FisheriesResearch119–120 (2012) 135–146
ContentslistsavailableatSciVerseScienceDirect
Fisheries
Research
j o ur na l h o me p a g e :w w w . e l s e v i e r . c o m / l o c a t e / f i s h r e s
Review
Low
impact
and
fuel
efficient
fishing—Looking
beyond
the
horizon
Petri
Suuronen
a,∗, Francis
Chopin
a,
Christopher
Glass
b,
Svein
Løkkeborg
c,
Yoshiki
Matsushita
d,
Dante
Queirolo
e,
Dominic
Rihan
faFoodandAgricultureOrganizationoftheUnitedNations(FAO),FishingOperationsandTechnologyService,VialedelleTermediCaracalla,00153Rome,Italy bNortheastConsortium,InstitutefortheStudyofEarthOceansandSpace,UniversityofNewHampshire,Durham,NH03824,USA
cInstituteofMarineResearch,P.O.Box1870,Nordnes,N-5817Bergen,Norway
dGraduateSchoolofFisheriesandEnvironmentalStudies,NagasakiUniversity,Nagasaki852-8521,Japan
eEscueladeCienciasdelMar,FacultaddeRecursosNaturales,PontificiaUniversidadCatólicadeValparaíso,P.O.Box1020,Valparaíso,Chile fBordIascaighMhara,CroftonRoad,DunLaoghaire,CoDublin,Ireland
a
r
t
i
c
l
e
i
n
f
o
Articlehistory:
Received1September2011
Receivedinrevisedform5December2011 Accepted9December2011
Keywords:
Ecosystemimpact Bycatch Fuelefficiency
Operationalimprovement Alternativegear Barrierstotransition Sustainablefishingpractices
a
b
s
t
r
a
c
t
Fishingprovideshighqualityseafoodandcreatesemploymentandincomeforpeopleworldwide.Most ofthecapturemethodsusedforfishingare,however,heavilydependentontheuseoffossilfuels.For manyimportantfisheriestheirhighconsumptionoffuelconstitutesamajorconstrainttotheireconomic viabilitybutalsorepresentsasignificantsourceofgreenhousegasemissions.Inaddition,fishing activ-itiescansometimesimpactthemarineenvironmentsthroughexcessiveremovalsofecologicallyand economicallyvaluablespeciesandalsobydirectphysicalcontactwithcriticalhabitats.Fishingpractices andgearsvarywidelyintheirenvironmentalimpactsandfuelefficiencybut,ingeneral,theimpactsof passivefishinggearssuchaspots,traps,andhooksareconsideredtobelesssevere,andtheamountsof fuelrequiredperkgofcatchsmaller,thanfortowedgearssuchasbeamtrawls,dredgesandthemany typesofbottomtrawls.Throughtechnologicalimprovementsandbehavioralchanges,thefishingsector cansubstantiallydecreasethedamagetoaquaticecosystems,reduceemissionsandloweritsfuelcosts. Changesinfishingpracticescanresultinmoreeconomicalandsustainablefisheriesthereby contribut-ingtoimprovedfoodsecurity.Barrierstobegintransitiontotheuseoflow-impact,lessfuel-intensive practicesandgearsincludeaperceptionthatcost-efficientandpracticalalternativesarenotavailable; restrictedaccesstocapital;ineffectivetechnologyinfrastructuresupport;andinflexiblefisheries man-agementsystemsthatrestricttherapiddevelopmentanduptakeofalternativegears.Thispaperdiscusses someofthekeycapturetechnologiesandidentifiesgaps,constraints,andopportunitiesthatfacilitate thedevelopmentandadoptionofLowImpactandFuelEfficient(LIFE)Fishing.LIFEfishingaddressesthe complexdynamicofenergyconsumptionandenvironmentalimpactswiththeobjectiveofimproving theeconomicviabilityandenvironmentalsustainabilityoffishingoperations.
© 2011 Elsevier B.V. All rights reserved.
Contents
1. Introduction... 136
2. Environmentalimpactsoffishingoperations... 136
3. Fuelconsumptionandgreenhousegasemissionsoffishingoperations... 137
4. LowImpactandFuelEfficient[LIFE]capturetechniques... 137
4.1. PotentialapproachesinLIFEfishing... 137
4.2. Increasingtheoperationalefficiencyandreducingseabedimpactsofdemersaltrawling... 138
4.3. Alternativefishingpracticesandgeartypes... 138
4.3.1. Bottomseining ... 138
4.3.2. Trap-netfishing... 141
4.3.3. Potfishing... 141
4.3.4. Hookandlines... 142
4.3.5. Gill-netting... 143
∗Correspondingauthor.Tel.:+390657055153;fax:+390657055188.
E-mailaddress:[email protected](P.Suuronen).
0165-7836/$–seefrontmatter© 2011 Elsevier B.V. All rights reserved.
136 119–120 (2012) 135–146
5. BarrierstothetransitiontoLow-ImpactandFuel-Efficientfisheries... 143
6. Conclusions... 144
Acknowledgements... 144
References... 144
1. Introduction
Globalcapturefisheriesproductionin2008wasapproximately 90milliontonnes,withanestimatedfirst-salevalueofUS$93.9 billion(FAO,2010).Whilethislevelofproductionhasbeen rela-tivelystableoverthepasttwodecades,therehavebeenmarked fluctuationsinthecatchesofmajorspeciesandthestocksofmany demersalhigh-valueresourceshavediminished.Anticamaraetal. (2011)estimatedthatoverthisperiodglobalfishingeffort(in kilo-watt days)hasincreasedby roughly 20 percentwiththemost pronouncedincreasesinAsia.Despiterecentreductionsof fleet sizesinmanydevelopedcountries,thesizeoftheglobalfishing fleethasdoubledinthelast30yearsandisestimatedatsomefour millionvessels(FAO,2010),about60%ofthesepoweredbysome formofengine.
Asmanyfishstockshavedeclinedduetoexcessivefishing, ves-sels oftenneed tosearch longerand/orfish in deeperoffshore waterswhich hasincreasedthefishingpoweroffishingvessels dramatically(WorldBankandFAO,2009)withgreateramounts ofgearbeingsetoveralargerareaanddepthrange. Technologi-calimprovementshavealsocontributedtoanincreaseineffective fishingpowerandefficiencysuchasthroughadvancedhydraulic powerapplications,strongermaterialsforfishinggearsandbetter electronicaidsfornavigation,bottommapping,fishfinding,gear deploymentandcommunication(Kristjonsson,1971;vonBrandt, 1984;Gabriel etal.,2005; Marchaletal., 2007).Many ofthese havebecomewidelyavailable,cheapandcompactenoughtobe operatedfromalmostanysizeofvessel.Foravarietyofreasonsa significantpartofglobalmarinefishstocksarecurrentlyeitherfully exploitedoroverexploited(FAO,2010)andtheeconomichealth ofmarinefisherieshasgenerallydeclined(WorldBankandFAO, 2009).
Mostfishingtechniquesinusetodayhave theirorigin inan erawhenfisheriesresourceswereabundant,energycostswere dramaticallylowerthancurrentlevels,andwhen lessattention waspaid tooperating efficiency and negative impacts of fish-ingonmarineandatmosphericecosystems.Currenthighenergy pricesandgreaterawarenessofecosystemimpactsarerealitiesand presentmajorchallengesfortheviabilityoffisheries.Thismaybe especiallytrueindevelopingcountrieswhereaccesstoand promo-tionofenergyefficienttechnologieshasbeenlimited(FAO,2007). Despiteagrowingnumberofinitiativesandexperimentationwith alternativeenergytechnologiessuchaswindassistedpropulsion (kitesandsails),compressedairengines,biofuelsandothers,there ispresentlynoviablesubstitutetotheuseoffossilfuelsfor pow-eringfishingvessels.
Withfossilfuelsremainingthedominantenergysourcefor cap-turefisheries,pursuingenergyefficiencymayrealizeamultitude of benefits such as reduced operating costs and environmen-talimpacts. However,theoverall successofany transitionwill dependheavilyondevelopingandapplyingsuitableandacceptable measurestoconventionalfisheriesandcreatingtheappropriate incentiveforchangeinthebehavioroffisherssuchasthroughthe developmentandimplementationofamanagementsystemthatis basedontheecosystemapproachtofisheries(FAO,2005;Fletcher etal.,2005;BianchiandSkjoldal,2008).
Modificationofexistinggears,developmentoflowdraggears andadoptionofalternativefuel-efficientgearsallrepresentmeans toimprovefuelefficiency.Thispaperdealswiththedevelopment
of“LowImpactand FuelEfficient(LIFE)”fishingwhichrefersto fishinggearsandpracticesthatensurefishcaptureoccursusinga lowamountoffuelwithlowimpactontheenvironment.It dis-cussessomeofthekeycapturetechnologiesandidentifiesgaps, constraintsandopportunitiestowardsdevelopmentofLIFE fish-ing.Inaddition,itexplorestransferandadaptationoftechnologies fromotherfisheriesthathavedemonstratedcommercialpotential forsimilarspecies.Theprimaryfocusisoncommercial capture-fisheries althoughsome environmentalissues concerningsmall scaleartisanalfisheriesarediscussed.Thepaperdealsmainlywith demersalfishing.
2. Environmentalimpactsoffishingoperations
Fishinggearsvarywidelyintheirimpactsonmarine ecosys-tems (Jennings and Kaiser,1998; Jennings etal., 2001;Bjordal, 2002;Tudela,2004;Kaiseretal.,2006;PoletandDepestele,2010) andwithoutaspecificcontexttheirrankingisextremelydifficult (MorganandChuenpagdee,2003;JenningsandRevill,2007;Fuller etal.,2008;GascoigneandWillsteed,2009;CaddyandSeijo,2011; Rochetetal.,2011).Impactscanbesplitintobiologicalandphysical impacts.Overallecosystemimpactslargelydependonthephysical characteristicsofthegear,themechanicsofitsoperation,where, whenandhowthegearisbeingusedaswellastheextentofits use.Gearsthatrankhighlyforonetypeofimpactmayhavealower rankfor another(Gascoigneand Willsteed,2009).Forinstance, dredgegearsmaygenerallyhaveahighrankforbottomimpacts (Løkkeborg,2005)buthavealowrankforbycatchofendangered, threatenedandprotectedspecies(ETPspecies).
Physicaldamagetothemarineenvironmentmayresultfrom thenatureofthecapturetechnologyor fromtheinappropriate useofanotherwiseacceptablegear.Forexample,theexploitation ofpreviouslyuntrawledgroundsbybottomtrawlscanresultina significantreductionintheabundanceofsensitivebenthic inverte-brates(Kaiseretal.,2006;Hiddinketal.,2006;Pitcheretal.,2009). However,itshouldbenotedthatuseofsuchgearonpreviously trawledground doesnotnecessarily equatetoincreased cumu-lativeimpacts.Onlyasmallnumberoffishingmethods,suchas explosivesandtoxins,arerecognizedasinherentlydestructive irre-spectiveofwheretheyareused(McManusetal.,1997;Barberand Pratt,1998;Garciaetal.,2003).
Somefishingactivities(e.g.shrimptrawling)capturea signif-icantquantityofspeciesandsizesbeyondthosetargetedleading totheincidentalcatchofawidevarietyoffishandinvertebrates includingjuvenilesofecologicallyimportantand/oreconomically valuablespecies. Thiscomponentof thecatchis frequentlynot retainedandisdisposedofoverboardasdiscards,whicharemostly deadormortallyinjured.During 1992–2001,theaverageyearly levelofdiscardsintheworld’smarinefisherieswasestimatedto be7.3milliontonnes(Kelleher,2005).Sincethistimetherehave beensubstantialeffortstomanagebycatchandreduce discard-ing(e.g.Broadhurst,2000;Halletal.,2000;Kennelly,2007;Zhou, 2008;ICES,2010;FAO,2011).Excessivelevelsofbycatchof non-targetspeciesandundersizedtargetspeciesstill,however,occurs formanyfisheries(Lewisonetal.,2004;Daviesetal.,2009).
119–120 (2012) 135–146 137
butultimatelydie(Chopinand Arimoto,1995;Suuronen,2005; Broadhurstetal.,2006).Fishingcanalsoresultintheincidental mortalityofa varietyofendangered,threatened,protected and charismaticnon-targetspecies suchas seabirds,seaturtlesand marine mammals. Finally, some fishing activities may cause damagetovulnerablemarineecosystemssuchascoldwatercoral reefswhich cantakemanydecadesorcenturiestorecover(e.g. Lewisonetal.,2004).
Despite thevariability and complexity of the issue,and the factthatincidentalcaptureofnon-targetandcharismaticspecies isa probleminseveralpot,trapandhookfisheries,theoverall environmentalimpactsofthesetypesofpassivefishinggearsare generallyconsideredlesssevereincomparisontomanytypesof demersaltrawls, and in particularto dredges and beamtrawls (Bjordal,2002;MorganandChuenpagdee,2003;Valdemarsenand Suuronen, 2003;Fuller etal., 2008; Poletand Depestele, 2010; CaddyandSeijo,2011).Encirclinggears,thataredraggeda lim-iteddistanceatslowspeed,suchasbottomseines,aregenerally consideredlessdamagingthanbottomtrawls(Tulpetal.,2005; ICES,2006).Well-managedpurseseine fisheriesgenerally have minorecosystem impacts (Morgan and Chuenpagdee,2003).In somepurseseinefisheriesthereleaseofthecatchorportionsof thecatchfromseine(slipping)isacommonmethodofregulating thesizeandqualityofthecatch.Themortalityofpelagicspecies subjectedtoareleasemaybehighespeciallywhenthecrowding densityduringslippingishigh(e.g.HuseandVold,2010).Gillnets canbeanenvironmentallyfriendlyoptionbutmaybeproblematic duetonegativeimpactsonvulnerablespeciesorghostfishingby lostorabandonedgear(Rihan,2010).
3. Fuelconsumptionandgreenhousegasemissionsof fishingoperations
Fuelcostsforthefishingindustryhaverisensubstantiallyover thelastfortyyearsduringwhichtimetherewerethreemajorspikes whenoilpricesrocketed.Forinstance,between2003and2008the priceofcrudeoilrosefromUS$25perbarreltoUS$135perbarrel. Thisrapidincreaseseverelyaffectedtheprofitabilityofthecatching sector.Despite thedeclineofoilpricesafterthe2008peak,the mediumtermforecastsforoilpricesindicateahighlikelihoodfor furtherandsteadyincreases(InternationalEnergyAgency,2011).
FAOandWorldBankreportedthattheglobalfishingfleet con-sumesapproximately41milliontonnesoffuelperannumatacost of$22.5billion(WorldBankandFAO,2009).Thisamountoffuel generatesapproximately130milliontonnesofCO2 but thereis apaucityofdetaileddataonGreen HouseGas(GHG)emissions fromfishingvessels(e.g.Buhaug etal.,2009).While the inade-quatetechniquesforanalysismakeitdifficulttorankfishinggears andpracticesbytheirGHGemissions,relativefuelconsumption acrossmethodsoffersareasonablesurrogateforGHGemissions (exceptwhentheshare ofcatchrefrigeration is significant,see Wintheretal.,2009).Thosefisherieswhichareenergyintensive willtypicallyhavehigherGHGemissions.
Overall,approximately620Loffuel(527kg)isusedpertonneof landedfish(Tyedmersetal.,2005)butfuelconsumptionratevaries widelyaccordingtogeartypeandfishingpractice(Thrane,2004; Tyedmersetal.,2005;FAO,2007;Schauetal.,2009;Wintheretal., 2009).Operationaltechniquesandthedistancesbetweenfishing groundsandfishingports,aswellasvesseldesignand agewill allaffecttheamountoffuelconsumed.Therearealso substan-tialdifferencesin fuelconsumption betweenfisheries targeting groundfishorshellfishandthosetargetingpelagicfishorindustrial fish(Schauetal.,2009).
Studiesoffuelconsumptionpatternsbygeartypesreportthat passivefishinggearssuchaspots,traps,long-linesandgillnets gen-erallyrequireloweramountsoffuel(approximately0.1–0.4Lof
fuelperkgofcatch)thanactivefishinggearssuchasbottomtrawls (from0.5upto1.5L/kg).Bottomseinesrankbetweenpassivegear andbottomtrawlinfuelconsumption(Thrane,2004;Wintheretal., 2009;ICES,2010).Thevariationinfuelconsumption,however,can belargebetweenseinenetvesselsduetodifferentfishingeffort andsteamingtimestofishingground(Rúnarsson,2008).
Activepelagicgearslikemidwatertrawlsandpurseseines tar-getfishthatformdenseschoolsandenablethecatchofhundreds oftonnesoffishwithoneshorttoworhaul.Fuelconsumptionfor thesemethodsisgenerallylowinrelationtothequantityofcatch. Inparticular,purseseiningisoneofthemostfuelefficient tech-niquesforcatchingfish(approximately0.1Loffuelperkgofcatch) butthevesselsusingthisgearoftenspendsignificantlymoretime andthereforefuelsearchingforschoolsthanactuallycatchingfish (Thrane,2004;Schauetal.,2009;Wintheretal.,2009).
Fishingwiththehelp ofpowerfulartificiallightsis common practice in purse seining, squid jigging and stick-held-dip net-tingparticularlyinAsia.Whilethefishingoperationitselfisfuel efficient,theuseofthelightscanmakeitenergy intensive.For example, the coastal Japanese jigging boats (less than 20 GR), thatuseupto160kWelectricpowerforthelights,typically con-sumeabout600L offuelperoperationfor lightingtheselamps (Matsushitaetal.,2010).Tosaveenergy,theuseof low-energy LightEmittedDiodes(LEDs)hasemergedasanalternativewith fuelsavingsof20–30%butfishingefficiencymayalsobereduced (Yamashitaetal.,2012),andthereremainconcernsabouttheeffect oflightintensityontheenvironment(lightpollution).
Risingfuelcostshaspromotedresearchand developmenton variousenergysavingtechnologies(Curtisetal.,2006;Winther et al.,2009;Abernethy etal.,2010; Heredia-Quevedo,2010; E-Fishing,2010)butfuelcontinuestobeamajorcostandthecatching sectorremainsexposedtoprogressivelyincreasingfuelprices.In developing countries, mechanization continues to increase and highfuelpriceswillimpactsuchcountriesevenmorethan devel-opedcountries.Increasingfuelpricesoftenresultsingovernments establishingfuel-subsidiestosupporttheviabilityoffishing oper-ations(Sumailaet al.,2008,2010; World Bankand FAO, 2009) butsuchsubsidiesoftenworkagainstthedevelopmentof energy-efficientfishingoperations.
It isnoteworthythat lifecycleassessments (LCA)showthat significantenergyconsumptionandgreenhousegasemissionsare possibleevenafterthecatchistakenonboardandlandeddueto fishprocessing,cooling,packagingandtransport(e.g.Thraneetal., 2009;Wintheretal.,2009;Vázquez-Roweetal.,2011). Minimiz-ingimpactsandenergyconsumptionthroughouttheproductchain maybeanotherimportantelementneededtoreducethe environ-mentalcostsoffishing.
4. LowImpactandFuelEfficient[LIFE]capturetechniques
4.1. PotentialapproachesinLIFEfishing
138 119–120 (2012) 135–146
Fig.1.Asingle-boatbottomtrawldesignedtocatchspecieslivingonornearthe bottombytowingitsteadilyalongtheseabed.Thegroundgear(orthefootrope)of thetrawlhascontactwiththebottomwhilefishingandisdesignedtowithstand thisinteractionwithminimumdamage.Thehorizontalopeningofthenetmouthis maintainedbyotterboards.Floatsandweightsproducetheverticalopeningofthe net.
CourtesyofFAOandSEAFDEC.
scenariosthat willbeencountered duringfishing.Furthermore, wherefishingpractices arerootedintradition,thereisastrong resistancetochange.
Fuel consumption and ecosystem impacts can be reduced throughchangesinoperationaltechniquesandgeardesignwithout drasticchangesinbehavior(ValdemarsenandSuuronen,2003;van Marlen,2009;HeandWinger,2010;Rihan,2010).Thisapproach hasinmanycasesshownpromisingresultsandisoftenpreferredby thefishingindustry.Transitioningtoacompletelynewgeartype andfishingpracticeisanalternativethathasmanymore uncer-taintiesand highereconomicrisks.However,when incremental improvementsinexistingtechnologydonotallowlow-impactand fuel-efficientfishing,alternativepracticesand/orgearmayneedto beconsidered.
4.2. Increasingtheoperationalefficiencyandreducingseabed impactsofdemersaltrawling
Trawls(Fig.1)areflexiblegearthatcanbeusedonmanytypes ofareasandgrounds,inshallowanddeepwaters,andbysmalland largevesselsforawiderangeoftargetspecies.Thesecharacteristics havemadetrawlingthepreferredfishingmethodformanyfishers. Currently,trawlingmaybetheonlyeffectivesolutionfor captur-ingcertainspecies,forexamplecertain“shrimp”species.However, bottomtrawlinghasbeenidentifiedasoneofthemostdifficult methodstomanageintermsofbycatchandhabitatimpact.
Therearemanytechniquesandoperationaladaptations avail-abletoreducethedragandweightofthebottomtrawlgearand therebytoreducefuelconsumptionandseabedimpacts(Table1). Someof these techniques have been reported to reduce envi-ronmental impacts and gear drag withoutmarked decrease of thecatchofthetargetspecies(e.g.Glassetal.,1999;He,2007; Valdemarsenetal.,2007;Queiroloetal.,2009;vanMarlen,2009). ForinstanceinthebottomtrawlfisheriesinMexico,Colombiaand Chile,severalmodificationshavebeensuccessfullytestedintrawls toreducebycatchandfuelconsumption.Areductionofthegear dragbetween20and35%andfuelsavingbetween23and43%have beenreportedinthesetests(Zú ˜nigaetal.,2006;Rico-Mejíaand Rueda,2007;Meloetal.,2008;Heredia-Quevedo,2010).
Moreworkisneededtoimprovetheconstructionofdifferent componentsoftrawlgeartominimizefrictiononthebottomand
Fig.2.Abottomseinehaslongtowingropesextendingfromthewingsofthenet thatherdthefishintothepathofthenet.Theboathaulsropessimultaneously whensteamingslowlyforward.Thehaulingspeedoftheropesisincreasedgradually towardstheendoftheoperation.
CourtesyofFAOandSEAFDEC
toreduceoverallgeardrag.Technologyshouldbefurther devel-opedtoautomaticallymeasureandadjustpressureoftrawldoors andgroundgearontheseabed.Anexampleofthisapproachisa systemdevelopedinSpaintocontrolthebottomfishinggearof thefleetoperatingclosetoagaspipeline(ICES,2010).Inthiscase, thesystemmonitorsandrecordsfishinggearparameterswiththe geographicalpositionofeachsensor(installedonthedoorsandthe headropecenter)relativetothepipeline.Thisallowsvesselsinthe vicinityofthepipelinetoraisetheirgearoveritwithoutdamageto theirgearorthepipeline.Oneexamplewhereseabedcontacthas beenreducedwhilecatchingefficiencywasmaintainedistheuse ofballastelementsordropperchainstoholdthefootropenear,but notcontacting,thebottom(HeandWinger,2010).Insomefisheries movingfrombottomtrawlingtosemi-pelagictrawlingcanmake trawlingactivitiesmoresustainableandenergyefficient(Jørgensen andValdemarsen,2010).
Inbeamtrawls,progresshasbeenmadeinrecentyearsin devel-opingalternativegeardesignsthatreducetheamountoftickler chains,avoidexcessweightinthebeams,anduseotherstimuli(e.g. electricpulses)asanalternativetochainstoscarethetargetfish offthebottomandintothenet(PoletandDepestele,2010).The useofacoustic,light,oranyotheradditionalstimulitoenhance encountersbytargetspecieswithinthecatchingsphereoftrawl netsshouldbefurtherexplored.
Theuseof improvedlocation and targetingof fishwiththe helpofelectronicseabedmappingtoolsandintegratedGPS nav-igationsystems,have resultedinavoidanceofsensitivebottom habitatsandminimizefishingeffortandfuelconsumption. Multi-beamacousticshasbeensuccessfullyappliedtomappingscallop bedsontheBrownsBank,NovaScotia.Byapplyingfine-scale acous-ticmappingofbeds,theCanadianscallopfisheryonBrownsBank hasbeenabletoreducefishingtimeandtowingdistanceby70% between1998and1999whilestill harvestingthesamescallop quota(NationalResearchCouncil,2005).
4.3. Alternativefishingpracticesandgeartypes
4.3.1. Bottomseining
119–120 (2012) 135–146 139
Table1
Examplesofpotentialenergysavingtechniquesandoperationaladaptationstoreducefuelconsumptionandenvironmentalimpactsofdemersaltrawling.
Technique/measure Effect Constraints–barriers
Useofthinnerandstrongertwines,superfibres, knotlessnetting,squaremeshnetting,T90net,less netting,largermeshsize
Reducestheamount,weightandsurfaceareaof nettingandincreaseswaterflowthroughthenet, therebyreducingtheoveralldrag
Highpriceandavailabilityofmaterials;useof largermeshescanreducethecatchofmarketable speciesandsizes;costbenefitanalysesnotcarried outformostfisheries
Useofsmallerand/ormultiplenetsforspeciesthat exhibitpooravoidancebehaviortothepresenceof thefishinggear(e.g.shrimp,flatfish)
Reducestheoverallnettingsurfaceareaand therebytheweightandthedragwithoutreduction incatch
Policy,complexityofrigging,resistancetochange
Useofeffectivebycatchandbenthosreductiondevices (BRDs)
Allowstheescapeofunwantedspeciesorsizesof fishandotherunwantedobjectstherebyreducing theweightandoveralldrag
Variabilityinperformance,lackoftechnical supporttotestandoptimizeBRDs,lossofrevenues oftargetspeciesandsizes,perceptions
Usingfour-paneldesign(insteadoftypicaltwo-panel) inthebelly,extensionpieceandcodend,using squaremeshnettinginthebelly
EnsureseasierinstallationofBRDsandbetter geometryandstabilityforthebackendofthetrawl
Costbenefitanalysesnotcarriedoutformost fisheries
Useofhydrodynamictrawldoorsanduseofoptimal warplength(thatcorrespondstooptimaldoor efficiency)
Lessdrag(traditionaltrawldoorscontributeupto 25-35%oftheoverallgeardrag),lessweight,better fuelefficiency
Price,performancemonitoring,controlindifferent seaconditionsanddepths
Useofraisedorflyingtrawldoorswheretheweight elementofthedoorisseparatedfromthespreading element(doorscanbeflownabovetheseabedto openthetrawl)
Betterspread,lessdragandlesspressureonthe bottom(lessseabeddisturbances)
Price,performancemonitoring,controlindifferent seaconditions,depths,notsuitableforallspecies
Betterriggingofthegear,lighterground-gear,shorter ground-gear,lessdiscsandbetterrotationcapacity, self-spreadinggroundgear,compositeropes, lengthenedbridles,off-bottombridles,lightweight warps,andpropermatchingoftrawlnetandtrawl doors
Lighterandreducedcontactpointstoseabed,less seabedpressure,smallerimpactarea,lessdrag
Performancemonitoring
Useofhydrodynamicshapeoffloats,kites,beams, pulsetrawls,SumWing-design
Reduceddrag,reducedseabedcontact Performancemonitoring,speeddependence
Convertingfromsingleboattrawlingtopairtrawling Reducesfuelconsumption,lessseabeddamages Policy,humanbehavior
Improvingreal-timemonitoringandcontrolofgear withacousticgearsurveillancetechnology
Maintenanceofoptimalgearperformance,reduces energyconsumptionandbycatch
Price,training
Installingreal-timecameraobservationsystemfor informingskipperoffishbehaviorandcomposition inthetrawl
Helpstomaintainoptimalgearperformance, reducesbycatchandcollateralimpacts.Thenext stepmaybeanactivemechanismtorelease unwantedcatch
Price,training
Improvingnavigationandfishfinding,andimproving knowledgeonfishinggrounds(GPS,electronic charts,sea-bedmapping)
Maximizescatchesandminimizestime,energy andcollateralimpacts
Price,training
Useofspeedcontrols,reductionoftowingspeed Reducingspeeddirectlyreducesthefuel consumption
Humanbehavior
Vesselandpropulsionsystemoptimization,preventive maintenanceofvesselandengine,changeintrip planningpractices
Reducesfuelconsumption Price,humanbehavior
ontheseabed.Thelightgearandlowhaulingspeedmeansthat fuelusagemaybelowerthanforacomparabletrawlingoperation. Aseineischeaperandlessbulkythanatrawlandcantherefore beaneffectivetechniqueforsmallerandlowhorsepowervessels, dependingonthetargetspecies. Nevertheless,there areseveral operationallimitationsinseinenetting(Table2).
Bottomseinenetsaregenerallyregardedashavinglowimpact on benthos, although few specific studies have measured this impact(ICES,2006).Tulpetal.(2005)derivedfishingevent mor-talityratesforfourmainfishinggearcategories,includingbottom seine.Gearaveragemortalitiescalculatedacross12benthic inver-tebratephylawere0.25for beamtrawl, 0.1fortwo ottertrawl fisheries(Nephropsandmixedroundfish)andonly0.05forseine gears,showingseinestohavethelowestmortalityfortowedgears.
TwoCanadianreviewsrecentlyconcludedthatthemainimpact ofseiningisbycatchofbothundersizedindividualsofthetarget species and individuals of non-targetspecies (Donaldson etal., 2010;WalshandWinger,2011).Intermsofother environmen-talimpacts,includingbycatchofprotectedspeciessuchasmarine mammals,pinnipedsandseabirds,therearenoreportedimpacts otherthanafewbenigninteractions.InAustralia,some interac-tionswith sealsare noted by Wayte et al. (2004)but with no resultantmortality. Donaldsonet al. (2010)reported bycatches of winter skate (Leucoraja ocellata) by seiners in the Southern Gulf of St. Lawrence, a species that has been listed as endan-gered.
140 119–120 (2012) 135–146
Table2
Potentialadvantagesanddisadvantagesofdemersalgearexploredinthisstudy.
Gear Advantages Disadvantages Priorityactions
Trap-netandpound-net •Lowenergyuse
•Selectiveforspeciesandsizes(if
properlydesigned)
•Livecapture(possibility) •Minimalhabitatimpact
•Noteasilyportable
•Operationmaybelaborintensive •Maintenancelabor-intensive •Expensivetoconstruct
•Operationlimitedtorelativelyshallow
waters
•Occasionallysignificantbycatches
•Developmentofdesignsand
practicesthatpreventtheentangling ofnon-fishspeciesinthemooring ropesandnettingsofthetrap
Pot •Lowenergyuse
•Flexibleandtransportable •Canbeoperatedinroughbottoms •Selectiveforspeciesandsizes •Livecapture—goodcatchquality •Potentialforlowbycatchmortality •Minimalhabitatimpact
•Predatorsafe
•Availabilityofwidevarietyof
suitablelocal(natural)materials
•Cheaptoconstruct
•Lowcaptureefficiencyformanyfinfish
species
•Ghostfishingoflostpot
•Lostpotscontributetomarinedebris •Lowcatchrates
•Fishbehaviorstudiestoenhance
ingressandreduceescape
•Alternativeattractants •Comparativefishingexperiments •De-ghostingtechnologies
•Humanbehavior–barrierstoachange •Researchanddevelopmentworkat
infancy
•Laborintensiveandtimeconsumingto
operate
•Incidentalbycatchofnon-targetspecies •Snaggingonbenthicepifauna •Availabilityandpriceofbait •Lowcatchrateformanyspecies
•Baitissue/baitavailability
•Possibletotargetspecificsizerange
allowingeffectiveexclusionofsmall andlargefish.
•Relativelycheaptomanufacture
•Laborintensive
•Mostfishdieduringcapture •Catchquality
•Poorspeciesselectivity
•Captureofnon-targetspecies,oftenseabirds,
turtlesandothercharismaticspecies
•Ghostfishingoflostnets •Benthicimpacts
•Developmentofpracticesand
technologiesthatreducebycatch
Bottomseine •Relativelylowenergyuse
•Possibletooperatewithlow
horsepowervessels
•Reducedbottomimpactscompared
tobottomtrawling
•Requireslessspacethanbottom
trawling(possibletooperateinsmall patchesofgoodground)
•Allowseasymovingbetweenfishing
ground
•Relativelylowgearcosts •Lessgeardamageandwearthanin
bottomtrawlfishery
•Easiertouseandrepair(thanbottom
trawl)
•Highfishquality
•Greatscopeformodificationsand
improvements
•Notasflexibleandeffectiveasbottom
trawling
•Operationlimitedtorelativelyflatandclean
grounds(warpssnageasilyonboulders)
•Operationcanalsoberestrictedbydepth,
strongtides,badweatherandlackofdaylight
•Noteffectivefornon-herdedanimalssuchas
shrimpandnephrops
•Operationrequiresgoodskills •Workloadcanberelativelyhigh •Relativelypoorselectivityforspeciesand
sizes
•Potentialseabedimpacts •Alargeseinecanbeexpensiveto
manufacture
•Researchanddevelopmentwork
neededinimprovingtheoperationon roughgrounds,inseacurrents,andin deeperwaters
•Substantialenergysavingpossibility •Trainingisneededbecausethe
technologynotwellknown
Beamtrawl •Effective
•Relativelyeasyandpracticaltouse
•Seabedimpacts •Highfuelconsumption •Bycatch
•Suitableonlyforrelativelycleangrounds •Expensive
•Operationrequireshighskillsandadvanced
equipments
seeTable1
periods of the capture process leading to higher catch quality relative to trawling where fish collectin the codend through-outhaulsoften lastingmany hours.In Norway,bottom seining is the mostwidely used fishing method to collectfish for the
119–120 (2012) 135–146 141
Fig.3. Atraditionalstationarytrap-net(pound-net)mountedonstakesinshallow water.Trap-netsoftenhavealongleadernetplacedacrossthepathofmigrating fishtoguidethemtowardstheholdingchamberfromwhichescapeishamperedby funneldevicesorgorges.
CourtesyofFAOandSEAFDEC.
4.3.2. Trap-netfishing
Trap-nets(Fig.3)arepassivefishinggearsthathaveevolved fromsimplebarrierstomodern-daynettingenclosureswith herd-ingandretainingdevices.Theyareusuallysetontraditionalsitesin thepathofmigratingfishincoastalwaters.Leader-nettingherds andguidesfishintoaholdingchamberorpoundwheretheyare entrappedandretained.Designsareuniquetoparticularlocations (Slack-Smith,2001;HeandInoue,2010).Trap-netfisheriescanbe energyefficient,selectiveandhabitat-friendlyprovidingcatchesof highqualitysincethecatchisusuallyalivewhenbroughtaboard thevessel.Thebenefitsoflivecapturetechniquesprovidethe oper-atorwithagreaternumberof options– tosellimmediately,to controlsupply tothemarketortoholdandgrow/fatten–allof whichcancontributetoaddedvalueofthecatch.
Thepontoontrap(Fig.4)isanewinnovationandoffers vari-ousadvantagescomparedtotraditionaltrap-netssuchaseasyto transport,handleandhaul,andisadjustableintermsofsize,target speciesandcapturedepthaswellasbeingpredator-safe(Suuronen etal.,2006;Hemmingssonetal.,2008;LehtonenandSuuronen, 2010;Lundinetal.,2011).Potentialnewinnovationsmayinclude large-scale ocean-based fish traps which may use chemical,
Fig.4. Apontoontrapoffersvariousadvantagescomparedtotraditionaltrap-nets suchaseasytransportationandhauling.Itisadjustableintermsoftargetspecies andcapturedepth.Thispontoontraphasattachedanadditionalsmallertrapfor live-captureofsealthatattempttoenterthegear.
CourtesyoftheFinnishGameandFisheriesResearchInstitute.
electrical,lightoracousticattractants.Alargestationarytrap-net mayattractmarinelifeandfunctionasanartificialreef.This charac-teristichasattractedresearchanddevelopmentworkparticularly inAsia(Jeng,2007).Incidentalcaptureofnon-targetspeciesisa probleminsometrap-netfisheries,anddevelopmentofdesigns andpracticesthatpreventtheentanglingofnon-fishspeciesinthe nettingandmooringropesofthetrapareneeded(Table2).
4.3.3. Potfishing
A pot is a small transportable cage or basket with one or moreentrancesdesignedtoallowtheentryoffish,crustaceansor cephalopods,andpreventorretardtheirescape.Potsareusually setonthebottom,withorwithoutbait,singlyorinrowstethered toasingleline,andconnectedbyropetoabuoyonthesurface. Theycanbehauledbyhandormechanizedpothaulers.
Potsareextensivelyusedinthecaptureofcrustaceanssuchas lobsterandcrab(e.g.Krouse,1989; Miller,1990;Ahumadaand Arana,2009).Theuseofpotsforcapturingfinfishhasalong tradi-tioninmanypartsoftheworldbuthasprogressivelydeclinedsince the1960satleastpartlyduetotheintroductionofnylongillnets andtheexpansionofdemersaltrawling(Thomsenetal.,2010).Pots typicallyhaverelativelylowcaptureefficiencyforfinfish,especially whencomparedtogearssuchastrawls,seinesandgillnets. How-ever,potsareaneconomicallyviablefishingmethodforPacificcod andsablefishintheGulfofAlaskaandtheBeringSea(Thomsen etal.,2010).Theyarealsosuccessfullyusedinfisheriestargeting coralreefspeciesinhabitingareaswheretheuseofactivegearsis bannedornotpractical.
Pots, liketrap-nets,possess severalappealing characteristics comparedtomanyotherfishinggears:lowenergyuse,minimal habitatimpact,highquality,andlivedelivery(Slack-Smith,2001; Thomsenetal.,2010;Table2).Potscanbeleftinthewaterforalong timeandthecatchisstillretainedingoodcondition(O’Brienand Dennis,2008).Somefisheriesthatspecificallytargetthecapture oflivefishhavedevelopedpotsastheprincipalcapturemethod. Live-capturemaybringasubstantiallyhigherpricetothefisher. Wherethequalityofthecatchiscritical,potsmaybethepreferred capturemethod.Whilepotfishingvessels,ingeneral,havelowfuel use,somefisheriesexhibithighfueluse.Forinstanceinthelobster fisheriesintheGulfofMaine,onevesselmaysetover 800pots pertrip,andliftmultiplepotsperday.Theseoperationsrequire steamingathighspeedsoverlongdistances.
Because fish usually remain uninjured in the pot until it is hauled,unwantedbycatchorganismscanbereleasedwithahigh probabilityofsurvival,althoughfactorssuchasairexposure, baro-traumas,orthermalshockmayjeopardizesuchpotentialbenefits (Broadhurstetal.,2006).Bycatchfrompotscanbeminimizedby usingappropriate baits, meshsizes, materialsandchoosing the correct size,shape, location and design ofentrance and escape openings(Boutsonetal.,2009;Aranaetal.,2011;Table2). Never-theless,thepotentialforreducingunwantedbycatchandincidental mortalityinpotfisheriesrequiresfurtherinvestigation.
142 119–120 (2012) 135–146
Fig.5. ANewfoundlandcollapsiblecodpotisbeinghauledonboard. CourtesyofPhilipWalsh, FisheriesandMarineInstitute,MemorialUniversity, Canada.
1994). Therelease rateof odor(attractant) froma natural bait decreases rapidly over time (Løkkeborg, 1990). A system that prolongstherelease ofbait odorand in whichtheodorplume (dispersal)iscontrolledcouldincreasepotefficiency.Researchhas shown thatlow catchingefficiency of potsis oftendue to low ingressrateratherthanlownumbersoffishbeingattractedtothe gear,anduseofadditionalstimulisuchaslightandsoundmay triggermorefishtoenterapot(Thomsenetal.,2010).Morework isneededtodefineoptimalbaitingstrategyandthepotentialfor usingartificialbaits.
Collapsible(foldable)potsmadeofpolyethylenenetting(Fig.5) have recently been tested on the east coast of Canada with promisingresultsforAtlanticcod(Safer,2010;SullivanandWalsh, 2010).Fishremainedaliveinthepotsuntiltheywerehauledand fishersreceivedsignificantlyhigherpriceofthesefishcompared tothegillnet-caughtfish(Safer,2010).Afloatingpotdeveloped inNorwayforcodprovidesanotherexampleofaninnovativepot designthathasshownsignificantpotential(Fureviketal.,2008). Floatingthepotoffbottomallowsthepottoturnwiththecurrent sotheentrancealwaysfacesdowncurrentresultinginsignificantly highercatchrateoftargetcod. Floatingthepot offbottomhas provedtobeaneffectivewaytoavoidnon-targetcatchofcrabs, andmayalsoreducetheseabedimpactscomparedtoapotsitting onthebottom.Thesametypeoffloatingpothassuccessfullybeen testedinSwedenasanalternativetothegillnetfisheryforcodthat facesproblemswithdepredationbyseals(Ovegårdetal.,2011).
4.3.4. Hookandlines
Hookandlines(Fig.6)refertogearswhichfish,squid,orother speciesareattractedbynaturalorartificialbait,orlureplacedon ahook,onwhichtheyarecaught.Hook-and-linegearmaybeused withonehookorwithlargenumbersofhooks,eachfixedtothe endofaline.Widevariationsinhookandlineconfigurationand theirmodeofoperationhavemadethemaneffectivegeartype forawidevarietyofspecies(George,1993;BjordalandLøkkeborg, 1996;Thomasetal.,2007;Løkkeborgetal.,2010).Itisaversatile fishingmethod,employedbyawiderangeofvesselsfromartisanal boatstolargemechanizedlong-liners withon-boardprocessing andfreezingplants.Hookandlinefishingisgenerallyconsideredan environmentallyfriendlybutlabor-intensivefishingmethodthat catchesfishof veryhighquality (Table2).Fuelconsumption in thesefisheriesisrelativelylowalthoughitcanbeincreased signif-icantlydependingonthedistancesvesselshavetotraveltofishing ground(e.g.coastalhookandlinefisheriesversushigh-seastuna long-lining).Inaddition,wherenaturalbaitisused,theremaybe
Fig.6. Abottom-setlong-lineconsistsofahorizontalmainlinewithsnoods (gan-gions)andbaitedhooksattachedatintervals.Thegearisusuallyanchoredateither endofthelinewithweights.Thelengthofthelonglinecanrangefromafewhundred meterstomorethan50km.
CourtesyofFAOandSEAFDEC.
aneedfortargetedfishingactivitytoobtainthebaitandthiswill increasethetotalamountoffuelburned.
Thecaptureprincipleofhookandlinefishingistoattractfish tohooksusingodor-releasingbaitalthoughthevisualstimuli pro-videdbythebaitmayalsoplayarole.Thecharacteristicsofthe baitarefundamentallyimportantin thecaptureprocess; hook-ingprobabilityisspeciesspecific,whilelargerbaitstendtocatch largerfish(LøkkeborgandBjordal,1992;BjordalandLøkkeborg, 1996).Theshapeofthehookaffectsnotonlythehookingrates butalsothetypesoffishcaught.Moreresearchshouldbeaimedat thedevelopmentofalternativebaitsbasedonsurplusproductsor wastematerials(Løkkeborg,1991;Ericksonand Berkeley,2008) since mostbaitsusedtoday aremade fromfishand otherraw materialsthatmightbebetterusedforhumanconsumption.Bait alsohasahighassociatedcostinmostlong-linefisheries,asthese resourcesalsoaresoldforconsumption.LightsticksandsmallLED lightsareoftenusedinpelagicfisheriestargetingswordfish(Hazin etal.,2005).Awideruseofpotentialnewattractantsinlong-line fisheriesshouldbeexploredfurther.
Long-linefishingcancausetheincidentalmortalityofseabirds, sea turtlesand sharks, many of which are either protected or endangered (Montevecchi, 2001; Erickson and Berkeley, 2008; Løkkeborg,2011).Becausebycatchinteractionsmayreducegear efficiency(andprofitabilityoffishing)duetotheassociatedloss ofbaits,itisintheinterestoffishermentoreducesuch interac-tions.Thereareseveralmitigationmeasurescapableofreducing thelikelihoodofincidentalseabirdandseaturtlebycatch(Gilman etal.,2005;FAO,2009;Løkkeborg,2011;Gilman,2011).Long-lines setwitha streamerlineinordertodeterseabirdsfromseizing thebaitedhooksgave32%highertargetcatchratesthanthoseset withoutthismeasureinademersallong-linefishery(Løkkeborg, 2011).HookdesignssuchastheCircle-hookand“weakhook”have successfullybeendevelopedtohelpincreasethesurvivalratesof animalsthatarereleasedfromthehookbuttheeffectsarespecies specific(Yokotaetal.,2006;NMFS,2011).EricksonandBerkeley (2008)demonstratedthatartificialbaitscanreducebycatchon cer-tainunwantedspeciessuchassharkswhilemaintainingcatchrates oftargetspecies.
119–120 (2012) 135–146 143
Fig.7. Abottomsetgillnettypicallyconsistsofasinglewallofnettingheldvertically inthewaterbyafloatlineandweightedgroundline(leadline),andkeptstationary byanchorsorweights.
CourtesyofFAOandSEAFDEC.
fisheries offer the potential to conduct fishing without severe habitatdamagerelativetomanyothermethods.Thepotentialfor catchingspeciesthatarenotcurrentlypursuedwithhookandline gearshouldbeinvestigated.
4.3.5. Gill-netting
Bottomsetgillnets(Fig.7),encompassinggillnets,entangling nets and trammel nets,are widely usedthroughout theworld. Improvedmaterialsandtechniqueshaveallowedtheexpansion ofsuchgeartoroughergroundsincludingwrecksandreefsand deeper waters (He and Pol, 2010). Gill-netting is a versatile, fuel-efficientand flexible fishing methodbut can alsobe labor intensivebecausethefishersmustmanuallyreleaseoruntanglethe catchfromthenet.Withtheexceptionoftrammel-nets,the size-selectivityforfinfishisgenerallygoodbut,dependingonspecies assemblagesin theareafished,species-selectivitymaybe poor (ValdemarsenandSuuronen,2003).
Fishcaughtbygill-nettingareoftenmortallyinjuredduring cap-ture,accordinglycatchistypicallyoflesserqualitythanwithpots, trapsandlong-lines.However,whensoak-times(i.e.thetimethe netisleftinthewatertofish)areshortgillnetsmayprovidecatches ofrelativelyhighquality.Inacomparativeexperimentconductedin Canada,themortalityforgillnet-caughtAtlanticcodwaslow(<5%) at6hsoaktimebutraisedtoabout30%with12hsoaktimeand continuedtoincreasewithlongersoaktimes(O’BrienandDennis, 2008).Potsandlong-linesshowedsignificantlyhighersurvivaland fishquality.Thepracticeofleavingnetsatseawithlongsoaktimes oftenleadstohighdiscardingofdeadandpartlydecomposedcatch. ThisisaproblemforinstanceinmanyNEAtlanticgillnetfisheries (Hareideetal.,2005).
Anydirectbenthicimpacts fromgillnetfishingoperationsis likely to occur only during retrievalof the gear, during which thenetsandleadlinesaremorelikelytosnagbottomstructures. Inparticular,reef-formingorganismsandothersessileepibenthic organismsfrequentlybecomeentangledingillnetsandare dam-agedwhenthenetsarehauled.Likewise,thecaptureofseabirds, seaturtlesandmarinemammalsbygillnetshasreceivedincreased attention(Davoren,2007;Gilmanetal.,2010;Rihan,2010).These problemscanbereducedbyvariousgearmodificationsbutthese mayreducethecatchingefficiencyofnetsforcertaintargetspecies (ValdemarsenandSuuronen,2003;Løkkeborg,2011).Moreover, efficientmeasurestoreduceseabirdbycatchingillnethavenotyet beenidentified(Løkkeborg,2011).
Thereis concernabout impacts ofghostfishing bylost and abandonedgillnetswhichmaycontinuetofishforseveralweeks, monthsorevenyears,dependingontheirconstruction,thedepth, andprevailingenvironmentalconditions(Humborstadetal.,2003; Hareideetal.,2005;BrownandMacfadyen,2007).Thisproblem canbepartiallyaddressedbytheuseofbiodegradablematerials orothermeanstodisableunattendedgillnets(Matsushitaetal., 2008).However,commerciallyviablesolutionsarefewifany. Bet-terresultsmightbeobtainedbyincreasingeffortstoavoidlossof gillnets,orbyfacilitatingthequickrecoveryoflostnets.Insome areas,gillnetfishinggroundsareperiodically“swept”forlostnets. Lostgillnetsarecommoninareaswherebottomtrawlingactivity ishigh,sincethetrawlgeardisplacesorcutsthenets,ortheirbuoy lines.Abandonedgillnetshavebeenidentifiedasaparticular prob-lemindeeperwatersandwhenlongfleetsofgillnetsaredeployed (Hareideetal.,2005;BrownandMacfadyen,2007;Grahametal., 2010).Manyoftheseproblemscanbemitigatedbybetter cooper-ationbetweenfishergroupsthroughthedevelopmentofcodesof conduct.Gillnetfishingrequiresacarefulselectionofthefishing ground.
5. BarrierstothetransitiontoLow-Impactand Fuel-Efficientfisheries
Throughtechnologicalimprovementsandbehavioral change, capturefisheriescandecreasethedamagetoaquaticecosystems, reduceemissionsandlowerfuelcostswithoutexcessiveimpactson fishingefficiency.Eachfishinggearandpracticedescribedherehas advantagesanddisadvantages(Table2),andthesuitabilityofeach gearlargelydependsontheconditionsandspeciestobetargeted. Despitethis,therearebarrierstothetransitiontolow-impactand lessfuel-intensivepracticesandgears(Glassetal.,2007;Jennings andRevill,2007;GascoigneandWillsteed,2009).Theseinclude:
•lackoffamiliaritywithcost-effectiveandpracticalalternatives; •availabilityoftechnologies;
•incompatibilityofvesselswithalternativegear; •riskoflosingmarketablecatch;
•additionalwork;
•concernswithsafetyatseabyusingunfamiliargearsor strate-gies;
•highinvestmentcosts;
•lackofcapitalorrestrictedaccesstocapital; •ineffectivetechnologyinfrastructuresupport;and •inflexiblefisheriesmanagementsystems.
Rigid regulatoryregimescancreate problemsthat fishersmust solveandthismayeffectivelydenyfisherstheflexibilityrequired toinnovateandadoptnewtechnologies.Furthermore,theabsence of uptake byallfishers mayputanindividual fisherat a com-mercial disadvantage.Fromanindividual fisher’spoint of view thefundamentalquestionis:whataretheeconomic benefitsin switchingtonewgears andpractices. Fishers willnotwillingly adopttechniquesthattheyfearwillincreasecostsand/or work-loadandreduceearnings.Fishingeffectivenessandpracticalityof newdesignsareimportant.Aninefficientgearwillnotbeused.
144 119–120 (2012) 135–146
spaceinwhichtooperateasefficientlyaspossible.Onepossibility istoallocatetoLIFE-fishingextraquotaorpreferentialaccessto specificfishingareas.Reducingthe‘racetofish’byimposing indi-vidualquotascanfacilitatetheadoptionofLIFEfishingpracticesin somefisheries.
Understandingthe“humanbehaviorbarriers”thathavetobe overcomeandwhatthecatalyticdriversmightbethatcouldchange thesebehaviorsis criticallyimportant(Branchet al.,2006;Hall et al., 2007; Gjertsen et al., 2010). Christy (2000) argued that inmanysmall-scalefisheries,a decentralizedcommunity-based managementwouldmosteffectivelypermitfisherstoadoptthose measuresandpractices,mostsuitablefortheirparticularsituation andthemostsustainableoptioninthelongrun.Healsoargued thatashifttomorestationaryfishinggearswouldimprovethe abil-ityofthecommunitiestoestablisheffectivefisheriesmanagement systems.Gutiérrezetal.(2011)demonstratedthecritical impor-tanceofprominentcommunityleadersandrobustsocialcapital, combinedwithclearincentivesthroughcatchshares,in promot-ingsuccessfulfisheriesandmanagementofaquaticresources.They identifiedstrongleadershipasthemostimportantattribute con-tributingtosuccessinfisheriesco-management.Interestingly,the researchshowedthatlessimportantconditionsincluded enforce-mentmechanisms,long-termmanagementpoliciesandlifehistory of the resources. It is also obvious that where fish are more abundant,the relative competitiveness of passive fishing gears improves.Restoration of depleted fish stocks is fundamentally importanttothesuccessofLIFEfishing.
6. Conclusions
Withcontinuedexposuretorisingfuelprices,thefishing indus-trywillcontinuetosufferalossinprofitability.Itisapparentthat ifresourceabundanceandfishpricesremainstatic,some conven-tionalbottomtrawl,beamtrawlanddredgefisheriesmaybecome uneconomic while passive gear fisheries or seine net fisheries shouldbelessaffectedbythesepressures.Sincecapture produc-tionfromdemersaltrawlfishingcurrentlyformsasignificantpart oftheworldcatchfordirecthumanuse,thisscenariocouldhavea majoraffectonglobalfishsupplyandfoodsecurity.
Thefishingsectorshouldstrivetoloweritsfuelconsumption, reduceitscarbonfootprint,anddecreaseecosystemimpacts.To achievesignificantandpermanentreductions,governmentswill needtostrengthentheirfisheriessectorenergypolicyandcreate anenablingenvironmentinwhichfishingsectorcanrapidlyand comprehensivelyadoptLIFEfishingtechnologiesandpractices.The developmentandadoptionofLIFEfishingtechniquesofferscopefor maintaininglongtermprofitabilityandsustainability.
Excessiveuseofanygeartype,evenlow-impactgear,maycause overexploitationandecosystemimpactsiftotalfishingeffortistoo high.Therefore,withoutbeingpartofaneffectivefisheries manage-mentsystem,animprovementinfuelefficiencywillnotnecessarily leadtoasustainedreductioninthetotalfuelconsumptionbecause higherreturnsmayattractnewentrantsintothefishery.The adop-tionofLIFEfishingtechniquesshouldthereforebeseenasoneofthe strategiesthatcanbeusedtoimprovetheoutcomesforafishery thatisoperatingwithinanEAFbasedmanagementsystem.
Globalresearchanddevelopmentprioritiesshouldbe estab-lishedwithworkundertakentosupportdevelopmentanduptake ofLIFEfishing.Theseinclude(1) promotingandfundingstudies ofcost-effectivegeardesignsandfishingoperations,includingthe establishmentoftechnologyincubatorsandotherpublic–private sectorinitiativestocommercializeeconomicallyviable,practical andsafealternativestoconventional fishingmethods,(2) anal-ysisand review ofbest practiceoperations acrossfisheries, (3) improvementoftechnicalabilityamongfishers,(4)establishment
ofappropriateincentives,and(5)executionofrobustbutflexible fisherymanagementpoliciesthatsupportthetransitionto alterna-tivetechnologies.Closecooperationbetweenthefishingindustry, scientists,managersandotherstakeholderswillbenecessaryto enablethedevelopmentandintroductionofLIFEfishing technolo-gies.
Giventhatfishingisacomplexsystem,changingonevariable canhave aripple effectonothervariables and theaffectsmay notchangeinalinearmanner.Therefore,changingonevariable maynotnecessarilyachievethedesiredorexpectedoutcome.As wemovetoaddressthenumerousenvironmentalandcommercial problemsfacingfisheries,weneedtotakeacomprehensiveand holisticapproachand notindependentlyfocus ona singlefacet ofthemanydriversthataffectfisheryperformance.Clearly,the optimalsolutionswillvaryamongfisheries.
Acknowledgements
The authors incorporated valuable advice from Kevern Cochrane,RickFletcher,DonGunderson,DuncanLeadbitter,Robert LeeandRolfWillmann.Theauthorsalsoappreciatethe prepara-tionoffishinggearillustrationsbytheSoutheastAsianFisheries DevelopmentCenter(SEAFDEC).
References
Abernethy,K.E.,Trebilcock,P.,Kebede,B.,Allison,E.H.,Dulvy,N.K.,2010.Fuelling thedeclineinUKfishingcommunities.ICESJ.Mar.Sci.67,1076–1085. Ahumada,M.,Arana,P.,2009.Artisanalfishingforgoldencrab(Chaceonchilensis)
offtheJuanFernándezarchipelago,Chile.Lat.Am.J.Aquat.Res.37,285–296. Al-Masroori,H.,Al-Oufi,H.,McIlwain,J.L.,McLean,E.,2004.Catchesoflostfishtraps
(ghostfishing)fromfishinggroundsnearMuscat,SultanateofOman.Fish.Res. 69,407–414.
Anticamara, J.A.,Watson,R.,Gelchu, A., Pauly, D.,2011. Globalfishing effort (1950–2010):trends,gapsandimplications.Fish.Res.107,131–136. Arana,P.M.,Orellana,J.C.,DeCaso,A.,2011.Escapeventsandtrapselectivityinthe
fisheryfortheJuanFernándezrocklobster(Jasusfrontalis),Chile.Fish.Res.110, 1–9.
Barber,C.V.,Pratt,V.R.,1998.Poisonandprofits:cyanidefishingintheIndo-Pacific. Environ.Sci.PolicySust.Dev.40,4–9.
Bianchi,G.,Skjoldal,H.R.(Eds.),2008.TheEcosystemApproachtoFisheries. FAO-CABI,363pp.
Bjordal,A.,2002.Theuseoftechnicalmeasuresinresponsiblefisheries:regulationof fishinggear.In:Cochrane,K.L.(Ed.),AFisheryManager’sGuidebook. Manage-mentMeasuresandtheirApplication.FAOFisheriesTechnicalPaperNo.424. Rome,pp.21–47.
Bjordal,A.,Løkkeborg,S.,1996.Longlining.FishingNewsBooks,Oxford,156pp. Boutson,A.,Mahasawasde,C.,Mahasawasde,S.,Tunkijjanukij,S.,Arimoto,T.,2009.
Useofescapeventstoimprovesizeandspeciesselectivityofcollapsiblepotfor blueswimmingcrab,Portunuspelagicus,inThailand.Fish.Sci.75,25–33. Branch,T.A.,Hilborn,R.,Haynie,A.C.,Fay,G.,Flynn,L.,Griffiths,J.,Marshall,K.N.,
Randall,J.K.,Scheuerell,J.M.,Ward,E.J.,Young,M.,2006.Fleetdynamicsand fishermenbehavior:lessonsforfisheriesmanagers.Can.J.Fish.Aquat.Sci.63, 1647–1668.
Broadhurst,M.K.,2000.Modificationstoreducebycatchinprawntrawls:areview andframeworkfordevelopment.Rev.FishBiol.Fish.10,27–60.
Broadhurst,M.K.,Suuronen,P.,Hulme,A.,2006.Estimatingcollateralmortalityfrom towedfishinggear.FishFish.7,180–218.
Brown,J.,Macfadyen,G.,2007.GhostfishinginEuropeanwaters:impactsand man-agementresponses.Mar.Policy31,488–504.
Buhaug,Ø.,Corbett,J.J.,Endresen,Ø.,Eyring,V.,Faber,J.,Hanayama,S.,Lee,D.S.,Lee, D.,Lindstad,H.,Markowska,A.Z.,Mjelde,A.,Nelissen,D.,Nilsen,J.,Pålsson,C., Winebrake,J.J.,Wu,W.-Q.,Yoshida,K.,April2009.SecondIMOGHGStudy2009. InternationalMaritimeOrganization(IMO),London,UK,220pp.
Caddy,J.F.,Seijo,J.C.,2011.Destructivefishingpracticesbybottomgears:abroad reviewofresearchandpractice.CienciaPesquera19,5–58.
Chopin,F.S.M.,Arimoto,T.,1995.Theconditionoffishescapingfromfishinggears—a review.Fish.Res.21,315–327.
Christy,F.T.,2000.Commonpropertyrights:analternativetoITQs.In:Shotton,R. (Ed.),UseofPropertyRightsinFisheriesManagement.FAOFisheriesTechnical PaperNo.404/1,pp.118–135.
Curtis,H.C.,Graham,K.,Rossiter,T.,2006.OptionsforImprovingFuelEfficiencyin theUKFishingFleet.SeafishIndustryAuthority,ISBN0-903-941-597,48pp. Davies,R.,Cripps,S.,Nickson,A.,2009.Definingandestimatingglobalmarine
fish-eriesbycatch.Mar.Policy33,661–672.
119–120 (2012) 135–146 145
Dickson,W.,1959.TheuseoftheDanishseinenet.In:Kristjonsson,H.(Ed.),The Mod-ernFishingGearoftheWorld.FishingNewsBooksLtd.,London,pp.375–387. Donaldson,A.,Gabriel,C.,Harvey,B.J.,Carolsfeld,J.,2010.ImpactsofFishingGears
otherthanBottomTrawls,Dredges,GillnetsandLonglinesonAquatic Biodi-versityandVulnerableMarineEcosystems.DFOCan.Sci.Advis.Sec.Res.Doc. 2010/011.vi+84pp.
Dreyer,B.,Heide,M.,Nøstvold,B.H.,Midling,K.Ø.,Akse,L.,2006.Fangstbaserat akvakultur– status,barriererogpotensial.FiskeriforskningRapportNr.2006/19. E-Fishing,2010.FirstInternationalSymposiumonFishingVesselEnergyEfficiency, Vigo,Spain,May2010.Papersandpresentationsavailableat http://www.e-fishing.eu/papers.htm.
Einarsson,H.A.,2008.EnvironmentalimpactofDanishseine.In:Presentationat theInternationalWorkshoponSeineNetFishing,Keflavík,Iceland,29–30May 2008.
Erickson,D.,Berkeley,S.,2008.Methodstoreducebycatchmortalityinlongline fisheries.In:Pikitch,E.,Camhi,M.(Eds.),SharksintheOpenOcean:Biology, FisheriesandConservation.BlackwellPublishing,pp.462–470.
FAO,2005.PuttingintoPracticetheEcosystemApproachtoFisheries.FAO,Rome, 76pp.
FAO,2007.TheStateofWorldFisheriesandAquaculture2006.FAO,Rome,162pp. FAO,2009.GuidelinestoReduceSeaTurtleMortalityinFishingOperations.FAO,
Rome,128pp.
FAO,2010.TheStateofWorldFisheriesandAquaculture2010.FAO,Rome,197pp. FAO,2011.InternationalGuidelinesonBycatchManagementandReductionof
Dis-cards.FAO,Rome,73pp.
Fletcher,W.J.,Chesson,J.,Sainsbury,K.J.,Fisher,M.,Hundloe,T.,2005.Aflexibleand practicalframeworkforreportingonecologicallysustainabledevelopmentfor wildcapturefisheries.Fish.Res.71,175–183.
Fuller,S.D.,Picco,C.,Ford,J.,Tsao,C.-F.,Morgan,L.E.,Hangaard,D.,Chuenpagdee,R., 2008.HowWeFishMatters:AddressingtheEcologicalImpactsofCanadian Fish-ingGear.EcologyActionCentre,LivingOceansSocietyandMarineConservation BiologyInstitute,Canada,ISBN978-0-9734181-7-0,25pp.
Furevik,D.M.,Løkkeborg,S.,1994.FishingtrialsinNorwayfortorsk(Brosmebrosme) andcod(Gadusmorhua)usingbaitedcommercialpots.Fish.Res.19,219–229. Furevik,D.M.,Humborstad,O-B.,Jørgensen,T.,Løkkeborg,S.,2008.Floatedfishpot
eliminatesbycatchofredkingcrabandmaintainstargetcatchofcod.Fish.Res. 92,23–27.
Gabriel,O.,Lange,K.,Dahm,E.,Wendt,T.,2005.VonBrandt’sFishCatchingMethods oftheWorld,fourthed.BlackwellPublishing,NewDelhi,523pp.
Garcia,S.M.,Zerbi,A.,Aliaume,C.,DoChi,F.T.,Lasserre,G.,2003.Theecosystem approachtofisheries.Issues,terminology,principles,institutionalfoundations, implementationandoutlook.FAOFisheriesTechnicalPaperNo.443.FAO,Rome, 71pp.
Gascoigne,J.,Willsteed,E.,2009.MovingTowardsLowImpactFisheriesinEurope. PolicyHurdles&Actions.MacAlisterandPartnersLtd.,SeasatRisk,103pp. George, J.P.,1993. Longline Fishing. FAO Training Series No. 22. FAO, Rome,
81pp.
Gilman,E.,2011.Bycatchgovernanceandbestpracticemitigationtechnologyin globaltunafisheries.Mar.Policy35,590–609.
Gilman,E.,Brothers,N.,Kobayashi,D.,2005.Principlesandapproachestoabate seabirdbycatchinlonglinefisheries.FishFish.6,35–49.
Gilman,E.,Gearhart,J.,Price,B.,Eckert,S.,Milliken,H.,Wang,J.,Swimmer,Y.,Shiode, D.,Abe,O.,HoytPeckham,S.,Chaloupka,M.,Hall,M.,Mangel,J.,Alfaro-Shigueto, J.,Dalzell,P.,Ishizaki,A.,2010.Mitigatingseaturtleby-catchincoastalpassive netfisheries.FishFish.11,57–88.
Gjertsen,H.,Hall,M.,Squires,D.,2010.Incentivestoaddressbycatchissues.In:Allen, R.,Joseph,J.,Squires,D.(Eds.),ConservationandManagementofTransnational TunaFisheries.Wiley-Blackwell,Oxford,UK,pp.225–247.
Glass,C.W.,Sarno,B.,Milliken,H.O.,Morris,G.D.,Carr,H.A.,1999.Bycatchreduction inMassachusettsinshoresquid(Loligopealeii)trawlfisheries.Mar.Technol.Soc. J.33,35–42.
Glass,C.W.,Walsh,S.J.,vanMarlen,B.,2007.Fishingtechnologyinthe21stcentury: integratingfishingandecosystemconservation.ICESJ.Mar.Sci.64,1499–1502. Graham,N.A.D.,Spalding,M.D.,Sheppard,C.R.C.,2010.Reefsharkdeclinesinremote atollshighlighttheneedformulti-facetedconservationaction.Aquat.Conserv. 20,543–548.
Gutiérrez,N.L.,Hilborn,R.,Defeo,O.,2011.Leadership,socialcapitalandincentives promotesuccessfulfisheries.Nature470,386–389.
Hall,M.A.,Alverson,D.,Metuzals,I.,2000.By-catch:problemsandsolutions.Mar. Pollut.Bul.41,204–219.
Hall,M.A.,Nakano,H.,Clarke,S.,Thomas,S.,Molloy,J.,Peckham,S.H., Laudino-Santillán,J.,Nichols,W.J.,Gilman,E.,Cook,J.,Martin,S.,Croxall,J.P.,Rivera, K.,Moreno,C.A.,Hall,J.,2007.Workingwithfisherstoreduceby-catches.In: Kennelly,S.(Ed.),By-catchReductionintheWorld’sFisheries.Springer,The Netherlands,pp.235–288.
Hareide,N.-R.,Garnes,G.,Rihan,D.,Mulligan,M.,Tyndall,P.,Clark,M.,Connolly,P., Misund,R.,McMullen,P.,Furevik,D.M.,Humborstad,O.-B.,Høydal,K.,Blasdale, T.,2005.APreliminaryInvestigationonShelfEdgeandDeepwaterFixedNet FisheriestotheWestandNorthofGreatBritain,Ireland,aroundRockalland HattonBank.BordIascaighMhara,Fiskeridirecktoratet,NEAFC,SeaFishIndustry Authority,JointNatureConservationCommittee,MarineInstituteForasnaMara, 47pp.Availableat:http://www.bim.ie.
Hazin,F.H.V.,Travassos,P.,Erzini,K.,2005.Effectoflight-sticksandelectralume attractorsonsurface-longlinecatchesofswordfish(Xiphiasgladius,Linnaeus, 1959)inthesouthwestequatorialAtlantic.Fish.Res.72,271–277.
He,P.,2007.Technicalmeasurestoreduceseabedimpactofmobilefishinggears. In:Kennelly,S.(Ed.),By-catchReductionintheWorld’sFisheries.Springer,The Netherlands,pp.141–179.
He,P.,Inoue,Y.,2010.Large-scalefishtraps:geardesign,fishbehavior,and conser-vationchallenges.In:He,P.(Ed.),BehaviorofMarineFishes:CaptureProcesses andConservationChallenges.BlackwellPublishing,pp.159–181.
He,P.,Pol,M.,2010.Fishbehaviorneargillnets:captureprocessand influenc-ingfactor.In:He,P.(Ed.),BehaviorofMarineFishes:CaptureProcessesand ConservationChallenges.BlackwellPublishing,pp.183–203.
He,P.,Winger,P.D.,2010.Effectoftrawlingontheseabedandmitigationmeasures toreduceimpact.In:He,P.(Ed.),BehaviorofMarineFishes:CaptureProcesses andConservationChallenges.BlackwellPublishing,pp.295–314.
Hemmingsson,M.,Fjälling,A.,Lunneryd,S.G.,2008.Thepontoontrap:description andfunctionofaseal-safetrap-net.Fish.Res.93,357–359.
Heredia-Quevedo,J.A.,2010.Fuelsaving:thegoalindesigningfishingnets.In: Pro-ceedingsoftheNationalOceanicandAtmosphericAdministrationSymposium onEnergyuseinFisheries:ImprovingEfficiencyandTechnologicalInnovations fromaGlobalPerspective,Seattle,WA,USA,14–17November2010. Hiddink,J.G.,Jennings,S.,Kaiser,M.J.,Queirós,A.M.,Duplisea,D.E.,Piet,G.J.,2006.
Cumulativeimpactsofseabedtrawldisturbanceonbenthicbiomass,production andspeciesrichnessindifferenthabitats.Can.J.Fish.Aquat.Sci.63,721–736. Humborstad,O-B.,Løkkeborg,S.,Hareide,N.R.,Furevik,D.M.,2003.Catchesof
Greenlandhalibut(Reinhardtiushippoglossoides)indeepwaterghostfishing gill-netsontheNorwegiancontinentalslope.Fish.Res.64,163–170.
Humborstad,O-B.,Davis,M.W.,Løkkeborg,S.,2009.Refleximpairmentasameasure ofvitalityandsurvivalpotentialofAtlanticcod(Gadusmorhua).Fish.Bull.107, 395–402.
Huse,I.,Vold,A.,2010.Mortalityofmackerel(ScomberscombrusL.)afterpursing andslippingfromapurseseine.Fish.Res.106,54–59.
ICES,2006.ReportoftheWorkingGrouponEcosystemEffectsofFishingActivities (WGECO),ICES,Copenhagen.ACE:05,174pp.
ICES,2009.ReportoftheStudyGroupontheDevelopmentofFishPotsfor Commer-cialFisheriesandSurveyPurposes(SGPOT).ICESCM2009/FTC:10,13pp. ICES,2010.ReportoftheICES-FAOWorkingGrouponFishingTechnologyand
Fish Behavior (WGFTFB). ICES Fisheries Technology Committee. ICES CM 2010/SSGESST:14,252pp.
International Energy Agency (IEA), 2011. Oil Market Report, 66 pp.
http://www.oilmarketreport.org.
Jeng,S.H.,2007.SuperiorSet-NetFishery—BeneficialtoProduction,EcologyandLife. CenterforSet-netFisheryTechnologies,NationalKaohsiungMarineUniversity, Taiwan,17pp.
Jennings,S.,Kaiser,M.J.,1998.Theeffectsoffishingonmarineecosystems.Adv.Mar. Biol.34,201–352.
Jennings,S.,Kaiser,M.J.,Reynolds,J.D.,2001.MarineFisheriesEcology.Blackwell, Oxford,UK.
Jennings,S.,Revill,A.S.,2007.Theroleofgeartechnologistsinsupportingan ecosys-temapproachtofisheries.ICESJ.Mar.Sci.64,1525–1534.
Jørgensen,T.,Valdemarsen,J.W.,2010.PelagicTrawlingforCod.InstituteofMarine Research,MarineResearchNews5,2pp.
Kaiser,M.J.,Clarke,K.R.,Hinz,H.,Austen,M.C.V.,Somerfield,P.J.,Karakassis,I.,2006. Globalanalysisandpredictionoftheresponseofbenthicbiotatofishing.Mar. Ecol.Prog.Ser.311,1–14.
Kelleher,K.,2005.Discardingintheworld’smarinefisheries:anupdate.FAO Fish-eriesTechnicalPaperNo.470.Rome,131pp.
Kennelly,S.(Ed.),2007.By-catchReductionintheWorld’sFisheries.Springer,The Netherlands,288pp.
Kristjonsson,H.,1971.ModernFishingGearoftheWorld:3.FishFinding,Purse Seining,AimedTrawling.FishingNewsBooksLtd.,London,537pp.
Krouse,J.S.,1989.Performanceandselectivityoftrapfisheriesforcrustaceans.In: Caddy,J.F.(Ed.),MarineInvertebrateFisheries:TheirAssessmentand Manage-ment.JohnWileyandSons,Inc.,NewYork,pp.307–325.
Lehtonen,E.,Suuronen,P.,2010.Live-captureofgreysealsinamodifiedsalmon trap.Fish.Res.102,214–216.
Lewison,R.L.,Crowder,L.B.,Read,A.J.,Freeman,S.A.,2004.Understandingimpacts offisheriesbycatchonmarinemegafauna.TrendsEcol.Evol.19,598–604. Løkkeborg,S.,1990.Rateofreleaseofpotentialfeedingattractantsfromnaturaland
artificialbait.Fish.Res.8,253–261.
Løkkeborg,S.,1991.Fishingexperimentswithanalternativelonglinebaitusing surplusfishproducts.Fish.Res.12,43–56.
Løkkeborg,S.,2005.Impactsoftrawlingandscallopdredgingonbenthic communi-ties.FAOFisheriesTechnicalPaperNo.472.FAO,Rome.
Løkkeborg,S.,2011.Bestpracticestomitigateseabirdbycatchinlongline,trawland gillnetfisheries—efficiencyandpracticalapplicability.Mar.Ecol.Prog.Ser.435, 285–303.
Løkkeborg,S.,Bjordal,Å.,1992.Speciesandsizeselectivityinlonglinefishing:a review.Fish.Res.13,311–322.
Løkkeborg,S.,Fernö, A.,Humborstad,O.-B.,2010.Fishbehaviorinrelationto longlines.In:He,P.(Ed.),BehaviorofMarineFishes:CaptureProcessesand ConservationChallenges.BlackwellPublishing,pp.105–141.
Lundin,M.,Calamnius,L.,Hillström,L.,Lunneryd,S.G.,2011.Sizeselectionofherring (Clupeaharengusmembras)inapontoontrapequippedwitharigidgrid.Fish. Res.108,81–87.
146 119–120 (2012) 135–146
Marchal,P.,Andersen,B.,Caillart,B.,Eigaard,O.,Guyader,O.,Hovgaard,H.,Iriondo, A.,LeFur,F.,Sacchi,J.,Santurtún,M.,2007.Impactoftechnologicalcreepon fishingeffortandfishingmortalityforaselectionofEuropeanfleets.ICESJ.Mar. Sci.64,192–209.
Matsuoka,T.,Nakashima,T.,Nagasawa,N.,2005.Areviewofghostfishing:scientific approachestoevaluationandsolutions.Fish.Sci.71,691–702.
Matsushita,Y.,Machida,S.,Kanehiro,H.,Nakamura,F.,Honda,N.,2008.Analysisof meshbreakingloadsincottongillnets:possiblesolutiontoghostfishing.Fish. Sci.74,230–235.
Matsushita,Y.,Yamashita,Y.,Azuno,T.,2010.Balancingfishingperformanceand energysavinginlightfishing.In:PaperpresentedattheInternational Sympo-siumonConservationandSustainableUtilizationinMarineFisheries– Smartfish 2010,ZhejiangOceanUniversity,Zhoushan,China,28–29October2010. McManus,J.W.,ReyesJr.,R.B.,Na ˜nolaJr.,C.L.,1997.Effectsofsomedestructive
fish-ingmethodsoncoralcoverandpotentialratesofrecovery.Environ.Manage. 21,69–78.
Melo,T.,Hurtado,C.,Queirolo,D.,Gaete,E.,Montenegro,I.,Zamora,V.,Merino,J., Escobar,R.,2008.Redise ˜nodelasredesdearrastredecrustáceos.ProyectoFIP/IT No.2006-20,144pp.
Miller,R.J.,1990.Effectivenessofcrabandlobstertraps.Can.J.Fish.Aquat.Sci.47, 1228–1251.
Montevecchi,W.A.,2001.Interactionsbetweenfisheriesandseabirds.In:Schreiber, E.A.,Burger,J.(Eds.),BiologyofMarineBirds.CRCPress,Washington,DC,pp. 527–558.
Morgan,L.,Chuenpagdee,R.,2003.ShiftingGears:AddressingtheCollateralImpacts ofFishingMethodsinU.S.Waters.PewScienceSeriesonConservationandthe Environment,ISBN1-55963-659-9,42pp.
NationalResearchCouncil,2005.EffectsofTrawlingandDredgingontheSeafloor. NationalAcademyPress,Washington,DC,ISBN:0-309-08430-0126pp. NMFS,April2011.FinalRuletoRequiretheUseofWeakHooksonPelagic
Long-lineVesselsintheGulfofMexico.UnitedStatesDepartmentofCommerce, NationalOceanicandAtmosphericAdministration,NationalMarineFisheries Service,OfficeofSustainableFisheries,HighlyMigratorySpeciesManagement Division.
O’Brien,D.,Dennis,B.,2008.Codqualityassessmentproject2005.Western New-foundlandandLabradosStraits.ProjectReport.DepartmentofFisheriesand Aquaculture,FisheriesBranch,Labrador/WesternRegion,Canada,35pp. Ovegård,M.,Königson,S.,Persson,A.,Lunneryd,S.G.,2011.Sizeselectivecaptureof
Atlanticcod(Gadusmorhua)infloatingpots.Fish.Res.107,239–244. Pitcher,C.R.,Burridge,C.Y.,Wassenberg,T.J.,Hill,B.J.,Poiner,I.R.,2009.Alargescale
BACIexperimenttotesttheeffectsofprawntrawlingonseabedbiotainaclosed areaoftheGreatBarrierReefMarinePark,Australia.Fish.Res.99,168–183. Polet,H.,Depestele,J.,2010.ImpactAssessmentoftheEffectsofaSelectedRange
ofFishingGearsintheNorthSea.ILVOTechnischVisserijonderzoek,Ostende, Belgium,110pp.
Queirolo,D.,Ahumada,M.,Gaete,E.,Zamora,V.,Escobar,R.,Montenegro,I.,Merino, J.,2009.Improvedinterspecificselectivityofnylonshrimp(Heterocarpusreedi) trawlinginChile.Mejoramientodelaselectividadinterespecíficaenarrastrede camaronnailon(Heterocarpusreedi)enChile.Lat.Am.J.Aquat.Res.37,221–230. Rico-Mejía,F.,Rueda,M.,2007.Bioeconomicevaluationofchangesinfishing tech-nologyofshrimp-trawlnetsinshallowwatersoftheColombianPacificcoast. Bol.INVEMAR36,79–109.
Rihan,D.,2010.Measurestoreduceinteractionsofmarinemegafaunawithfishing operations.In:He,P.(Ed.),BehaviorofMarineFishes:CaptureProcessesand ConservationChallenges.BlackwellPublishing,pp.315–342.
Rochet,M-J.,Collie,J.S.,Jennings,S.,Hall,S.J.,2011.Doesselectivefishingconserve communitybiodiversity?Predictionsfromalength-basedmultispeciesmodel. Can.J.Fish.Aquat.Sci.68,469–486.
Rúnarsson,G.,2008.Danishseinenet–fuelcostsinseinenetting.In:Presentationat theInternationalWorkshoponSeineNetFishing,Keflavík,Iceland,29–30May 2008.
Safer,A.,2010.Newfoundlandcodpotfisherylookspromising.Commer.Fish.News 38(4),1–3.
Schau,E.M.,Ellingsen,H.,Endal,A.,Asnondsen,S.,2009.Energyconsumptioninthe Norwegianfisheries.J.Clean.Prod.17,325–334.
Slack-Smith,R.J.,2001.Fishingwithtrapsandpots.FAOTrainingSeriesNo.26.FAO, Rome,62pp.
Sullivan,R.,Walsh,P.,2010.HarvestingAtlanticcod(Gadusmorhua)usingbaited potstosupplynichemarketsinAtlanticCanada.Reportsubmittedto Depart-mentofFisheriesandAquaculture,GovernmentofNewfoundland,March2010. FisheriesandMarineInstitute,MemorialUniversity.
Sumaila,U.R.,Teh,L.,Watson,R.,Tyedmers,P.,Pauly,D.,2008.Fuelpriceincrease, subsidies,overcapacity,andresourcesustainability.ICESJ.Mar.Sci.65,832–840. Sumaila,U.,Khan,A.,Dyck,A.,Watson,R.,Munro,G.,Tydemers,P.,Pauly,D.,2010.A bottom-upre-estimationofglobalfisheriessubsidies.J.Bioecon.12,201–225. Suuronen,P.2005.Mortalityoffishescapingtrawlgears.FAOFisheriesTechnical
PaperNo.478.Rome,72pp.
Suuronen,P.,Siira,A.,Kauppinen,T.,Riikonen,R.,Lehtonen,E.,Harjunpää,H.,2006. Reductionofseal-inducedcatchandgeardamagebymodificationoftrap-net design:designprinciplesforaseal-safetrap-net.Fish.Res.79,129–138. Thomas,S.N.,Edappazham,G.,Meenakumari,B.,Ashraf,P.M.,2007.Fishinghooks:
areview.Fish.Technol.44,1–16.
Thomsen, B.,Humborstad,O.-B., Furevik,D.M., 2010. Fishpots: fishbehavior, captureprocessandconservationissues.In:He,P.(Ed.),BehaviorofMarine Fishes:CaptureProcessesandConservationChallenges.BlackwellPublishing, pp.143–158.
Thrane,M.,2004.EnergyconsumptionintheDanishfishery:identificationofkey factors.J.Ind.Ecol.8,223–239.
Thrane,M.,Ziegler,F.,Sonesson,U.,2009.Eco-labellingofwild-caughtseafood prod-ucts.J.Clean.Prod.17,416–423.
Tudela,S.,2004.EcosystemeffectsofintheMediterranean:ananalysisofthemajor threatsoffishinggearandpracticestobiodiversityandmarinehabitats.General FisheriesCommissionfortheMediterranean,FAO.StudiesandReviewsNo.74, 44pp.
Tulp,I.,Piet,G.,Quirijns,F.,Rijnsdorp,A.,Lindeboom,H.,2005.Amethodtoquantify fisheriesinducedmortalityofbenthosandfish.RIVO-NetherlandsInstitutefor FisheriesResearch,ReportNo.C087/05.
Tyedmers,P.H.,Watson,R.,Pauly,D.,2005.Fuelingglobalfishingfleets.Ambio34, 635–638.
Valdemarsen,J.W.,Suuronen,P.,2003.Modifyingfishinggeartoachieveecosystem objectives.In:Sinclair,M.,Valdimarsson,G.(Eds.),ResponsibleFisheriesinthe MarineEcosystem.FAOandCABIInternationalPublishing,pp.321–341. Valdemarsen,J.W.,Jørgensen,T.,Engås,A.,2007.Optionstomitigatebottomhabitat
impactofdraggedgears.FAOFisheriesTechnicalPaperNo.506.FAO,Rome,29 pp.
Vázquez-Rowe,I.,Moreira,M.T.,Feijoo,G.,2011.Lifecycleassessmentoffresh hakefilletscapturedbytheCalicianfleetintheNorthernstock.Fish.Res.110, 128–135.
van Marlen, B. (Ed.), 2009. Energy Saving in Fisheries (ESIF) FISH/2006/17 LOT3—FinalReport.IMARES,ReportNo.C002/08,425pp.
vonBrandt,A.,1984.FishCatchingMethodsoftheWorld,thirded.FishingNews BooksLtd.,Farnham,Surrey,432pp.
Walsh,S.J.,Winger,P.D.,2011.BottomseininginCanada,1948–2010:its develop-ment,fisheriesandecosystemimpacts.Can.Tech.Rep.Fish.Aquat.Sci.2922 (xi),147.
Wayte,S.,Hobday,A.,Fulton,E.,Williams,A.,Smith,A.,2004.Draftecologicalrisk assessmentfortheeffectsoffishing:southeasttrawlandDanishseinefishery. In:Hobday,A.,Smith,A.D.M.,Stobutzki,I.(Eds.),EcologicalRiskAssessment forAustralianCommonwealthFisheries.FinalReport– Stage1.Hazard iden-tificationandpreliminaryriskassessment,July2004.ReporttotheAustralian FisheriesManagementAuthority,Canberra,Australia.
Winther,U.,Ziegler,F.,SkontorpHognes,E.,Emanuelsson,A.,Sund,V.,Ellingsen,H., 2009.CarbonfootprintandenergyuseofNorwegianseafoodproducts.SINTEF ReportNr.SHF80A096068,91pp.(www.sintef.no).
WorldBankandFAO,2009.TheSunkenBillions.TheEconomicJustificationfor Fish-eriesReform.AgricultureandRuralDevelopmentDepartment/TheWorldBank, Washington,DC,100pp.
Yamashita,Y.,Matsushita,Y.,Azuno,T.,2012.Catchperformanceofcoastalsquid jiggingboatsusingLEDpanelsincombinationwithmetalhalidelamps.Fish. Res.113,182–189.
Yokota,K.,Kiyota,M.,Minami,H.,2006.Sharkcatchinapelagiclonglinefishery: comparisonofcircleandtunahooks.Fish.Res.81,337–341.
Zhou,S.,2008.Fisheryby-catchanddiscards:apositiveperspectivefrom ecosystem-basedfisherymanagement.FishFish.9,308–315.