• Tidak ada hasil yang ditemukan

Paper-18-Acta24.2010. 125KB Jun 04 2011 12:03:11 AM

N/A
N/A
Protected

Academic year: 2017

Membagikan "Paper-18-Acta24.2010. 125KB Jun 04 2011 12:03:11 AM"

Copied!
9
0
0

Teks penuh

(1)

A NOTE ON DIFFERENTIAL SUPERORDINATIONS USING S ˘AL ˘AGEAN AND RUSCHEWEYH OPERATORS

Alina Alb Lupas¸

Abstract. In the present paper we define a new operator using the S˘al˘agean and Ruscheweyh operators. Denote bySRm the Hadamard product of the S˘al˘agean operatorSmand the Ruscheweyh operatorRm, given bySRm:An→ An,SRmf(z) = (Sm∗Rm)f(z) and An={f ∈ H(U), f(z) =z+an+1zn+1+. . . , z ∈U} is the class of normalized analytic functions. We study some differential superordinations regarding the operatorSRm.

2000Mathematics Subject Classification: 30C45, 30A20, 34A40.

Keywords: Differential superordination, convex function, best subordinant, differ-ential operator.

1. Introduction and definitions

Denote byU the unit disc of the complex plane U ={z∈C:|z|<1}andH(U)

the space of holomorphic functions in U. Let

An={f ∈ H(U), f(z) =z+an+1zn+1+. . . , z∈U} and

H[a, n] ={f ∈ H(U), f(z) =a+anzn+an+1zn+1+. . . , z ∈U}

fora∈Cand n∈N.

Iff andgare analytic functions inU, we say thatf is superordinate tog, written

g≺f, if there is a function wanalytic inU, withw(0) = 0,|w(z)|<1, for allz∈U

such that g(z) =f(w(z)) for all z ∈U. If f is univalent, theng ≺f if and only if

f(0) =g(0) and g(U)⊆f(U).

Let ψ : C2 ×U C and h analytic in U. If p and ψ(p(z), zp

(z) ;z) are univalent inU and satisfies the (first-order) differential superordination

h(z)≺ψ(p(z), zp′

(z);z), for z∈U, (1)

then pis called a solution of the differential superordination. The analytic function

(2)

An univalent subordinant qethat satisfies q ≺ eq for all subordinants q of (1) is said to be the best subordinant of (1). The best subordinant is unique up to a rotation of U.

Definition 1. (S˘al˘agean [4]) Forf ∈ An,n∈N, m∈N∪ {0},the operator Sm

is defined by Sm:An→ An,

S0f(z) = f(z)

S1f(z) = zf′

(z)

...

Sm+1f(z) = z(Smf(z))′

, z∈U.

Remark 1. Iff ∈ An,f(z) =z+P

j=n+1ajzj, thenSmf(z) =z+P

j=n+1jmajzj,

z∈U.

Definition 2. (Ruscheweyh [3]) For f ∈ An, n∈N, m∈N∪ {0}, the operator

Rm is defined by Rm :An→ An,

R0f(z) = f(z)

R1f(z) = zf′

(z)

...

(m+ 1)Rm+1f(z) = z(Rmf(z))′

+mRmf(z), z∈U.

Remark 2. Iff ∈ An,f(z) =z+P

j=n+1ajzj, thenRmf(z) =z+ P∞

j=n+1Cm+jm −1ajz

j,

z∈U.

Definition 3. [2] We denote by Q the set of functions that are analytic and injective on U\E(f), where E(f) ={ζ ∈ ∂U : lim

z→ζ

f(z) = ∞}, and f′

(ζ) 6= 0 for

ζ ∈∂U\E(f). The subclass ofQ for which f(0) =ais denoted by Q(a).

We will use the following lemmas.

Lemma 1. (Miller and Mocanu [2]) Leth be a convex function with h(0) =a, and let γ ∈ C\{0} be a complex number with Re γ 0. If p ∈ H[a, n]Q,

p(z) + 1γzp′

(z) is univalent in U and

h(z)≺p(z) + 1

γzp ′

(3)

then

q(z)≺p(z), for z∈U,

where q(z) = γ nzγ/n

Rz

0 h(t)tγ/n

1

dt, for z ∈ U. The function q is convex and is the best subordinant.

Lemma 2. (Miller and Mocanu [2]) Let q be a convex function in U and let

h(z) =q(z) +γ1zq′

(z),forz∈U,where Re γ≥0. Ifp∈ H[a, n]∩Q, p(z) +1γzp′

(z)

is univalent in U and

q(z) + 1

γzq ′

(z)≺p(z) + 1

γzp ′

(z), for z∈U,

then

q(z)≺p(z), for z∈U,

whereq(z) = γ nzγ/n

Rz

0 h(t)tγ/n

−1

dt,forz∈U.The functionq is the best subordinant.

2. Main results

Definition 4. [1] Let m ∈ N. Denote by SRm the operator given by the Hadamard product (the convolution product) of the S˘al˘agean operator Sm and the Ruscheweyh operator Rm, SRm:An→ An,

SRmf(z) = (Sm∗Rm)f(z).

Remark 3. If f ∈ An, f(z) = z +P∞

j=n+1ajzj, then SRmf(z) = z + P∞

j=n+1Cm+jm −1j

ma2 jzj.

Theorem 1. Let h be a convex function, h(0) = 1. Let m ∈ N∪ {0}, f ∈ An and suppose that 1zSRm+1f(z) +m+1m z(SRmf(z))′′

is univalent and(SRmf(z))′ ∈ H[1, n]∩Q. If

h(z)≺ 1 zSR

m+1f(z) + m

m+ 1z(SR

mf(z))′′

, for z∈U, (2)

then

q(z)≺(SRmf(z))′

, for z∈U,

where q(z) = 1 nzn1

Rz 0 h(t)t

1

n−1dt. The functionq is convex and it is the best

subordi-nant.

Proof. With notation p(z) = (SRmf(z))′

= 1 +P∞

j=n+1Cm+jm −1j

m+1a2 jzj

(4)

and p(0) = 1, we obtain forf(z) =z+P∞

j=n+1ajzj,

p(z) +zp′

(z) = 1zSRm+1f(z) +zm+1m (SRmf(z))′′

.Evidentlyp∈ H[1, n]. Then (2) becomes

h(z)≺p(z) +zp′

(z), for z∈U.

By using Lemma 1, we have

q(z)≺p(z), for z∈U, i.e. q(z)≺(SRmf(z))′

, for z∈U,

where q(z) = 1 nz1n

Rz 0 h(t)t

1

n−1dt.The function q is convex and it is the best subor-dinant.

Corollary No. 1 Let h(z) = 1+(2β−1)z

1+z be a convex function in U, where 0 ≤

β <1. Letm∈N∪{0}, f ∈ An and suppose that 1

zSRm+1f(z)+m+1m z(SRmf(z))

′′

is univalent and (SRmf(z))′

∈ H[1, n]∩Q. If

h(z)≺ 1 zSR

m+1f(z) + m

m+ 1z(SR

mf(z))′′

, for z∈U, (3)

then

q(z)≺(SRmf(z))′

, for z∈U,

where q is given by q(z) = 2β−1 +2(1−β)

nz1n Rz

0 t

1

n−1

1+t dt, for z ∈ U. The function q is

convex and it is the best subordinant.

Proof. Following the same steps as in the proof of Theorem 1 and considering

p(z) = (SRmf(z))′

, the differential superordination (3) becomes

h(z) = 1 + (2β−1)z

1 +z ≺p(z) +zp ′

(z), for z∈U.

By using Lemma 1 forγ = 1, we have q(z)≺p(z), i.e.,

q(z) = 1

nzn1 Z z

0

h(t)tn1−1dt= 1

nzn1 Z z

0

tn1−11 + (2β−1)t 1 +t dt

= 2β−1 +2(1−β)

nzn1 Z z

0

tn1−1

1 +tdt≺(SR

mf(z))

, for z∈U.

(5)

Theorem No. 2 Let q be convex in U and let h be defined by h(z) =q(z) +

zq′

(z). If m∈N∪ {0}, f ∈ An, suppose that 1

zSRm+1f(z) +m+1m z(SRmf(z))

′′

is univalent, (SRmf(z))′

∈ H[1, n]∩Q and satisfies the differential superordination

h(z) =q(z) +zq′

(z)≺ 1 zSR

m+1f(z) + m

m+ 1z(SR

mf(z))′′

, for z∈U, (4)

then

q(z)≺(SRmf(z))′

, for z∈U,

where q(z) = 1 nzn1

Rz 0 h(t)t

1

n−1dt. The function q is the best subordinant.

Proof. Letp(z) = (SRmf(z))′

= 1 +P∞

j=n+1Cm+jm −1j

m+1a2 jzj

1

. Differentiating, we obtainp(z) +zp′

(z) = 1zSRm+1f(z) +zm+1m (SRmf(z))′′ ,for

z∈U and (4) becomes

q(z) +zq′

(z)≺p(z) +zp′

(z), for z∈U.

Using Lemma 2, we have

q(z)≺p(z), for z∈U, i.e. q(z) = 1

nzn1 Z z

0

h(t)tn1−1dt≺(SRmf(z))′, for z∈U,

and q is the best subordinant.

Theorem 3. Let h be a convex function, h(0) = 1. Let m ∈ N, f ∈ An and suppose that (SRmf(z))′

is univalent and SRmzf(z) ∈ H[1, n]∩Q. If

h(z)≺(SRmf(z))′

, for z∈U, (5)

then

q(z)≺ SR

mf(z)

z , for z∈U,

where q(z) = 1 nzn1

Rz 0 h(t)t

1

n−1dt. The functionq is convex and it is the best

subordi-nant.

Proof. Considerp(z) = SRmzf(z) = z+

P∞

j=n+1Cmm+j−1jma 2

jzj

z =

1 +P∞

j=n+1Cm+jm −1j

ma2 jzj

1

.Evidentlyp∈ H[1, n]. Differentiating, we obtainp(z) +zp′

(z) = (SRmf(z))′ .

Then (5) becomes

h(z)≺p(z) +zp′

(6)

By using Lemma 1, we have

q(z)≺p(z), for z∈U, i.e. q(z)≺ SR

mf(z)

z , for z∈U,

where q(z) = 1 nz1n

Rz 0 h(t)t

1

n−1dt.The function q is convex and it is the best subor-dinant.

Corollary 2. Leth(z) =1+(2β−1)z

1+z be a convex function inU, where 0≤β <1.

Let m∈N∪ {0}, f ∈ An and suppose that (SRmf(z))

is univalent and SRmzf(z) ∈ H[1, n]∩Q. If

h(z)≺(SRmf(z))′

, for z∈U, (6)

then

q(z)≺ SR

mf(z)

z , for z∈U,

where q is given by q(z) = 2β−1 +2(1−β)

nz1n Rz

0 t

1

n−1

1+t dt, for z ∈ U. The function q is

convex and it is the best subordinant.

Proof. Following the same steps as in the proof of Theorem 3 and considering

p(z) = SRmzf(z), the differential superordination (6) becomes

h(z) = 1 + (2β−1)z

1 +z ≺p(z) +zp ′

(z), for z∈U.

By using Lemma 1 forγ = 1, we have q(z)≺p(z), i.e.,

q(z) = 1

nzn1 Z z

0

h(t)tn1−1dt= 1

nzn1 Z z

0

tn1−11 + (2β−1)t 1 +t dt

= 2β−1 +2(1−β)

nzn1 Z z

0

tn1−1 1 +tdt≺

SRmf(z)

z , for z∈U.

The function q is convex and it is the best subordinant.

Theorem 4. Letq be convex inU and let hbe defined byh(z) =q(z) +zq′

(z).

Ifm∈N∪{0},f ∈ An, suppose that(SRmf(z))is univalent, SRmf(z)

z ∈ H[1, n]∩Q

and satisfies the differential superordination

h(z) =q(z) +zq′

(z)≺(SRmf(z))′

, for z∈U, (7)

then

q(z)≺ SR

mf(z)

(7)

where q(z) = 1 nzn1

Rz 0 h(t)t

1

n−1dt. The function q is the best subordinant.

Proof. Letp(z) = SRmzf(z) = z+

P∞

j=n+1Cmm+j−1jma 2

jzj

z =

1 +P∞

j=n+1Cm+jm −1j

ma2 jzj

1

.Evidentlyp∈ H[1, n]. Differentiating, we obtainp(z)+zp′

(z) = (SRmf(z))′

,forz∈Uand (7) becomes

q(z) +zq′

(z)≺p(z) +zp′

(z), for z∈U.

Using Lemma 2, we have

q(z)≺p(z), for z∈U, i.e. q(z) = 1

nzn1 Z z

0

h(t)tn1−1dt≺ SR mf(z)

z , for z∈U,

and q is the best subordinant.

Theorem 5. Let h be a convex function, h(0) = 1. Let m ∈ N∪ {0}, f ∈ An and suppose that zSRSRmm+1f(z)f(z)

is univalent and SRSRmm+1f(z)f(z) ∈ H[1, n]∩Q. If

h(z)≺

zSRm+1f(z)

SRmf(z)

, for z∈U, (8)

then

q(z)≺ SR

m+1f(z)

SRmf(z) , for z∈U,

where q(z) = 1 nzn1

Rz 0 h(t)t

1

n−1dt. The functionq is convex and it is the best

subordi-nant.

Proof. Considerp(z) = SRSRmm+1ff(z)(z) = z+P∞

j=n+1C

m+1

m+jjm

+1a2

jzj z+P∞

j=n+1Cmm+j−1jma 2

jzj = 1+P∞

j=n+1C

m+1

m+jjm+1a2jzj −1

1+P∞

j=n+1Cmm+j−1jma 2

jzj

−1.Evidentlyp∈ H[1, n].

We havep′

(z) =(SRm

+1f(z))

SRmf(z) −p(z)·(SR mf(z))

SRmf(z) andp(z)+zp

(z) =zSRSRmm+1f(z)f(z) ′

.

Then (8) becomes

h(z)≺p(z) +zp′

(z), for z∈U.

By using Lemma 1, we have

q(z)≺p(z), for z∈U, i.e. q(z)≺ SR

m+1f(z)

(8)

where q(z) = 1 nz1n

Rz 0 h(t)t

1

n−1dt.The function q is convex and it is the best subor-dinant.

Corollary 3. Leth(z) =1+(2β−1)z

1+z be a convex function inU, where 0≤β <1.

Let m∈N∪ {0}, f ∈ An and suppose that

zSRm+1f(z)

SRmf(z)

is univalent, SRSRmm+1f(z)f(z) ∈

H[1, n]∩Q. If

h(z)≺

zSRm+1f(z)

SRmf(z)

, for z∈U, (9)

then

q(z)≺ SR

m+1f(z)

SRmf(z) , for z∈U,

where q is given by q(z) = 2β−1 +2(1−β)

nz1n Rz

0 t

1

n−1

1+t dt, for z ∈ U. The function q is

convex and it is the best subordinant.

Proof. Following the same steps as in the proof of Theorem 5 and considering

p(z) = SRmzf(z), the differential superordination (9) becomes

h(z) = 1 + (2β−1)z

1 +z ≺p(z) +zp ′

(z), for z∈U.

By using Lemma 1 forγ = 1, we have q(z)≺p(z), i.e.,

q(z) = 1

nzn1 Z z

0

h(t)tn1−1dt= 1

nzn1 Z z

0

tn1−11 + (2β−1)t 1 +t dt

= 2β−1 +2(1−β)

nzn1 Z z

0

tn1−1 1 +tdt≺

SRm+1f(z)

SRmf(z) , for z∈U. The function q is convex and it is the best subordinant.

Theorem 6. Letq be convex inU and let hbe defined byh(z) =q(z) +zq′

(z).

If m ∈ N∪ {0}, f ∈ An, suppose that zSRm+1f(z)

SRmf(z)

is univalent, SRSRmm+1ff(z)(z) ∈

H[1, n]∩Qand satisfies the differential superordination

h(z) =q(z) +zq′

(z)≺

zSRm+1f(z)

SRmf(z)

, for z∈U, (10)

then

q(z)≺ SR

m+1f(z)

(9)

where q(z) = 1 nzn1

Rz 0 h(t)t

1

n−1dt. The function q is the best subordinant.

Proof. Letp(z) =p(z) = SRSRmm+1f(z)f(z) = z+P∞

j=n+1C

m+1

m+jjm+1a2jzj z+P∞

j=n+1Cmm+j−1jma 2

jzj =

1+P∞ j=n+1C

m+1

m+jjm+1a2jzj −1

1+P∞

j=n+1Cmm+j−1jma 2

jzj

−1.Evidentlyp∈ H[1, n].

Differentiating, we obtain p(z) +zp′

(z) = zSRSRmm+1f(z)f(z) ′

, for z ∈ U and (10) becomes

q(z) +zq′

(z)≺p(z) +zp′

(z), for z∈U.

Using Lemma 2, we have

q(z)≺p(z), for z∈U, i.e. q(z) = 1

nzn1 Z z

0

h(t)tn1−1dt≺ SR

m+1f(z)

SRmf(z) , for z∈U, and q is the best subordinant.

References

[1] Alina Alb Lupa¸s, A note on differential subordinations using S˘al˘agean and Ruscheweyh operators, Romai Journal, Proceedings of CAIM 2009, (to appear).

[2] S.S. Miller, P.T. Mocanu,Subordinants of Differential Superordinations, Com-plex Variables, vol. 48, no. 10, 2003, 815-826.

[3] St. Ruscheweyh, New criteria for univalent functions, Proc. Amer. Math. Soc., 49(1975), 109-115.

[4] G.St. S˘al˘agean, Subclasses of univalent functions, Lecture Notes in Math., Springer Verlag, Berlin, 1013(1983), 362-372.

Alb Lupa¸s Alina

Department of Mathematics University of Oradea

Referensi

Dokumen terkait

Bagi peserta yang keberatan atas pengumuman pemenang lelang tersebut di atas dapat mengajukan sanggahan secara tertulis kepada Pokja Pengadaan Jasa Konstruksi

Pokja lll ULP pada Pemerintah Kabupaten Hulu Sungai Selatan akan melaksanakan Pelelangan Umum dengan pascakualifikasi paket pekerjaan konstruks..

Dengan ini diberitahukan bahwa setelah diadakan penelitian oleh panitia pengadaan barang / jasa konsultansi Bidang Pengairan, menurut ketentuan-ketentuan yang berlaku dan

Penelitian ini adalah penelitian kualitatif deskriptif dengan tema desain organisasi Star Model, dari Star Model, yang akan menjelaskan antara Strategy, Structure, People, Process,

Panitia Pengadaan pada Badan Kepegawaian Negara Kantor Regional VIII Banjarmasin akan melaksanakan Pelelangan Umum Ulang dengan pascakualifikasi untuk paket

Berdasarkan tabel 14, dapat dilihat persentase terbesar hambatan infrastuktur berada dalam kategori sedang, dimana pengusaha mikro dan kecil pada sektor informal di

Penetapan Pemenang Pelelangan Penyedia lasa Konstruksi Pekerjaan Peningkatan Jalan Daerah/Poros Desa,.. Jalan Menuju Ponpes Syaiful Islam, Desa Jambu,

Pokja lll ULP pada Pemerintah Kabupaten Hulu Sungai Selatan akan melaksanakan Pemilihan Langsung dengan pascakualifikasi paket pekerjaan konstruksi sebagai berikut:..