• Tidak ada hasil yang ditemukan

ICTAMI 2005. 110KB Jun 04 2011 12:08:47 AM

N/A
N/A
Protected

Academic year: 2017

Membagikan "ICTAMI 2005. 110KB Jun 04 2011 12:08:47 AM"

Copied!
6
0
0

Teks penuh

(1)

Mathematics and Informatics ICTAMI 2005 - Alba Iulia, Romania

AN INTEGRAL UNIVALENT OPERATOR II

Daniel Breaz and Nicoleta Breaz

Abstract.In this paper we present the univalence conditions for the op-erator

Gα,n(z) = 

(n(α−1) + 1) z Z

0

g1α−1(t). . . gnα−1(t) dt

1

n(α−1)+1

in the unit disc.

2000 Mathematics Subject Classification: 30C45

Keywords and phrases:Operator, unit disc, univalent functions, univalent operator, holomorphic function.

Introduction

We consider U be the unit disc and denote by H(U) the class of holomor-phic functions in U. Let the set of analytic functions

An = n

f ∈H(U) :f(z) = z+an+1zn+1+. . .

o

(1) For n = 1 obtain A1 = {f ∈H(U) :f(z) =z+a2z2+. . .}, and denote

A1 =A. LetS the class of regular and univalent functionsf(z) =z+a2z2+. . .

in U,which satisfy the conditionf(0) =f′(0)1 = 0.

Ozaki and Nunokawa proved in [3] the following results: Theorem 1.If we assume that g A satisfies the condition

z2f′(z) f2(z) −1

<1, z ∈U (2)

then f is univalent in U.

The Schwartz Lemma. Let the analytic function g be regular in the unit disc U and g(0) = 0. If |g(z)| ≤1,∀z ∈U, then

(2)

Theorem 2.Let α be a complex number with Reα > 0, and let f = z + a2z2+. . . be a regular function on U.

If

1− |z|2Reα Reα

zf′′(z)

f′(z)

≤1,∀z ∈U (4)

then for any complex number β with Re β ≥ Re α the function

Fβ(z) = 

β z Z

0

tβ−1f′(t) dt

1

β

=z+. . . (5) is regular and univalent in U.

Theorem 3.Assume that g A satisfies condition (2), and let α be a complex number with

|α−1| ≤ Reα

3 . (6)

If

|g(z)| ≤1,∀z ∈U (7)

then the function

Gα(z) = 

α z Z

0

g(α−1)(t) dt

1

α

(8) is of class S.

Main results

Theorem 4.Let gi A, for all i= 1, n, nN, satisfy the properties

z2gi′(z) g2

i (z)

−1

<1,∀z ∈U,∀i= 1, n (9) and α∈C, with

|α−1| ≤ Reα

3n . (10)

If |gi(z)| ≤1, ∀z ∈U, ∀i= 1, n, then the function

Gα,n(z) = 

(n(α−1) + 1) z Z

g1α−1(t). . . gnα−1(t) dt

1

n(α−1)+1

(3)

is univalent.

Proof. From (11) Gα,n can be written:

Gα,n(z) =

(n(α−1) + 1) z Z

0

tn(α−1) g1(t) t

!α−1

. . . gn(t) t

!α−1

dt

1

n(α−1)+1

(12) We consider the function

f(z) =

z Z

0

g1(t)

t

!α−1

. . . gn(t) t

!α−1

dt. (13)

The function f is regular in U, and from (13) we obtain

f′(z) = g1(z) z

!α−1

. . . gn(z) z

!α−1

(14) and

f′′(z) = (α−1)

n X

k=1

AkBk (15)

where Ak and Bk has the next form:

Ak =

gk(z)

z

!α−2

zg′k(z)−gk(z)

z2 (16)

and

Bk =f′(z)·

z gk(z)

!α−1

. (17)

Next we calculate the expresion zff′′′. zf′′(z)

f′(z) = (α−1)· n X

k=1

zg′k(z)−1 gk(z)

(18)

The modulus

zf′′ f′

(4)

can then be evaluated as

zf′′(z) f′(z)

=

(α−1)·

n X

k=1

zgk′ (z)−1 gk(z)

≤ n X k=1

(α−1)· zg

k(z)−1

gk(z) . (20)

Multiplying the first and the last terms of (20) with 1−|z|Re2Reα α >0,we obtain 1− |z|2Reα

Reα

zf′′(z) f′(z)

≤ 1− |z| 2Reα

Reα |α−1|

n X k=1

zg′k(z) gk(z)

+ 1 ! (21) Applying the Schwartz Lemma and using (21), we obtain

1− |z|2Reα Reα

zf′′(z) f′(z)

≤ |α−1|1− |z| 2Reα Reα n X k=1

z2gk′ (z) g2

k(z)

−1 + 2 ! (22)

Since gi satisfies the condition (2) ∀i= 1, n, then from (22) we obtain:

1− |z|2Reα Reα

zf′′(z) f′(z)

≤3n|α−1|1− |z| 2Reα

Reα ≤

3n|α−1|

Reα . (23) But |α−1| ≤ Reα

3n so from (10) we obtain that

1− |z|2Reα Reα

zf′′(z)

f′(z)

≤1, (24)

for all z ∈U and the Theorem 2 implies that the function Gα,n is in the class

S.

Corollary 5.Let g A satisfy (2) and α a complex number such that |α−1| ≤ Reα

3k , k∈N

(25)

If |g(z)| ≤1,∀z ∈U, then the function

Gkα(z) =

(k(α−1) + 1) z Z

0

gk(α−1)(t) dt

1

k(α−1)+1

(26)

(5)

We consider the functions

Gkα(z) =

(k(α−1) + 1) z Z

0

tk(α−1) g(t) t

!k(α−1)

dt

1

k(α−1)+1

(27)

and

f(z) =

z Z

0

g(t) t

!k(α−1)

dt. (28)

The function f is regular in U.From (28) we obtain

f′(z) = g(z) z

!k(α−1)

and

f′′(z) = k(α−1) g(z) z

!k(α−1)−1

zg′(z)−g(z) z2 .

Next we have 1− |z|2Reα

Reα

zf′′(z) f′(z)

≤ 1− |z| 2Reα

Reα k|α−1|

zg′(z) g(z)

+ 1

!

,∀z ∈U. (29) Applying the Schwartz Lemma and using (29) we obtain

1− |z|2Reα Reα

zf′′(z) f′(z)

≤ |α−1|1− |z| 2Reα

Reα

z2g′(z) g2(z) −1

+ 2

!

. (30) Since g satisfies conditions (2) then from (30) and (25) we obtain

1− |z|2Reα Reα

zf′′(z)

f′(z)

≤ 3k|α−1| Reα

1− |z|2Reα≤ 3k|α−1|

Reα ≤1. (31) Now Theorem 2 and (31) imply that Gk

α ∈S.

Corollary 6.Let f, gA, satisfy (1) andα the complex number with the property

|α−1| ≤ Reα

(6)

If |f(z)| ≤1,∀z ∈U and |g(z)| ≤1,∀z ∈U, then the function

Gα(z) = 

(2α−1) z Z

0

f(α−1)(t)g(α−1)(t) dt

1 2α−1

(33)

is univalent.

Proof. In Theorem 4 we set n = 2, g1 =f,g2 =g.

Remark. Theorem 4 is a generalization of Theorem 3. Remark. From Corollary 5, for k = 1, we obtain Theorem 3.

References

[1]Nehari, Z., Conformal Mapping, Mc Graw-Hill Book Comp., New York, 1952 Dover. Publ. Inc. 1975.

[2]Nunokava, M., On the theory of multivalent functions, Tsukuba J. Math. 11 (1987), no. 2, 273-286.

[3]Ozaki, S. Nunokawa, M.,The Schwartzian derivative and univalent func-tions, Proc. Amer. Math. Soc. 33(2), (1972), 392-394.

[4]Pascu, N.N., On univalent criterion II, Itinerant seminar on functional equations approximation and convexity, Cluj-Napoca, Preprint nr. 6, (1985), 153-154.

[5]Pascu, N.N., An improvement of Beker’s univelence criterion, Proceed-ings of the Commemorative Session Cimion Stoilow, Brasov, (1987), 43-48.

[6]Pescar, V., New criteria for univalence of certain integral operators, Demonstratio Mathematica, XXXIII, (2000), 51-54.

D. Breaz and N. Breaz Department of Mathematics “1 Decembrie 1918” University

Referensi

Dokumen terkait

Pada hari ini Tanggal Dua puluh lima Bulan Agustus Tahun Dua Ribu Lima Belas pada pukul 09 00 WIB telah dilaksanakan Rapat Evaluasi Penawaran untuk

[r]

Paket pekerjaan ini terbuka untuk penyedia yang memiliki izin usaha jasa konstruksi (IUJK) kegiatan usaha jasa pelaksana konstruksi (kontraktor) dengan Klasifikasi

So, the prequerement of the community roles are: (a) strong commitment of the member from ASEAN members countries to strugle for peace, using the principles of ASEAN Charter,

Dengan kata lain, usaha AS untuk mendorong proses demokratisasi di Irak khususnya, dan Timur Tengah dalam area yang lebih luas, bisa jadi tidak ditujukan untuk mendorong

Norma rezim yang dikodifikasikan oleh FATF dalam “40+9 Rekomendasi” yang berjalan beriringan dengan daftar “Non-cooperative Countries and Territories (NCCTs)” kemudian menjadi

Thus, it can be concluded that brand experience is a significant influencer of brand personality; brand experience and brand personality are significant influencers of

Hybrid libraries are mixes of traditional print material such as books and magazines, as well as electronic based material such as downloadable audio books, electronic