• Tidak ada hasil yang ditemukan

Paper-04-22-2010. 113KB Jun 04 2011 12:03:08 AM

N/A
N/A
Protected

Academic year: 2017

Membagikan "Paper-04-22-2010. 113KB Jun 04 2011 12:03:08 AM"

Copied!
8
0
0

Teks penuh

(1)

DIFFERENTIAL SUBORDINATION DEFINED BY USING EXTENDED MULTIPLIER TRANSFORMATIONS OPERATOR AT

THE CLASS OF MEROMORPHIC FUNCTIONS

R. M. El-Ashwah

Abstract.By using the generalized multiplier transformations,Im(λ, ℓ)f(z) (z

U), we obtain interesting properties of certain subclass of p-valent meromorphic functions.

2000Mathematics Subject Classification: 30C45.

1. Introduction

LetH(U) be the class of analytic functions in the unit diskU ={z:|z|<1}and denote by U∗

=U\{0}.We can let A(n) =

f ∈H(U), f(z) =z+an+1zn+1+an+2zn+2+..., z∈U

with A(1) =A.Let P

p,k denote the class of functions in U

of the form: f(z) = 1

zp +akz k+a

k+1zz+1+...,(p∈N ={1,2,3, ...}),

where k is integer , k ≥ −p+ 1, p ∈ N which are regular in the punctured disk U∗

. If f(z) and g(z) are analytic in U, we say that f(z) is subordinate to g(z) written symbolically as follows:

f ≺g(z∈U)or f(z)≺g(z) (z∈U),

if there exists a Schwarz function w(z), which (by definition) is analytic in U with w(0) = 0 and |w(z)| < 1 (z ∈ U), such that f(z) = g(w(z)) (z ∈ U).Indeed it is known that f(z) ≺g(z) (z ∈ U) ⇒ f(0) = g(0) and f(U) ⊂ g(U).Further, if the functiong(z) is univalent inU, then we have the following equivalent ( see [7, p.4])

(2)

A function f ∈ H(U) is said to be convex if it is univalent and f(U) is a convex domain. It is well known that the function f is convex if and only if f′

(0)6= 0 and Re

1 +zf

′′ (z) f′

(z)

>0 (z∈U). We denote by that class of functions by K.

Definition 1. [2] Let the function f(z) ∈ A(n). For m ∈ N0 = N ∪ {0}, λ ≥

0, ℓ≥ 0.The extended muliplier transformation Im(λ, ℓ) on A(n) is defined by the

following infinite series:

Im(λ, ℓ)f(z) =z+ ∞ X

k=n+1

1 +λ(k−1) +ℓ 1 +ℓ

m

akzk. (1.1)

It follows from (1.1) that I0

(λ, ℓ)f(z) =f(z), λz(Im(λ, ℓ)f(z))′

= (ℓ+ 1−λ)Im(λ, ℓ)f(z)−(ℓ+ 1)Im+1(λ, ℓ)f(z) (λ >0) (1.2) and

Im1(λ, ℓ)(Im2(λ, ℓ))f(z) =Im1+m2(λ, ℓ)f(z) =Im2(λ, ℓ)(Im1(λ, ℓ))f(z). (1.3)

for all integers m1 and m2.

We note that:

I0(1,0)f(z) =f(z) and I1(1,0)f(z) =zf′(z).

By specializing the parameters m, λ and ℓ, we obtain the following operators studied by various authors:

(i) Im(1, ℓ)f(z) =Im

ℓ f(z) (see [3] and [4]);

(ii)Im(λ,0)f(z) =Dλmf(z) (see [1]); (iii) Im(1,0)f(z) =Dmf(z) (see [9]); (iv)Im(1,1)f(z) =I

mf(z) (see [10]).

Also if f ∈A(n),then we can write

Im(λ, ℓ)f(z) = (f∗ϕmλ,ℓ)(z), where

ϕmλ,ℓ(z) =z+ ∞ X

k=n+1

1 +λ(k−1) +ℓ 1 +ℓ

m

(3)

To establish our main results, we shall need the following lemmas.

Lemma 1 [5]. Let the function h(z) be analytic and convex (univalent) in U with h(0) =1 . Suppose also the function ϕ(z) given by

ϕ(z) = 1 +cnzn+cn+1zn+1+... (1.5)

be analytic in U. If

ϕ(z) +zϕ ′

(z)

δ ≺h(z) (Re(δ)>0;δ 6= 0;z∈U), then

ϕ(z)≺ψ(z) = δ nz

−(δ n)

z

Z

0

t(δn)−1h(t)dt≺h(z) (z∈U), (1.6)

and ψ is the best dominant.

Lemma 2 [7, p.66, Corollary 2.6.g.2 ].Letf ∈Aand F is given by F(z) = 2

z Z z

0

f(t)dt If

Re

1 +zf ′′

(z) f′(z)

>−1

2 (z∈U), then F ∈K.

For the case when F(z) has a more elaborate form, Lemma 2, can be rewritten in the following form.

Lemma 3 [8].Let f ∈A, δ >1 and F is given by

F(z) = 1 +δ δz1δ

z

Z

0

f(t)t1δ−1dt.

If

Re

1 +zf ′′

(z) f′(z)

>−1

(4)

2.Main results

Unless otherwise mentioned, we assume throughout this paper thatm∈N0, p, n∈

N, ℓ≥0 and λ >0.

Theorem 1. Let h∈H(U) , with h(0) = 1,which verifies the inequality: Re

1 +zh

′′ (z) h′(z)

>−

ℓ+1 λ

2(p+k) (z∈U). (2.1) If f ∈P

p,k and verifies the differentional subordination

Im+1(λ, ℓ)(zp+1f(z))′

≺h(z) (z∈U), (2.2) then

Im(λ, ℓ) zp+1f(z)′

≺g(z) (z∈U), where

g(z) =

ℓ+1 λ

(p+k)z (ℓ+1

λ ) p+k

Z z

0

h(t)t (ℓ+1

λ )

p+k −1dt. (2.3)

The function g is convex and is the best (1,p+k)-dominant.

Proof. From the identity (1.2), we have Im+1(λ, ℓ)(zp+1f(z)) =+1λ

h

z Im(λ, ℓ)

zp+1f(z)′ + ℓ+1λ −1

Im(λ, ℓ) zp+1f(z)

(z∈U). (2.4)

Differentiating (2.4) with respect to z, we obtain

Im+1(λ, ℓ)(zp+1f(z))′

=+1λ nzIm(λ, ℓ)(zp+1f(z))′′ + ℓ+1

λ I

m(λ, ℓ) zp+1f(z)′o

(λ >0;z∈U). (2.5) If we put

q(z) =

Im(λ, ℓ) zp+1f(z)′

(z∈U), (2.6)

then (2.5) becomes

Im+1(λ+ℓ) zp+1f(z)′

=q(z) +ℓ+1λ zq′

(z) (z∈U). (2.7) Using (2.7), subordination (2.2) is equivalent to

q(z) ++1λ zq′

(5)

where

q(z) = 1 +cp+k+1zp+k+... .

By using Lemma 1, for δ= ℓ+1

λ , n=p+k,we have q(z)≺g(z)≺h(z),

we have

g(z) =

ℓ+1 λ

(p+k)z (ℓ+1

λ ) p+k

Z z

0

h(t)t (ℓ+1

λ )

p+k −1dt (zU),

is the best (1,p+k)-dominant.

By applying Lemma 3 for the function given by (2.3) and function h with the property in (2.1) for δ= ℓ+1

λ ,we obtain that the function g is convex.

Putting p=λ= 1 andm =k=ℓ = 0 in Theorem 1, we obtain the result due to Libera [6] (see also [7 p. 64,Theorem 2.6.g]).

Corollary 1. Let h∈H(U) , with h(0) = 1 which verifies the inequality Re

1 +zh

′′ (z) h′(z)

>−1

2 (z∈U). If f ∈P

1,0 and verifies the differential subordination:

zz2f(z)′′ +

z2f(z)′

≺h(z) (z∈U), then

(z2

f(z))′

≺g(z) (z∈U), where

g(z) = 1 z

Z z

0

h(t)dt (z∈U), the function g(z) is convex and is the best (1,1)-dominat.

Theorm 2. Let h∈H(U), withh(0) = 1, which verifies the inequality: Re

1 +zh

′′ (z) h′(z)

>− 1

2(p+k) (z∈U). (2.9) If f ∈P

p,k and verifies the differential subordination

Im(λ, ℓ)(zp+1f(z))′

≺h(z) (z∈U), (2.10) then

Im(λ, ℓ)(zp+1f

(z))

(6)

where

g(z) = 1 (p+k)z

1

p+k

z

Z

0

h(t)t

1

p+k

−1

dt (z∈U). (2.11)

The function g is convex and is the best (1,p+k)-dominant.

Proof. We let

q(z) = I

m(λ, ℓ)(zp+1

f(z))

z (z∈U), (2.12)

and we obtain

Im(λ, ℓ)(zp+1f(z))′

=q(z) +zq′

(z) (z∈U). Then (2.9) gives

q(z) +zq′

(z)≺h(z) where

q(z) = 1 +qp+k+1zp+k+... (z∈U).

By using Lemma 1 for δ= 1, n=p+k,we have q(z)≺g(z)≺h(z),

where

g(z) = 1 (p+k)z

1

p+k

Z z

0

h(t)t

1

p+k

−1

dt (z∈U),

and g is the best (1,p+k)-dominent.

By applying Lemma 3 for the functiong(z) given by (2.11) and the functionh(z) with the property in (2.9) forn=p+k, we obtain that the functiong(z) is convex. Putting p =λ = 1 and m = k =ℓ = 0 in Theorem 2, we obtain the following corollary.

Corollary 2. Let h∈H(U), withh(0) = 1,which verifies the inequality: Re

1 +zh

′′ (z) h′

(z)

>−1

2 (z∈U). If f ∈P

1,0 and verifies the differential subordination:

z2f(z)′

≺h(z) (z∈U), then

(7)

where

g(z) = 1 z

Z z

0

h(t)dt, (z∈U). The function g(z) is convex and is the best (1,1)-dominant.

Remark. Puttingℓ= 0andλ= 1in the above results we obtain the results obtained by Oros [8].

References

[1] F. M. Al-Oboudi, On univalent functions defined by a generalized Salagean operator, Internat.J. Math. Math. Sci., 27(2004), 1429-1436.

[2] A. Catas,On certain classes of p-valent functions defined by multiplier trans-formations, in Proceedings of the International Symposium on Geometric Function Theory and Applications: GFTA 2007 Proceedings (˙Istanbul, Turkey; 20-24 Au-gust 2007) (S. Owa and Y. Polato¸glu, Editors), pp. 241–250, TC ˙Istanbul K˝ult˝ur University Publications, Vol. 91, TC ˙Istanbul K˝ult˝ur University, ˙Istanbul, Turkey, 2008.

[3] N. E. Cho and H. M. Srivastava,Argument estimates of certain anaytic func-tions defined by a class of multipier transformafunc-tions, Math. Comput. Modelling, 37 (1-2)(2003), 39-49.

[4] N. E. Cho and T.H. Kim, Multiplier transformations and strongly close-to-convex functions, Bull. Korean. Math. Soc., 40(2003), no. 3, 399-410.

[5] D. J. Hallenbeck and St. Ruscheweyh, Subordinations by convex functions, Proc. Amer. Math. Soc. 52(1975), 191-195.

[6] R. J. Libera,Some classes of regular univalent functions, Proc. Amer. Math. Soc. 16(1965), 755-758.

[7] S. S. Miller and P. T. Mocanu, Differential subordinations : Theory and Applications, Series on Monographs and Textbooks in Pure and Appl. Math. No.225 Marcel Dekker, Inc., New York, 2000.

[8] G. I. Oros, Differential subordinations defined by using Salagean differential operator at the class of meromorphic functions, Acta Univ. Apulensis, (2006), no. 11, 219-224.

[9] G. S. Salagean,Subclasses of univalent functions, Lecture Notes in Math. ( Springer-Verlag ) 1013, (1983), 362-372.

(8)

R. M. El-Ashwah

Department of Mathematics Faculty of Science

Mansoura University Mansoura 35516, Egypt.

Referensi

Dokumen terkait

Produk perusahaan adalah furniture dengan menggunakan bahan dari kayu terutama kayu jati. Produk perusahaan tetap, tidak mengalami perubahan, hanya saja pihak

Analisa Lingkungan Internal pada Fungsi Keuangan Secara umum, fungsi manajemen yaitu Planning, Organizing, Directing, dan Controlling yang dijalankan dalam fungsi Keuangan

Ridho Bersama Tidak Memenuhi syarat Gugur. Batulicin, 30

Bagi peserta yang keberatan atas pengumuman pemenang lelang tersebut di atas dapat mengajukan sanggahan secara tertulis kepada Pokja Pengadaan Jasa Konstruksi

Hal ini menunjukan bahwa karyawan operator alat berat CV Haragon Surabaya kurang mempunyai motivasi kerja yang baik, karena sikap karyawan dalam bekerja tidak

KUPANG JAYA ELEKTRIK Tidak memenuhi syarat Gugur.

Pokja lll ULP pada Pemerintah Kabupaten Hulu Sungai Selatan akan melaksanakan Pelelangan Umum dengan pascakualifikasi paket pekerjaan konstruks..

Nama Perusahaan Hasil Penilaian Keterangan..