• Tidak ada hasil yang ditemukan

Directory UMM :Journals:Journal_of_mathematics:GMJ:

N/A
N/A
Protected

Academic year: 2017

Membagikan "Directory UMM :Journals:Journal_of_mathematics:GMJ:"

Copied!
10
0
0

Teks penuh

(1)

1(94), No. 4, 367-376

TWO-WEIGHTED Lp-INEQUALITIES FOR SINGULAR

INTEGRAL OPERATORS ON HEISENBERG GROUPS

V. S. GULIEV

Abstract. Some sufficient conditions are found for a pair of weight functions, providing the validity of two-weighted inequalities for sin-gular integrals defined on Heisenberg groups.

Estimates for singular integrals of the Calderon–Zygmund type in var-ious spaces (including weighted spaces and the anisotropic case) have at-tracted a great deal of attention on the part of researchers. In this paper we will deal with singular integral operatorsT on the Heisenberg groupHn

which have an essentially different character as compared with operators of the Calderon–Zygmund type. We have obtained the two-weighted Lp

-inequality with monotone weights for singular integral operatorsT onHn.

Applications are given.

LetHn be the Heisenberg group (see [1], [2]) realized as a set of points

x= (x0, x1, . . . , x2n) = (x0, x′)∈R2n+1 with the multiplication

xy=€x0+y0+1 2

n

X

i=1

(xiyn+i−xn+iyi), x′+y′



.

The corresponding Lie algebra is generated by the left-invariant vector fields

X0= ∂

∂x0, Xi= ∂ ∂xi

+1 2xn+i

∂ ∂x0, Xn+i=

∂ ∂xn+i

−1

2xi ∂

∂x0, i= 1, . . . , n, which satisfy the commutation relation

[Xi, Xn+i] =

1 4X0,

[X0, Xi] = [X0, Xn+i] = [Xi, Xj] = [Xn+i, Xn+j] = [Xi, Xn+j] = 0, 1991Mathematics Subject Classification. 42B20, 42B25, 42B30.

367

(2)

i, j= 1, . . . , n i6=j.

The dilationδt:δtx= (t2x0, tx′),t >0, is defined onHn. The Haar

mea-sure on this group coincides with the Lebesgue meamea-suredx=dx0dx1· · ·dx2n.

The identity element inHnise= 0∈R2n+1, while the elementx−1inverse toxis (−x).

The functionf defined inHnis said to beH-homogeneous of degreem,

onHn, iff

tx) =tmf(x),t >0. We also define the norm onHn |x|H=‚x20+

€X2n

i=1 x2i

2ƒ1/4

which isH-homogeneous of degree one. This also yields the distance func-tion, namely, the distance

d(x, y) =d(y−1x, e) =|y−1x|H,

|y−1x|H=‚€x0−y0−1

2

n

X

i=1

(xiyn+i−xn+iyi)

2 +

+€ 2n

X

i=1

(xi−yi)2

2ƒ1/4 .

dis left-invariant in the sense thatd(x, y) remains unchanged whenxandy are both left-translated by some fixed vector inHn. Furthermore,dsatisfies

the triangle inequalityd(x, z)≤d(x, y) +d(y, z), x, y, z ∈Hn. For r > 0

andx∈Hn let

B(x, r) ={y∈Hn;|y−1x|H< r} (S(x, r) ={y∈Hn;|y−1x|H=r}) be theH-ball (H-sphere) with centerxand radiusr.

The number Q = 2n+ 2 is called the homogeneous dimension of Hn.

Clearly,d(δtx) =tQdx.

Given functionsf(x) andg(x) defined inHn, the Heisenberg convolution

(H-convolution) is obtained by (f∗g)(x) =

Z

Hn

f(y)g(y−1x)dy=

Z

Hn

f(xy−1)g(y)dy,

wheredy is the Haar measure onHn.

The kernelK(x) admitting the estimate|K(x)| ≤C|x|αH−Q is summable

(3)

Letω(x) be a positive measurable function onHn. Denote byL

p(Hn, ω)

a set of measurable functionsf(x),x∈Hn, with the finite norm kfkLP(Hn,ω)=

 Z

Hn

|f(x)|pω(x)dx‘1/p, 1≤p <∞.

We say that a locally integrable function ω : Hn (0,) satisfies

Muckenhoupt’s condition Ap =Ap(Hn) (briefly, ω ∈ Ap), 1< p < ∞, if

there is a constantC=C(ω, p) such that for anyH-ballB⊂Hn



|B|−1

Z

B

ω(x)dx‘|B|−1

Z

B

ω1−p′(x)dx‘≤C, 1 p+

1 p′ = 1, where the second factor on the left is replaced by ess sup{ω−1(x) :xB} ifp= 1.

LetK(x) be a singular kernel defined onHn\{e} and satisfying the

con-ditions: K(x) is anH-homogeneous function of degree−Q, i.e., K(δtx) =

t−QK(x) for anyt >0 andR

SHK(x)dσ(x) = 0, where dσ(x) is a measure

element onSH =S(e,1).

Denote byωK(δ) the modulus of continuity of the kernel onSH:

ωK(δ) = sup{|K(x)−K(y)|:x, y∈SH, |y−1x|H ≤δ}.

It is assumed that

Z 1 0

ωK(t)

dt t <∞. We consider the singular integral operatorT:

T f(x) =

Z

Hn

K(xy−1)f(y)dy=: lim

ε→0+

Z

|xy−1|

H>ε

K(xy−1)f(y)dy.

As is known, T acts boundedly in Lp(Hn), 1 < p < ∞ (see [3], [4]).

For singular integrals with Cauchy–Szeg¨o kernels the weighted estimates were established in the norms of Lp(Hn, ω) with weights ω satisfying the

conditionAp[5]. These results extend to the more general kernels considered

above [4].

Theorem 1 [4]. Let 1 < p < ∞ and ω ∈ Ap; then T is bounded in

Lp(Hn, ω).

In the sequel we will use

(4)

1) The inequality  Z ∞

0 U(t)ŒŒŒ

Z t

0

ϕ(τ)dτŒŒŒ

q

dt‘ 1/q

≤K1 Z ∞

0

|ϕ(t)|pv(t)dt‘ 1/p

with the constant K1 not depending onϕholds iff the condition

sup

t>0

 Z ∞

t

U(τ)dτ‘p/q Z

t

0

V(τ)1−p′‘p−1< is fulfilled;

2) The inequality  Z ∞

0 U(t)|

Z ∞

t

ϕ(τ)dτ|qdt‘1/q≤K2 Z ∞

0

|ϕ(t)|pV(t)dt‘1/p

with the constant K2 not depending onϕholds iff the condition

sup

t>0

 Z t

0

U(τ)dτ‘

p/q Z ∞

t

V(τ)1−p′dτ‘

p−1 <∞

is fulfilled.

Note that Theorem 2 was proved by G.Talenti, G.Tomaselli, B.Mucken-houpt [7] for 1≤p=q <∞, and by J.S.Bradley [8], V.M.Kokilashvili [9], V.G.Maz’ya [10] forp < q.

We say that the weight pair (ω, ω1) belongs to the classAepq(γ),γ >0, if

either of the following conditions is fulfilled: a)ω(t) andω1(t) are increasing functions on (0,∞) and

sup

t>0

 Z ∞

t

ω(τ)τ−1−γq/p′dτ‘p/q Z

t/2 0

ω(τ)1−p′τγ−1dτ‘p−1<∞; b)ω(t) andω1(t) are decreasing functions on (0,∞) and

sup

t>0

 Z t/2 0

ω1(τ)τγ−1dτ‘p/q Z ∞

t

ω(τ)1−p′τ−1−γp′/qdτ‘p−1<∞.

Theorem 3. Let 1 < p < ∞ and the weight pair (ω, ω1) ∈ Aep(Q) ≡

e

App(Q). Then for f ∈ Lp(Hn, ω(|x|H)) there exists T f(x) for almost all

x∈Hn and

Z

Hn

|T f(x)|pω1(|x|H)dx≤C

Z

Hn

|f(x)|pω(|x|)H)dx, (1)

(5)

Corollary. If ω(t), t > 0 is increasing (decreasing) and the function

ω(t)t−βis decreasing (increasing) for some β(0, Q(p1)) (β(Q,0)), thenT is bounded on Lp(Hn, ω(|x|H)).

Proof of Theorem 3. Let f ∈ Lp(Hn, ω(|x|H)) and ω, ω1 be positive

in-creasing functions on (0,∞). We will prove thatT f(x) exists for almost all x∈Hn. We take any fixedτ >0 and represent the functionf in the norm

of the sumf1+f2, where

f1(x) =

(

f(x), if|x|H> τ /2

0, if|x|H≤τ /2, f2(x) =f(x)−f1(x).

Letω(t) be a positive increasing function on (0,∞) andf ∈Lp(Hn, ω(|x|H)).

Thenf1∈Lp(Hn) and thereforeT f1(x) exists for almost allx∈Hn. Now

we will show thatT f2 converges absolutely for allx:|x|H ≥τ. Note that C(K) = supx∈SH|K(x)|<∞. Hence

|T f2(x)| ≤C(K)

Z

|y|H≤τ /2

|f(y)| |xy−1|QH

dy≤

≤€2

τ

Q p

Z

|y|H≤τ /2

|f(y)|ω(|y|H)1p

ω(|y|H)1p

dy,

(2)

since|xy−1|H ≥ |x|H− |y|Hτ /2. Thus, by the H¨older inequality we can estimate (2) as

|T f2(x)| ≤Cτ−Q/pkfk

Lp(Hn,ω(|x|H))  Z τ /2

0

ω(t)1−p′tQ−1dt‘1/p

.

ThereforeT f2(x) converges absolutely for allx:|x|H ≥τ and thus T f(x) exists for almost all x∈Hn. Assume ¯ω1(t) to be an arbitrary continuous

increasing function on (0,∞) such that ¯ω1(t)≤ω1(t),ω1(0) =¯ ω1(0+) and ¯

ω1(t) =R0tϕ(τ)dτ+ ¯ω1(0), t∈(0,∞) (it is obvious that such ¯ω1(t) exists; for example, ¯ω1(t) =R0tω′

1(τ)dτ+ω1(t)). We observe that the condition a) implies

∃C1>0, ∀t >0, ω1(t)≤C1ω(t/2). (3) Indeed, from

∃C2>0, ∀t >0,

 Z ∞

t

ϕ(τ)τ−Q(p−1)‘ Z

t/2 0

(6)

we obtain (3), since

Z ∞

t

ω1(τ)τ−1−Q(p−1) Cω1(t)t−Q(p−1),

 Z t/2 0

ω(τ)1−p′τQ−1dτ‘

p−1

≤Cω(t/2)−1tQ(p−1) and, besides,

1 Q(p−1)

Z ∞

t

ϕ(τ)τ−Q(p−1)dτ =

Z ∞

t

ϕ(τ)dτ

Z ∞

τ

λ−1−Q(p−1)dλ=

=

Z ∞

t

λ−1−Q(p−1)

Z λ

t

ϕ(τ)dτ ≤

Z ∞

t

ω1(τ)τ−1−Q(p−1)dτ. We have

kT fkLp,ω¯1(Hn)≤

 Z

Hn

|T f(x)|pdxZ

|x|H

0

ϕ(t)dt‘1/p+

+ω1(0)¯

Z

Hn

|T f(x)|pdx‘1/p=A1+A2.

Ifω(0+)>0, then Lp(Hn, ω(|x|H))⊂Lp(Hn), and ifω(0+) = 0, then

¯

ω(t)≤ω1(t)≤Cω(t/2) implies ¯ω1(0) = 0. Therefore in the caseω(0+) = 0 we haveA2= 0.

Ifω(0)>0, thenf ∈Lp(Rn) and we have

A2≤Cω1(0)¯

Z

Hn

|f(x)|pdx‘1/p≤C Z

Hn

|f(x)|pω1(|x|H)dx‘1/p≤ ≤CkfkLp(Hn,ω(|x|H)).

Now we can write A1≤ Z

0

ϕ(t)dt

Z

|x|H>t

|T f(x)pdx‘1/pA11+A12.

where

Ap11=

Z ∞

0

ϕ(t)dt

Z

|x|H>t Œ Œ Œ

Z

|y|H>t/2

K(x, y−1)f(y)dyŒŒŒpdx,

Ap12=

Z ∞

0

ϕ(t)dt

Z

|x|H>t Œ Œ Œ

Z

|y|H<t/2

(7)

The relation

Z

|y|H>t/2

|f(y)|pdy≤ 1

ω(t/2)

Z

|y|H>t/2

|f(y)|pω(|y|H)dy

impliesf ∈Lp({y∈Hn:|y|H> t}) for anyt >0.

Hence, on account of (3), we have

A11≤C Z ∞

0

ϕ(t)dt

Z

|x|H>t/2

|f(x)|pdx‘1/p =

=C Z

Hn

|f(x)|pdx

Z 2|x|H

0

ϕ(t)dt‘1/p ≤

≤C Z

Hn

|f(x)|pω1(2|x|H)dx‘1/p≤CkfkLp,ω(|x|H)(H n).

Obviously, if |x|H > t, |y|H < t/2, then 1

2|x|H ≤ |y

−1x|H 3 2|x|H. Therefore

Z

|x|H>t Œ Œ Œ

Z

|y|H<t/2

K(xy−1)f(y)dyŒŒ

Œ

p

dx≤

≤C(K)

Z

|x|H>t

 Z

|y|H<t/2

|xy−1|−HQ|f(y)|dy‘pdx≤

≤2QpC(K)

Z

|x|H>t

|x|−HQpdx

 Z

|y|H<t/2

|f(y)|dy‘p.

Taking theH-polar coordinatesx=δ̺x,¯ ̺=|x|H, ¯x∈SH we can write

Z

|x|H>t

|x|−HQpdx=

Z

SH

dσ(¯x)

Z ∞

0

̺Q−1−Qpd̺=CtQ−Qp.

Forα > Q(1 + 1

p′), by virtue of the H¨older inequality, we have

Z

|y|H<t/2

|f(y)|dy=α

Z

SH

dσ(¯y)

Z t/2 0

̺Q−α−1|f(δ̺y)¯|d̺

Z ̺

0

sα−1ds=

Z t/2 0

sα−1ds

Z

s<|y|H<t/2

(8)

Z t/2 0

sα−1ds

Z

s<|y|H<t/2

|f(y)|p|y|−Qp H dy

‘1/p ×

א

Z

s<|y|H<t/2

|y|(HQ−α)p′dy‘1/p

′ ≤

≤C

Z t/2 0

sQ+Qp′

 Z

s<|y|H<t/2

|f(y)|p|y|−HQpdy

‘1/p

ds.

Consequently

A12≤Cn Z ∞

0

ϕ(2t)t−Q(p−1)×

×h Z t

0

sQ(1+p1′) Z

|y|H≥s

|f(y)|p|y|−HQpdy‘1/pdsipdto1/p.

By (4) and Theorem 2 A12≤Ch Z

0

sQp(1+p1′) Z

|y|H>s

|f(y)|p×

×|y|−Qpdy‘ω(s)s−(Q−1)(p−1)dsi1/p= =C Z

0

s−1+Qpω(s)ds

Z

|y|H>s

|f(y)|p|y|−HQpdy‘1/p=

=C Z

Hn

|f(y)|p|y|−HQp

Z |y|H

0

ω(s)s−1+Qpds‘1/p≤

≤C Z

Hn

|f(y)|pω(|y|H)dy‘1/p.

Hence we obtain (1) for ω1(t) = ¯ω1(t). Now, by the Fatou theorem, the inequality (1) is fulfilled.

Theorem 3 was earlier announced in [11].

A similar reasoning can be used to prove the analogue of Theorem 3 for the operatorTα:f →Tαf where

Tαf(x) =

Z

Hn

|xy−1|αH−Qf(y)dy, 0< α < Q.

(9)

Theorem 4. Let 0< α < Q,1 < p < Qα, 1p −1q = Qα and the weights

(ω, ω1)be monotone positive functions on (0,∞). Then the inequality  Z

Hn

|Tαf(x)|qω1(|x|H)dx

‘1/q

≤C Z

Hn

|f(x)|pω(|x|H)dx‘1/p

holds if and only if (ω, ω1)∈Aep,q(Q).

Remark. In the case of a homogeneous group the analogue of Theorem 4 is also valid (see [12]).

For monotone weights one can find the weighted Lp-estimates for a

Calderon–Zygmund operator in [13] and [14], and for the anisotropic case in [15].

As known [16], iff ∈C∞

0 (Hn), then the function g(x) =Cn

Z

Hn

|xy1|−2n H f(y)dy

is a solution of the equationL0g=f, whereL0=−P2i=1n X2

j. In particular,

our results lead to

Theorem 5. Let1< p <∞,(ω, ω1)∈A(Q)e ,f ∈Lp(Hn, ω(|x|H)), and

L0(g) =f. Then

kX0gkLp(Hn,ω1(|x|H))≤ckfkLp(Hn,ω(|x|H)),

kXiXjgkLp(Hn,ω1(|x|)H))≤CkfkLp(Hn,ω(|x|H)),

i, j= 1,2, . . . ,2n.

Theorem 6. Let 1 < p < q < ∞, 1p − 1q = Q1, (ω, ω1) ∈ Aepq(Q),

f ∈Lp(Hn, ω(|x|H)), andL0g=f. Then

kXigkLq(Hn,ω1(|x|H))≤CkfkLp(Hn,ω(|x|H)), i= 1,2, . . . ,2n.

References

1. G.B. Folland and E.M. Stein, Hardy spaces on homogeneous groups.

Math. Notes, No.28,Princeton Univ. Press,1982.

2. N.E. Taylor, Noncommutative harmonic analysis. Amer. Math. Soc., Providence, 1986.

3. A. Koranyi and S. Vagi, Singular integrals in homogeneous spaces and some problems of classical analysis. Ann. Scuola Norm. Sup. Pisa

(10)

4. R.R. Coifman and G. Weiss, Analyse harmonique noncommutative sur certains espaces homogenes. Lecture Notes in Math., v. 242,Springer, Berlin etc., 1971.

5. J.R. Dorronsoro, Weighted Hardy spaces on Siegel’s half-planes. Math. Nachr. 125(1986), 103-119.

6. R.R. Coifman and C. Fefferman, Weighted norm inequalities for max-imal functions and singular integrals. Studia Math. 51(1974), 241-250.

7. B. Muckenhoupt, Hardy’s inequality with weights. Studia Math.

44(1972), No.1, 31-38.

8. J.S. Bradley, Hardy inequalities with mixed norms. Can. Math. Bull.

21(1978), No. 4, 405-408.

9. V.M. Kokilashvili, On Hardy inequalities in weighted spaces (Russian).

Bull. Acad. Sci. Georgian SSR96(1979), No.2, 37-40.

10. V.G. Maz’ya, S.L. Sobolev spaces. Leningrad University Press, Leningrad, 1985.

11. V.S. Guliev, On the boundedness of singular operators on the Heisen-berg group in weighted generalized H¨older spaces and weightedLp-spaces.

(Russian)Dokl. Akad. Nauk SSSR316(1991), No.2, 274-278.

12. V.S. Guliev, Two-weightedLp-estimates for some operators on

homo-geneous Lie groups. (Russian)Current problems of the theory of functions (Russian). Abstracts of All-Union School-Conference,33-34,Baku, 1985.

13. S.K. Abdulaev, On some classes of integral operators in spaces of summable functions (Russian). Dokl. Akad. Nauk SSSR283(1985), No. 4, 777-780.

14. E.G. Guseinov, Singular integrals in the spaces of functions sum-mable with monotone weight. (Russian)Mat. Sb. 132(174)(1977), No. 1, 28-44.

15. V.S. Guliev, On a certain class of anisotropic integral operators and weight embedding theorems (Russian). Dokl. Akad. Nauk SSSR

304(1989), No. 6, 1289-1293; English translation: Soviet Math. Dokl.

39(1989), No. 1, 199-204.

16. G.B. Folland. A fundamental solution for a subelliptic operator.

Bull. Amer. Math. Soc. 79(1973), No.2, 373-376. (Received 15.02.1993) Author’s address:

Faculty of Mechanics and Mathematics Baku State University

Referensi

Dokumen terkait

Salah satunya adalah dengan menggunakan ekstrak bunga cengkeh (Syzygium aromaticum L.) yang mengandung carvone, terpinen-4-ol, fenchone, eugenol dan.. quercetine

Disimpulkan bahwa tidak ada perbedaan effektivitas terapi haloperidol kombinasi dengan risperidon pada terapi fase akut pasien skizofrenia berdasarkan nilai PANSS-EC,

Bahwa berdasarkan hasil evaluasi penawaran dan evaluasi kualifikasi, maka perusahaan yang telah dievaluasi pada evaluasi kualifikasi dinyatakan tidak memenuhi persyaratan

Setelah diumumkannya Pemenang pengadaan ini, maka kepada Peser ta/ Penyedia bar ang/ jasa ber keber atan at as pengumuman ini dapat menyampaikan sanggahan secar a

Bagi para peserta lelang yang merasa keberatan atas hasil penetapan ini, dipersilahkan mengajukan sanggahan secara elektronik pada http://lpse.dephub.go.id/eproc/app

[r]

[r]

Kesimpulan yang dapat diambil dari hasil ketiga Uji statistik tersebut adalah: Bantuan benih padi bermutu telah mampu mening- katkan produktivitas padi meskipun