• Tidak ada hasil yang ditemukan

vol18_pp117-125. 106KB Jun 04 2011 12:06:02 AM

N/A
N/A
Protected

Academic year: 2017

Membagikan "vol18_pp117-125. 106KB Jun 04 2011 12:06:02 AM"

Copied!
9
0
0

Teks penuh

(1)

SOME RESULTS ON GROUP INVERSES OF BLOCK MATRICES

OVER SKEW FIELDS∗

CHANGJIANG BU†, JIEMEI ZHAO, AND KUIZE ZHANG

Abstract. In this paper, necessary and sufficient conditions are given for the existence of the group inverse of the block matrix A A

B 0

over any skew field, whereA, Bare both square and rank(B)≥rank(A). The representation of this group inverse and some relative additive results are also given.

Key words. Skew, Block matrix, Group inverse.

AMS subject classifications.15A09.

1. Introduction. LetK be a skew field and Kn×n be the set of all matrices

overK. ForA∈Kn×n, the matrixX Kn×n is said to be the group inverse ofA, if

AXA=A, XAX=X, AX=XA.

We then writeX =A♯. It is well known that ifAexists, it is unique;see [16].

Research on representations of the group inverse of block matrices is an important effort in generalized inverse theory of matrices;see [14] and [13]. Indeed, generalized inverses are useful tools in areas such as special matrix theory, singular differential and difference equations and graph theory;see [5], [9] [11], [12] and [15]. For example, in [9] it is shown that the adjacency matrix of a bipartite graph can be written in the

form of

0 B

C 0

, and necessary and sufficient conditions are given for the existence

and representation of the group inverse of a block matrix

0 B

C 0

.

In 1979, Campbell and Meyer proposed the problem of finding an explicit

repre-sentation for the Drazin (group) inverse of a 2×2 block matrix

A B

C D

in terms

of its sub-blocks, whereAandDare required to be square matrices;see [5]. In [10] a

condition for the existence of the group inverse of

A B

C D

is given under the

as-∗Received by the editors October 11, 2008. Accepted for publication February 20, 2009. Handling

Editor: Ravindra B. Bapat.

Department of Applied Mathematics, College of Science, Harbin Engineering University, Harbin

150001, P. R. China (buchangjiang@hrbeu.edu.cn, zhaojiemei500@163.com, zkz0017@163.com). Supported by the Natural Science Foundation of Heilongjiang Province, No.159110120002.

(2)

sumption thatAand (I+CA−2

B) are both invertible over any field;however, the rep-resentation of the group inverse is not given. The reprep-resentation of the group inverse

of a block matrix

A B

0 C

over skew fields has been given in 2001;see [6]. The

rep-resentation of the Drazin (group) inverse of a block matrix of the form

A B

C 0

(A

is square, 0 is square null matrix) has not been given since it was proposed as a prob-lem by Campbell in 1983;see [4]. However, there are some references in the literature

about representations of the Drazin (group) inverse of the block matrices

A B

C 0

under certain conditions. Some results are on matrices over the field of complex num-bers, e.g., in [8];or whenA=B=Inin [7];or whenA, B, C∈ {P, P∗, P P∗}, P2=P

andP∗ is the conjugate transpose of

P. Some results are over skew fields, e.g., in [1], whenA=In andrank(CB)2=rank(B) =rank(C);in [3] whenA=B, A2=A. In

addition, in [2] results are given on the group inverse of the product of two matrices over a skew field, as well as some related properties.

In this paper, we mainly give necessary and sufficient conditions for the

exis-tence and the representation of the group inverse of a block matrix

A A

B 0

or

A B

A 0

, where A, B ∈ Kn×n, rank(B) rank(A). We also give a sufficient

condition forAB to be similar toBA.

Letting A∈Km×n, the order of the maximum invertible sub-block of Ais said

to be the rank of A, denoted byrank(A);see [17]. LetA, B∈Kn×n. If there is an

invertible matrixP ∈Kn×n such that B =P AP−1, thenA and B are similar;see

[17].

2. Some Lemmas.

Lemma 2.1. Let A, B ∈ Kn×n. If rank(A) = r, rank(B) = rank(AB) =

rank(BA), then there are invertible matrices P, Q∈Kn×n such that

A=P

Ir 0

0 0

Q, B =Q−1

B1 B1X

Y B1 Y B1X

P−1,

whereB1∈Kr×r,X Kr×(n−r), and Y K(n−r)×r.

Proof. Sincerank(A) =r, there are nonsingular matricesP, Q∈Kn×nsuch that

A=P

Ir 0

0 0

Q, B=Q−1

B1 B2 B3 B4

(3)

where B1 ∈ Kr×r, B2 Kr×(n−r), B3 K(n−r)×r, and B4 K(n−r)×(n−r). From rank(B) =rank(AB),we have

B3=Y B1, B4=Y B2, Y ∈K(n−r)×r.

Sincerank(B) =rank(BA),we obtain

B2=B1X, B4=B3X, X ∈Kr×(n−r) .

So

B=Q−1

B1 B1X

Y B1 Y B1X

P−1.

Lemma 2.2. [6] Let A Kr×r, B K(n−r)×r, M =

A 0

B 0

∈ Kn×n.

Then the group inverse of M exists if and only if the group inverse of A exists and

rank(A) =rank

A B

. If the group inverse ofM exists, then

M♯=

A♯ 0

B(A♯)2 0

.

Lemma 2.3. [6] Let A ∈ Kr×r, B Kr×(n−r), M =

A B

0 0

∈ Kn×n.

Then the group inverse of M exists if and only if the group inverse of A exists and

rank(A) =rank

A B

. If the group inverse ofM exists, then

M♯=

A♯ (A)2B

0 0

.

Lemma 2.4. [2] LetA∈Km×n,BKn×m. Ifrank(A) =rank(BA),rank(B)

=rank(AB), then the group inverse ofAB andBAexist.

Lemma 2.5. Let A, B Kn×n. If rank(A) = rank(B) = rank(AB) =

rank(BA), then the following conclusions hold:

(i) AB(AB)♯A=A,

(ii) A(BA)♯BA=A,

(iii) BA(BA)♯B=B,

(iv) B(AB)♯A=BA(BA),

(4)

Proof. Supposerank(A) =r. By Lemma 2.1, we have

A=P

Ir 0

0 0

Q, B=Q−1

B1 B1X

Y B1 Y B1X

P−1,

whereB1∈Kr×r,X Kr×(n−r),Y K(n−r)×r.Then

AB=P

B1 B1X

0 0

P−1, BA=Q−1

B1 0

Y B1 0

Q.

Since rank(A) =rank(B), we have thatB1 is invertible. By using Lemma 2.2 and Lemma 2.3, we get

(AB)♯=P

B1−1

B1−1

X

0 0

P−1

, (BA)♯=Q−1

B1−1 0

Y B1−1 0

Q.

Then

(i) AB(AB)♯A=P

Ir 0

0 0

Q=A,

(ii) A(BA)♯BA=P

Ir 0

0 0

Q=A,

(iii) BA(BA)♯B=Q−1

B1 B1X

Y B1 Y B1X

P−1=

B,

(iv) B(AB)♯A=Q−1

Ir 0

Y 0

Q=BA(BA)♯,

(v) A(BA)♯=P

B1−1 0

0 0

Q= (AB)♯A.

3. Conclusions.

Theorem 3.1. Let M =

A A

B 0

, where A, B∈Kn×n,

rank(B)≥rank(A)

=r. Then

(i) The group inverse ofM exists if and only ifrank(A) =rank(B) =rank(AB) =

rank(BA).

(ii) If the group inverse ofM exists, thenM♯=

M11 M12 M21 M22

, where

M11= (AB)♯A(AB)A2(BA)B,

M12= (AB)♯A,

M21= (BA)♯BB(AB)A2(BA)+B(AB)A(AB)A2(BA)B,

(5)

Proof. (i) It is obvious that the condition is sufficient. Now we show that the condition is necessary.

rank(M) =rank

A A

B 0

=rank

0 A

B 0

=rank(A) +rank(B),

rank(M2) =rank

A2+AB A2

BA BA

=rank

AB A2

0 BA

.

Since the group inverse ofM exists if and only ifrank(M) =rank(M2), we have

rank(A) +rank(B) =rank(M2)

≤rank(AB) +rank

A2 BA

≤rank(AB) +rank(A),

rank(A) +rank(B) =rank(M2)

≤rank

AB A2

+rank(BA)

≤rank(BA) +rank(A).

Thenrank(B)≤rank(AB), andrank(B)≤rank(BA). Therefore

rank(B) =rank(AB) =rank(BA).

Fromrank(B) =rank(AB)≤rank(A), andrank(A)≤rank(B),we have

rank(A) =rank(B).

Sincerank(A)+rank(B)≤rank

AB A2

+rank(BA),andrank

AB A2

≤ rank(A),we getrank

AB A2

=rank(A). Thus

rank

AB A2

=rank(AB).

Then there exists a matrixU∈Kn×n such thatABU =A2. Then rank(M2) =rank

AB 0

0 BA

=rank(AB) +rank(BA).

So we get

(6)

(ii) Let X =

M11 M12 M21 M22

. We will prove that the matrix X satisfies the

conditions of the group inverse. Firstly, we compute

M X=

AM11+AM21 AM12+AM22

BM11 BM12

,

XM =

M11A+M12B M11A M21A+M22B M21A

.

Applying Lemma 2.5 (i), (ii), and (v), we have

AM11+AM21=A(AB)♯AA(AB)A2(BA)B+A(BA)BAB(AB)A2(BA)

+AB(AB)♯A(AB)♯A2(BA)♯B

=A(BA)♯B,

M11A+M12B= (AB)♯A2(AB)A2(BA)BA+ (AB)AB

= (AB)♯A2(

AB)♯A2+ (

AB)♯AB

=A(BA)♯B.

Using Lemma 2.5 (i), (ii), and (v), we get

AM12+AM22=A(AB)♯A−AB(AB)♯A2(BA)♯ =A(AB)♯A−A2(BA)♯

= 0,

M11A= (AB)♯A2(

AB)♯A2(

BA)♯BA

= (AB)♯A2(AB)A2

= 0.

From Lemma 2.5 (ii), we obtain

BM11=B(AB)♯A−B(AB)♯A2(BA)♯B,

M21A+M22B= (BA)♯BAB(AB)A2(BA)A+B(AB)A2(BA)A(BA)BA

−B(AB)♯A2( BA)♯B

= (BA)♯BA[B(AB)A2(BA)AB(AB)A2(BA)A]

−B(AB)♯A2(BA)♯B

(7)

Using Lemma 2.5 (ii), we have

BM12=B(AB)♯A,

M21A= (BA)♯BA−B(AB)♯A2(BA)♯A+B(AB)♯A2(BA)♯A(BA)♯BA

=B(AB)♯A.

So

M X=XM =

A(BA)♯B 0

B(AB)♯AB(AB)A2(BA)B B(AB)A

.

Secondly,

M XM =

A A

B 0

A(BA)♯B 0

B(AB)♯AB(AB)A2(BA)B B(AB)A

=

X11 X12

X21 0

.

Applying Lemma 2.5 (i) and (iii), we compute

X11=A2(BA)♯B+AB(AB)AAB(AB)A2(BA)B

=AB(AB)♯A

=A,

X12=AB(AB)♯A=A,

X21=BA(BA)♯B=B.

Hence

M XM =

A A

B 0

.

Finally,

XM X =

M11 M12 M21 M22

A(BA)♯B 0

B(AB)♯AB(AB)A2(BA)B B(AB)A

=

Y11 Y12 Y21 Y22

.

Then

Y11= (AB)♯A2(

BA)♯B(AB)A2(

BA)♯BA(BA)B+ (AB)AB(AB)A

−(AB)♯AB(AB)A2(BA)B

= (AB)♯A−(AB)♯A2(BA)♯B

(8)

and

Y12 = M12B(AB)♯A

= (AB)♯AB(AB)A

= (AB)♯A

= M12.

We can easily get

Y21=M21A(BA)♯B+M22B(AB)♯A−M22B(AB)♯A2(BA)♯B

=M21;

Y22=M22B(AB)♯A=M22.

So we haveX =M♯.

Theorem 3.2. Let M =

A B

A 0

, where A, B∈Kn×n,rank(B)rank(A)

=r. Then

(i) The group inverse ofM exists if and only ifrank(A) =rank(B) =rank(AB) =

rank(BA).

(ii) If the group inverse ofM exists, thenM♯=

Z11 Z12 Z21 Z22

, where

Z11= (AB)♯A−B(AB)♯A2(BA)♯,

Z12=B(AB)♯−(AB)♯A2(BA)♯B+B(AB)♯A2(BA)♯A(BA)♯B, Z21= (AB)♯A,

Z22= −(AB)♯A2(

BA)♯B.

Proof. LetX =

M11 M12 M21 M22

. By Lemma 2.5, we have

M X=XM =

B(AB)♯A A(BA)BB(AB)A2(BA)B

0 A(BA)♯B

.

Furthermore, we can proveM XM=M, XM X =X easily. Thus,X=M♯.

Theorem 3.3. Let A, B ∈Kn×n, ifrank(B) =rank(AB) = rank(BA). Then

AB andBAare similar.

Proof. Suppose rank(A) = r, using Lemma 2.1, there are invertible matrices

P, Q∈Kn×n such that

A=P

Ir 0

0 0

Q, B=Q−1

B1 B1X

Y B1 Y B1X

(9)

whereB1∈Kr×r, XKr×(n−r), Y K(n−r)×r.Hence

AB = P

B1 B1X

0 0

P−1

= P

Ir −X

0 In−r

B1 0 0 0

Ir X

0 In−r

P−1,

BA = Q−1

B1 0

Y B1 0

Q

= Q−1

Ir 0

Y In−r

B1 0 0 0

Ir 0

−Y In−r

Q.

SoABandBAare similar.

REFERENCES

[1] C. Bu. On group inverses of block matrices over skew fields. J. Math., 35:49–52, 2002. [2] C. Bu and C. Cao. Group inverse of product of two matrices over skew field. J. Math. Study,

35:435–438, 2002.

[3] C. Bu, J. Zhao, and J. Zheng. Group inverse for a class 2×2 block matrices over skew fields.

Appl. Math. Comput., 204:45–49, 2008.

[4] S.L. Campbell. The Drazin inverse and systems of second order linear differential equations.

Linear Multilinear Algebra, 14:195–198, 1983.

[5] S.L. Campbell and C.D. Meyer. Generalized Inverses of Linear Transformations. Dover, New York, 1991 (Originally published: Pitman, London, 1979).

[6] C. Cao. Some results of group inverses for partitioned matrices over skew fields. Heilongjiang Daxue Ziran Kexue Xuebao(Chinese), 18:5–7, 2001.

[7] C. Cao and X. Tang. Representations of the group inverse of some 2×2 block matrices. Int. Math. Forum, 31:1511–1517, 2006.

[8] N. Castro-Gonz´ales and E. Dopazo. Representations of the Drazin inverse for a class of block matrices. Linear Algebra Appl., 400:253–269, 2005.

[9] M. Catral, D.D. Olesky, and P. van den Driessche. Group inverses of matrices with path graphs.

Electron. J. Linear Algebra, 17:219–233, 2008.

[10] X. Chen and R.E. Hartwig. The group inverse of a triangular matrix. Linear Algebra Appl., 237/238:97–108, 1996.

[11] G.H. Golub and C. Greif. On solving block-structured indefinite linear systems. SIAM J. Sci. Comput., 24:2076–2092, 2003.

[12] I.C.F. Ipsen. A note on preconditioning nonsymmetric matrices. SIAM J. Sci. Comput.,

23:1050–1051, 2001.

[13] K.P.S. Bhaskara Rao. The Theory of Generalized Inverses over Commutative Rings. Taylor-Francis, New York, 2002.

[14] G. Wang, Y. Wei, and S. Qian. Generalized Inverse Theory and Computations. Science Press, Beijing, 2003.

[15] Y. Wei and H. Diao. On group inverse of singular Toeplitz matrices. Linear Algebra Appl., 399:109–123, 2005.

[16] Wa-Jin Zhuang. Involutory functions and generalized inverses of matrices over an arbitrary skew fields. Northeast. Math. J., (Chinese) 1:57–65, 1987.

Referensi

Dokumen terkait

Terkait hasil pengumuman pemenang tersebut di atas, kepada seluruh peserta lelang yang telah memasukkan penawaran kepada Pokja Paket Pekerjaan Supervisi Pengerukan Alur Pelayaran

This paper analyses this issue from four approaches, firstly, a review of current and applicable government legislation and policy, secondly, analyzing the work and findings

Sehubungan butir 1 (satu) diatas, maka Saudara diundang untuk mengadakan Klarifikasi dan Negosiasi Teknis dan Biaya Pekerjaan Perbaikan Kapal KN.Kalawai P.117 Kantor Pangkalan

2.4.3.2 Market SUAVE adalah market yang spesifik dan segmentasi yang jarang tersentuh media lain, berbasis dari komunitas – komunitas kreatif yang ada di Indonesia.. SUAVE

Sementara di sisi lain, structure dan substance yang seharusnya memberikan posisi dan peran pemerintah daerah kuat di mata hukum justru tidak digunakan secara optimal

Dalam hal kreditur penerima jaminan fiducia tidak mendaftarkan jaminannya ke Kantor Pendaftaran Fiducia, maka tidak ada perbuatan yang melanggar hak orang lain, sebab kewajiban

Penelitian ini bertujuan untuk mengetahui perkembangan Pancasila dan UUD 1945 dalam konteks negara bangsa yang mengalamai perubahan orientasi dari dekolonisasi kepada

In Malaysia, although the right of land owners are heard through a process called inquiry before the payment of compensation is determined by the Land Administrator (Section 12(1)