 20.000 22.000 0 50 100 150 200 250 K o n d u k ti v it a s r e k a h a n ( m d .f t) Panjang rekahan (ft)

perfect-20/40 perfect - 12/18 banking-20/40 banking-12/18

-1000000 -500000 0 500000 1000000 1500000 2000000 2500000 3000000 0 50 100 150 200 250 300 350 400 N P V ( U S $ ) Panjang rekahan (ft)

Perbandingan NPV kondisi optimum tiap skenario -sumur A

(7)

Pengaruh Ukuran Butir dan Penempatan Proppant terhadap Optimasi Perekahan Hidraulik Sumur Minyak

113 optimum 195 ft. Tabulasi hasil optimasi oleh

simulator pada kondisi ideal untuk

masing-masing kasus ditunjukkan pada Tabel 3.

Tabel 3. Tabulasi hasil simulasi tiap skenario pada kondisi optimum – Sumur A

Parameter Satuan Fluida perfect support Fluida banking

HSP-20/40 HSP-12/18 HSP-20/40 HSP-12/18

Panjang rekahan terbentuk ft 280 260 300 250

Panjang rekahan terisi proppant ft 210 195 150 80

FCD efektif 1.40 1.93 0.46 0.53

Produksi kumulatif sebelum perekahan bbl 43.680 43.680 43.680 43.680

Produksi kumulatif setelah perekahan bbl 77.296 91.284 53.851 56.119

Kebutuhan fluida gallon 17.937 19.742 26.317 64.933

Kebutuhan proppant lb 38.391 34.692 31.082 34.142

Biaya treatment US$ 293.372 297.710 194.108 285.164

NPV US$ 1.845.777 2.731.607 421.063 474.287

3.2 Studi Kasus Sumur B

Pada sumur B digunakan fluida perekah berbahan dasar minyak karena sifat batuan pada zona target yang sensitive terhadap air. Seperti

halnya pada kasus sumur A, jadwal injeksi yang dipergunakan dalam simulasi menggunakan data tipikal lapangan. Parameter fluida perekah dan proppant dapat dilihat pada Tabel 4 dan 5. Tabel 4. Parameter fluida perekah studi kasus sumur B

Fluida perekah Oil based Oil based

Tipe Fluida Alumunium phosphate este -

crosslinked

Gelled oil - uncrosslined

Indeks rheologi power law fluida, n’ 0.59 0.48

Indeks konsistensi, K’ 0.0046 lb/ft3 0.008 lb/ft3

Viskositas tampak 201 cp 30 cp

Koefisien leak off 0.014 ft/min1/2 0.019 ft/min1/2

Spurt loss 0 gal/100 ft2 0 gal/100 ft2

Harga fluida 6 US$/gal 3.5 US$/gal

Tabel 5. Karakteristik propant studi kasus sumur B

Fluida perekah Oil based Oil based

Tipe Fluida Alumunium phosphate este -

crosslinked

Gelled oil - uncrosslined

Indeks rheologi power law fluida, n’ 0.59 0.48

Indeks konsistensi, K’ 0.0046 lb/ft3 0.008 lb/ft3

Viskositas tampak 201 cp 30 cp

Koefisien leak off 0.014 ft/min1/2 0.019 ft/min1/2

Spurt loss 0 gal/100 ft2 0 gal/100 ft2

Harga fluida 6 US$/gal 3.5 US$/gal

Geometri rekahan hasil simulasi untuk tiap kasus ditunjukkan pada Gambar 8 sampai 11. Berbeda dengan kasus sumur A, pada sumur B ini pertumbuhan tinggi rekahan ke bawah lebih terbatasi (contained). Penggunaan fluida perfect support menunjukkan distribusi konsentrasi

proppant yang lebih merata daripada fluida banking. Namun dalam hal ini sifat pengendapan proppant yang lebih besar yang ditimbulkan oleh fluida banking, justru lebih menguntungkan dalam hal penempatan proppant pada zona produktif. Adanya pertumbuhan tinggi rekahan

(8)

ke bawah yang terbatasi membuat penempatan proppant seolah-olah menyusuri bagian bawah rekahan atau pada zona produksi, dan membentuk rekahan terisi proppant yang lebih panjang. Akibatnya konduktivitas rekahan yang dihasilkan juga lebih tinggi dibandinngkan penggunaan fluida perfect support, seperti ditunjukkan pada Gambar 12 dan Gambar 13. Pengaruhnya pada keekonomian perekahan,

penggunaan fluida banking akan menghasilkan nilai NPV lebih tinggi yang mengindikasikan penggunaannya lebih efektif. Plot NPV vs panjang rekahan ditunjukkan pada Gambar 14. Sementara penggunaan proppant dengan ukuran lebih besar menghasilkan konduktivitas rekahan dan keekonomian lebih tinggi seperti halnya pada kasus sumur A.

Gambar 8. Profil rekahan sumur B - fluida perfect support denganproppant ISP – 20/40

(9)

Pengaruh Ukuran Butir dan Penempatan Proppant terhadap Optimasi Perekahan Hidraulik Sumur Minyak

Gambar 10. Profil rekahan sumur B - fluida banking dan proppant ISP – 20/40

Gambar 11. Profil rekahan sumur B dengan fluida banking dan proppant ISP – 12/18

Gambar 12. Perbandingan konduktivitas rekahan efektif sumur B masing-masing fluida dengan proppant ISP – 20/40

(10)

116

Gambar 13. Perbandingan konduktivitas rekahan efektif sumur B masing-masing fluida dengan proppant ISP – 12/18

Rangkuman hasil simulasi pada kondisi ideal setelah dilakukan optimasi oleh simulator ditunjukkan pada Tabel 6. Terlihat bahwa penggunaan fluida banking dan proppant ISP

12/18 mesh merupakan skenario terbaik yang menghasilkan keekonomian perekahan paling tinggi.

Tabel 6. Tabulasi hasil simulasi tiap skenario pada kondisi optimum – Sumur B

Perameter Satuan Fluida perfect support Fluida banking

ISP-20/40 ISP-12/18 ISP-20/40 ISP-12/18

Panjang rekahan terbentuk ft 170 150 250 270

Panjang rekahan terisi proppant ft 128 113 188 203

FCD 1.10 2.17 2.10 5.40

Produksi kumulatif sebelum perekahan bbl 11.745 11.745 11.745 11.745

Produksi kumulatif setalah perekahan bbl 25.314 26.897 32.132 37.527

Kebutuhan fluida gallon 23.262 13.635 36.355 47.861

Kebutuhan proppant lb 28.136 24.787 95.915 142.064

Biaya treatment US$ 295.843 276.654 419.073 551.640

NPV US$ 567.659 687.531 903.851 1.114.572

IV. KESIMPULAN

Kesimpulan yang dapat diambil dari studi ini adalah:

1. Pada model geometri rekahan dengan pertumbuhan tinggi rekahan ke arah bawah lapisan target yang minimal (terbatasi),

penggunaan fluida banking dapat

meningkatkan efisiensi penempatan proppant dan keekonomian perekahan.

2. Pada kasus rekahan dengan pertumbuhan tinggi rekahan ke bawah lapisan target yang luas (ektensif), penggunaan fluida perfect support tetap menjadi pilihan yang terbaik. 3. Penggunaan proppant dengan ukuran butir

yang lebih besar akan meningkatkan nilai keekonomian dari konduktivitas efektif rekahan yang dihasilkan.

4. Dibandingkan dengan konduktivitas rekahan, panjang rekahan merupakan faktor yang lebih berpengaruh pada efisiensi perekahan yang

dilakukan pada reservoir dengan

permeabilitas rendah yang secara jelas ditunjukkan pada studi kasus sumur A. 5. Optimasi keekonomian untuk studi kasus

sumur A menghasilkan pilihan terbaik pada penggunaan fluida perfect support dengan proppant HSP-12/18 berdiameter 0.052 inci. Untuk masa analisa 1 tahun, NPV optimum yang diperoleh sebesar 2.731.607 US$ dengan panjang rekahan optimum 195 ft. 6. Untuk studi kasus sumur B, penggunaan

fluida banking dan proppant ISP-12/18 memberikan hasil keekonomian terbaik dengan nilai NPV sebesar 1.114.572 US$ pada panjang rekahan optimum 203 ft.

-2000 0 2000 4000 6000 8000 10000 0 0,2 0,4 0,6 0,8 1 1,2 1,4 0 50 100 150 200 250 300 350 400 K o n d u k t iv it a s r e k a h a n ( m d f t ) K o n s e n t r a s i p r o p p a n t g ( lb /f t 2 ) Panjang rekahan (ft)

Konsentrasi proppant dan konduktivitas rekahan sumur B tiap fluida dengan proppant ISP - 12/18

konsentrasi prop -perfect 12-18 konsentrasi prop-banking 12-18 konduktivitas - perfect 12-18 konduktivitas - bangking 12-18

(11)

Pengaruh Ukuran Butir dan Penempatan Proppant terhadap Optimasi Perekahan Hidraulik Sumur Minyak

117 DAFTARPUSTAKA

1. Brannon, H.D. and Starks, T.R., 2008. The Impact of Effective Fracture Area and Conductivity on Fracture Deliverability and Stimulation Value, paper SPE 116057.

2. Cinco-Ley, H., Samaniego-V., F., and Dominguez, N., 1978. Transient Pressure Behavior for a Well with a Finite-Conductivity Vertical Fracture, SPEJ 253-64 Trans., AlME, 265.

3. Economides, M. J., Hill, A.D, and Ehlig-Economides, C., 1994. Petroleum Production Systems, Prentice Hall.

4. Economides, M. J., and Martin, T., 1998. Modern Fracturing Enhancing Natural GasProduction, ET Publishing, Houston, Texas.

5. Economies, M.J., and Nolte, K.G., 1989. Reservoir Stimulation, 2nd Ed., Prentice Hall, New Jersey,.

6. Howard, G.C., and Fast, C.R., 1970. Hydraulic Fracturing, Monograph Series Vol. 2, SPE, Dallas, Texas, USA.

7. Huffman, C.H., Harkrider, J.D. and Thompson, R.S., 1996. Fracture Stimulation Treatment Design Optimization: What Can the NPV vs X, Plot Tell Us?, paper SPE 36575.

8. Meng, H.Z., and Brown, K.E., 1987. Coupling of Production Forecasting, Fracture Geometry Requirements, and Treatment Scheduling in the Optimum Hydraulic Fracture Design, paper SPE 16435.

9. Veatch, R.W. Jr., 1986. Economics of Fracturing: Some Methods, Examples, and Case Studies, paper SPE 15509.

(12)

Gambar

Gambar 1.  Konsep optimasi keekonomian  perekahan hidraulik pada simulator   2.2 Fluida perekah dan proppant
Gambar 2.  Profil rekahan sumur A menggunakan fluida perfect support dan proppant HSP 20/40 mesh
Gambar 3.  Profil rekahan sumur A menggunakan fluida perfect support dan  proppant HSP 12/18 mesh
Gambar 7.  Kurva NPV vs panjang rekahan masing-masing skenario sumur A – periode analisa 1 tahun  Dari  kurva  NPV  vs  panjang  rekahan  yang
+5

Referensi

Dokumen terkait

Begitu juga dengan Delisa yang sedang berusaha untuk menghafal bacaan shalat agar sempurna.. Agar bisa shalat dengan khusyuk, Delisa berusaha keras agar bisa menghafalnya

perbedaan dengan penelitian yang dilakukan adalah objek materi berupa informasi senam hamil berbasis adobe flash bukan berupa manfaat senam hamil bagi kesehatan manusia

Penambahan maksudnya adalah dalam dua buah karya sastra yang di dalam penelitian ini menggunakan karya sastra dongeng dan film merupakan dua karya yang berbeda

Berdasarkan analisis data, dari penelitian ini dapat ditarik kesimpulan bahwa penerapan workshop dalam menyusun tes hasil belajar akhir semester genap sangat

Penelitian ini adalah penelitian pengembangan (Research and Development).Produk yang dihasilkan berupa media pembelajaran materi perang Mu’tah menggunakan Camtasia

Mengingat semangat persahabatan yang secara tradisional terjalin antara kedua negara dan keinginan bersama untuk meningkatkan dan mengembangkan hubungan yang lebih

Tujuan penelitian adalah mengetahui banyaknya pupuk NPK yang tepat dalam proses fermentasi untuk memperoleh bioetanol dengan kadar tertinggi, mengetahui banyaknya

1 Rajah menunjukkan susunan radas bagi satu eksperimen untuk membandingkan kekerasan logam tulen dengan aloinya.. 1 kg weight 1 kg berat Stell ball Keluli bola M etal block