• Tidak ada hasil yang ditemukan

Functional Diagram Ordering Information Specify part number followed by Option Number (if desired). 4N35-XXXE Lead Free Option Number 000 = No Options 060 = IECENDIN EN 60747-5-2 Option W00 = 0.4" Lead Spacing Option 300 = Lead Bend SMD Option 500 = Tape

N/A
N/A
Protected

Academic year: 2019

Membagikan "Functional Diagram Ordering Information Specify part number followed by Option Number (if desired). 4N35-XXXE Lead Free Option Number 000 = No Options 060 = IECENDIN EN 60747-5-2 Option W00 = 0.4" Lead Spacing Option 300 = Lead Bend SMD Option 500 = Tape "

Copied!
7
0
0

Teks penuh

(1)

Agilent 4N35

Phototransistor Optocoupler

General Purpose Type

Data Sheet

Features

• High Current Transfer Ratio (CTR: min. 100% at IF = 10 mA, VCE = 10 V)

• Response time (tr: typ., 3 µs at VCE = 10 V, IC = 2 mA, RL = 100 ) • Input-output isolation voltage

(Viso = 3550 Vrms) • Dual-in-line package • UL approved • CSA approved

• IEC/EN/DIN EN 60747-5-2 approved • Options available:

– Leads with 0.4" (10.16 mm) spacing (W00)

– Leads bends for surface mounting (300)

– Tape and reel for SMD (500) – IEC/EN/DIN EN 60747-5-2

approvals (060) Applications

• I/O interfaces for computers • System appliances, measuring

instruments

• Signal transmission between circuits of different potentials and impedances

Description

The 4N35 is an optocoupler for general purpose applications. It contains a light emitting diode optically coupled to a photo-transistor. It is packaged in a 6-pin DIP package and available in wide-lead spacing option and wide-lead bend SMD option. Response time, tr, is typically 3 µs and minimum CTR is 100% at input current of 10 mA.

Functional Diagram

Ordering Information

Specify part number followed by Option Number (if desired).

4N35-XXXE

Lead Free Option Number

000 = No Options

060 = IEC/EN/DIN EN 60747-5-2 Option

W00 = 0.4" Lead Spacing Option 300 = Lead Bend SMD Option 500 = Tape and Reel Packaging

Option

Schematic

CAUTION: It is advised that normal static precautions be taken in handling and assembly of this component to

prevent damage and/or degradation which may be induced by ESD.

6 5 4

1 2 3

PIN NO. AND INTERNAL CONNECTION DIAGRAM

1. ANODE 2. CATHODE 3. NC

(2)

Package Outline Drawings LEAD FREE

ANODE

DATE CODE *1

A 4N35 V

DIMENSIONS IN MILLIMETERS AND (INCHES)

Y Y W W LEAD FREE

ANODE

DIMENSIONS IN MILLIMETERS AND (INCHES)

7.3 ± 0.5 LEAD FREE

ANODE

DATE CODE *1

A 4N35

(3)

Absolute Maximum Ratings

Storage Temperature, TS –55˚C to +150˚C

Operating Temperature, TA –55˚C to +100˚C

Lead Solder Temperature, max. 260˚C for 10 s

(1.6 mm below seating plane)

Average Forward Current, IF 60 mA

Reverse Input Voltage, VR 6 V

Input Power Dissipation, PI 100 mW

Collector Current, IC 100 mA

Collector-Emitter Voltage, VCEO 30 V

Emitter-Collector Voltage, VECO 7 V

Collector-Base Voltage, VCBO 70 V

Collector Power Dissipation 300 mW

Total Power Dissipation 350 mW

Isolation Voltage, Viso (AC for 1 minute, R.H. = 40 ~ 60%) 3550 Vrms

30 seconds

60 ~ 150 sec 90 sec 60 sec 60 sec

25°C 150°C

200°C

250°C 260°C (Peak Temperature) 217°C

Time (sec)

Temperature (

°

C)

Solder Reflow Temperature Profile

1) One-time soldering reflow is recommended within the condition of temperature and time profile shown at right.

(4)

Figure 1. Forward current vs. temperature. Figure 2. Collector power dissipation vs. temperature.

Figure 3. Forward current vs. forward voltage.

I F

– FORWARD CURRENT

– mA

0

TA – AMBIENT TEMPERATURE – °C

-25 75 125

60

25 20

40 100

0 50 100

-55 80

PC

– COLLECTOR POWER DISSIPATION

– mW

0

TA – AMBIENT TEMPERATURE – °C

-25 75 125

200

25 100

400

0 50 100

-55 300

I F

– FORWARD CURRENT

– mA

1

VF – FORWARD VOLTAGE – V

2.0 3.0

10

5 500

1.0 0

TA = 75°C

0.5 1.5 2.5

2 20 50 100 200

TA = 50°C TA = 25°C

TA = 0°C TA = -25°C

* CTR = x 100%IC IF

Electrical Specifications (TA = 25˚C)

Parameter Symbol Min. Typ. Max. Units Test Conditions

Forward Voltage VF – 1.2 1.5 V IF = 10 mA

Reverse Current IR – – 10 µA VR = 4 V

Terminal Capacitance Ct – 50 – pF V = 0, f = 1 KHz

Collector Dark Current ICEO – – 50 nA VCE = 10 V, IF = 0, TA = 25˚C – – 500 µA VCE = 30 V, IF = 0, TA = 100˚C Collector-Emitter Breakdown Voltage BVCEO 30 – V IC = 0.1 mA, IF = 0

Emitter-Collector Breakdown Voltage BVECO 7 – – V IE = 10 µA, IF = 0 Collector-Base Breakdown Voltage BVCBO 70 – – V IC = 0.1 mA, IF = 0

Collector Current IC 10 – – mA IF = 10 mA

*Current Transfer Ratio CTR 100 – – % VCE = 10 V

Collector-Emitter Saturation Voltage VCE(sat) – – 0.3 V IF = 50 mA, IC = 2 mA

Response Time (Rise) tr – 3 10 µs VCC = 10 V, IC = 2 mA

Response Time (Fall) tf – 3 10 µs RL = 100 Ω

Isolation Resistance Riso 5 x 1010 1 x 1011 DC 500 V

40 ~ 60% R.H.

(5)

Figure 4. Current transfer ratio vs. forward current.

Figure 5. Collector current vs. collector-emitter voltage.

Figure 6. Relative current transfer ratio vs. temperature.

Figure 7. Collector-emitter saturation voltage vs. temperature.

Figure 8. Collector dark current vs. temperature.

Figure 9. Response time vs. load resistance.

I C

– COLLECTOR CURRENT

– mA

0

VCE – COLLECTOR-EMITTER VOLTAGE – V

10 15

RELATIVE CURRENT TRANSFER RATIO

– %

TA – AMBIENT TEMPERATURE – °C -25 0 25 50 75 100 -55

VCE(SAT.)

– COLLECTOR-EMITTER

SATURATION VOLTAGE – V

0

TA – AMBIENT TEMPERATURE – °C

-25 25 75

RESPONSE TIME

– µs

– COLLECTOR DARK CURRENT

– A

10-13

-25 20 40 60 80 100 125 -55

TA – AMBIENT TEMPERATURE – °C VCE = 10 V

CTR – CURRENT TRANSFER RATIO

– %

0

IF – FORWARD CURRENT – mA

0.2 5 100

Figure 11. Collector-emitter saturation voltage vs. forward current.

Figure 10. Frequency response.

VOLTAGE GAIN AV

– dB

100 200 RL = 10 k

IF – FORWARD CURRENT – mA

10 15

VCE(SAT.)

– COLLECTOR-EMITTER

SATURATION VOLTAGE

(6)

www.agilent.com/semiconductors

For product information and a complete list of distributors, please go to our web site. For technical assistance call:

Americas/Canada: +1 (800) 235-0312 or (916) 788-6763

Europe: +49 (0) 6441 92460 China: 10800 650 0017 Hong Kong: (+65) 6756 2394

India, Australia, New Zealand: (+65) 6755 1939 Japan: (+81 3) 3335-8152 (Domestic/Interna-tional), or 0120-61-1280 (Domestic Only)

VCC

RD INPUT

RL

OUTPUT

INPUT

OUTPUT 10%

90%

t

t t

t d

f s

r

Test Circuit for Response Time Test Circuit for Frequency Response

VCC

RD RL

OUTPUT

(7)

This datasheet has been download from:

www.datasheetcatalog.com

Gambar

Figure 3. Forward current vs. forward voltage.
Figure 9. Response time vs. load resistance.

Referensi

Dokumen terkait

Pertimbangan Hukum Hakim dalam putusan Mahkamah Agung-RI Nomor 73K /AG/2015 tentang pembagian harta warisan suami yang tidak memiliki keturunan, Hakim Mahkamah Agung sependapat

connectivity issues resilience in Tuntang Raya region include drought agricultural land, crop failure,.. and sedimentation on

Pengeringan yang dilakukan pada buah mahkota dewa bertujuan mengurangi kadar air dalam bahan, sehingga air yang tersisa tidak dapat digunakan sebagai media hidup mikroba perusak

D : empat pemeran utama di SSTI ini semuanya nglakuin sikap dominasi sama suami mbak misalnya si Sheila yang doyan nyubit suaminya gak hanya di rumah bahkan di depan

Pada dasarnya setiap perusahaan akan bersaing untuk menghasilkan kualitas laba yang tinggi karena informasi laba dapat digunakan untuk menjelaskan masa depan, dan

Persepsi terhadap kesehatan reproduksi contoh di SMA cenderung lebih baik dibandingkan dengan contoh di Pesantren namun secara statistik tidak terdapat perbedaan yang

Kerangka berpikir di atas, mengacu pada dasar pemikiran bahwa pendidikan bisnis sebagai komponen produktif pada sekolah kejuruan dapat mencapai optimal melalui

Layanan yang akan dibuat pada tugas akhir ini akan menawarkan informasi tempat wisata yang dapat dikunjungi dan menginformasikan biaya pada customer dimana biaya ini mencakup