ContentslistsavailableatScienceDirect
Veterinary
Immunology
and
Immunopathology
jo u rn al h om ep a ge : w w w . e l s e v i e r . c o m / l o c at e / v e t i m m
Short
communication
The
evaluation
of
candidate
biomarkers
of
cell-mediated
immunity
for
the
diagnosis
of
Mycobacterium
bovis
infection
in
African
buffaloes
(
Syncerus
caffer
)
Wynand
J.
Goosen
a,
David
Cooper
b,
Robin
M.
Warren
a,
Michele
A.
Miller
a,
Paul
D.
van
Helden
a,
Sven
D.C.
Parsons
a,∗aDST/NRFCentreofExcellenceforBiomedicalTBResearch/MRCCentreforTuberculosisResearch/DivisionofMolecularBiologyand
HumanGenetics,FacultyofMedicineandHealthSciences,StellenboschUniversity,POBox19063,Tygerberg7505,SouthAfrica
bEzemveloKZNWildlife,POBox25,Mtubatuba3935,SouthAfrica
a
r
t
i
c
l
e
i
n
f
o
Articlehistory:
Received3September2014
Receivedinrevisedform20October2014 Accepted21October2014
Keywords: Africanbuffalo Bovinetuberculosis
Enzymelinkedimmunosorbentassay Interferongamma
Interferongamma-inducedprotein10
a
b
s
t
r
a
c
t
Weevaluatedcommerciallyavailablebovineenzymelinkedimmunosorbentassays(ELISA) andahumanIP-10ELISAtomeasureIP-10,MIG,MCP-1,MCP-2,MCP-3andIL1-RAinbuffalo plasmainordertoidentifysensitivemarkersoftheimmuneresponsetoMycobacterium bovis-specificpeptides.Additionally,wefoundthatallcodingmRNAsequencesofthese cytokinesshowedveryhighhomologywiththeirhomologuesindomesticcattle(97–99%) asdidthederivedaminoacidsequences(97–99%).Thishighsequencehomologybetween cattleandbuffaloessupportstheuseofbovineELISAsforthedetectionthesecytokinesin buffaloes.MCP-1concentrationshowedapositivecorrelationwiththatofIFN-␥(p=0.0077) andappearstooccurinfargreaterabundanceinbuffaloeswhencomparedtohumans. UsingabovineIP-10ELISA,levelsofthiscytokinewerefoundtobesignificantlyincreased inantigen-stimulatedbloodsamplesfromM.bovistestpositivebuffaloes(p<0.0001)and IP-10wasdetectedinfargreaterabundancethanIFN-␥.MeasurementofIP-10withthis ELISAmayprovetobeasensitivemarkerofM.bovisinfectioninAfricanbuffaloes.
©2014ElsevierB.V.Allrightsreserved.
1. Introduction
InAfrica,buffaloes(Synceruscaffer)areoneofthemost important maintenance hosts of a variety of pathogens whichcausediseaseindomesticcattle(MichelandBengis, 2012).Theseincludeindigenousdiseasessuchas foot-and-mouthdisease,Corridordiseaseandaliendiseasessuchas bovinebrucellosisandbovinetuberculosis(BTB)(Michel andBengis,2012).Inordertobettercontrolsuchdiseases, thedevelopmentofimprovedtestsfortheirdiagnosisand anunderstandingoftheirpathogenesisandepidemiology isessential.
∗ Correspondingauthor.Tel.:+27219389073;fax:+27865426274.
E-mailaddress:[email protected](S.D.C.Parsons).
In the case of BTB, the immunological diagnosis of infectionreliesprimarilyonthedetectionofacell medi-ated immune responsetoMycobacteriumbovis antigens (Vordermeieretal.,2000).Examplesofsuchassaysinclude thesingleintradermaltuberculinskintest(SICTT)andthe
invitrointerferongammareleaseassays(IGRA),thelatterof whichquantifyantigen-stimulatedreleaseofthiscytokine. Recently, the specificity of IGRAs have been improved with theavailability of theBovigam PC-EC assay (BEC) utilizing peptidessimulatingtheM.bovisproteins6kDa earlysecretoryantigenictarget(ESAT-6)andthe10kDa culturefiltrateprotein(CFP-10)and theBovigamPC-HP assay (BHP) utilizing ESAT-6,CFP-10, peptides simulat-ingRv3615and3additionalmycobacterialantigens(Bass etal.,2013;Goosenetal.,2014).However,thesensitivityof BTBdiagnosisinbovidsremainssuboptimal(Vordermeier
http://dx.doi.org/10.1016/j.vetimm.2014.10.008
Table1
Enzymelinkedimmunosorbentassaykitsandcomponents,andbuffaloplasmadilutions,usedtomeasureselectedcytokinesinQFT-processedwholeblood fromAfricanbuffaloes.
Analyte Plasmadilutiona Manufacturer Productinformation
BovineIFN-␥ 1:2 MabtechAB,NackaStrand,Sweden Kitno.3115-1H-20 BovineIP-10 1:10 KingfisherBiotechInc.,StPaul,USA Primaryantibody:
PB0385B-100 Secondaryantibody: PBB0393B-050 Recombinantprotein: RP0079B-005 BovineMIG 1:2 BethylLaboratoriesInc.,Texas,USA Kitno.E11-803 BovineMCP-1 1:1000 BethylLaboratoriesInc. Kitno.E11-800 BovineMCP-3 1:10 MyBioSource,California,USA Kitno.MBS739771 BovineMCP-2 1:10 MyBioSource Kitno.MBS913274 BovineIL1-RA 1:2 MyBioSource Kitno.MBS740784 HumanIP-10 1:2 PeproTech®,RockyHill,NJ Kitno.900-K39 aFinalplasmaassaydilutionineachwell.
et al.,2000)and itis possiblethatthequantification of biomarkersotherthanIFN-␥mayimprovethesensitivityof testssuchastheBECandBHPassays(Watersetal.,2003; Vordermeieretal.,2009;Jonesetal.,2010;Blancoetal., 2011).
Inhumans,candidatebiomarkersforthediagnosisof
Mycobacterium tuberculosis infection include monocyte-derived chemokine IFN-␥-induced protein 10 (IP-10) (Ruhwald et al., 2009), monokine induced by inter-ferongamma(MIG)(Abramoetal.,2006;Chakeraetal., 2011),monocytechemoattractantprotein(MCP)-1, MCP-2,MCP–3andinterleukin1receptorantagonist(IL1-RA) (Ruhwald et al., 2009; Chakera et al., 2011). Ruhwald etal.(2009)reportedsignificantlyhigherconcentrations ofIP-10,IL1–RA,MCP-1,MCP-2andMCP-3comparedto IFN-␥inantigen-stimulatedbloodsamplesfrompatients withactivetuberculosissuggestingthatall5biomarkers holdpromise asimmunological markersof tuberculosis in humans, with IP-10 and MCP-2 showing the great-est potential.Similarly, Abramoet al. (2006) showeda correlationbetweenMIGconcentrationandIFN-␥ produc-tion in 29 BCG-vaccinated controls and 24 TB patients, identifyingMIGasanovelbiomarkerforM.tuberculosis
infection.Incattle,Aranday-Cortesetal.(2012)reported thatIP-10,MIG,GranzymeAandIL-22mRNAexpression showpromiseasbiomarkersofantigen-inducedimmune responseswhichmightbeutilizedforthediagnosisofM. bovis infection. However,using a humanIP-10 ELISA,a studyincattlewhichwereexperimentallyinfectedwithM. bovisconcludedthatIP-10isapoordiagnosticbiomarker forthedetectionofthisinfectioninthisspecies(Waters etal.,2012).
Theaimofthisstudywastoevaluatetheuseof com-merciallyavailablebovineELISAsaswellasahumanIP-10 ELISA(Watersetal.,2012)forthemeasurementofselected candidatebiomarkersofimmuneactivationinresponseto
M.bovisantigensinwholebloodfromAfricanbuffaloes.
2. Materialandmethods
2.1. Animalsandsamplepreparation
In 2012, randomly selected buffaloes in the Hluh-luwe–iMfoloziParkwerecapturedandtestedforM.bovis
infectionusingtheSICTTaspreviouslydescribed(Parsons etal.,2011).AfterSICTTassessment,wholeblood (WB) wascollectedfromallSICTT-positivebuffaloesintosodium heparintubesbyjugularvenipuncture.Immediatelyafter collection,onemlofWBfromeachanimalwastransferred toaQFTTBAntigentube(containingpeptidessimulating ESAT-6,CFP-10andTB7.7)andaQFTNiltube(containing saline), respectively.The QFT tubes were shaken vigor-ously,andwithin4hofWBtransfertotheQFTtubes,these wereincubatedat37◦Cfor20h,centrifugedat3000×g
for6minandtheplasmafractionstoredat−80◦C.To
iden-tifypositiveQFTreactors,plasmasamplesharvestedfrom theQFTtubeswereusedinamodifiedQFT(mQFT)assay usingacommerciallyavailablebovineIFN-␥ELISA(Table1) andacut-offof66pg/ml,aspreviouslydescribed(Parsons etal.,2011).Aspreviouslyreported,themQFTassayisa highlyspecifictestofM.bovisinfection(Parsonsetal.,2011, 2012;Goosenetal.,2014)andbuffaloesthattested posi-tiveonboththeSICTTandmQFTassayswereconsidered tobeinfectedforthepurposesofthisstudy.
2.2. SequencingofselectedbuffalocytokinemRNAs
Table
of HotStarTaq DNA polymerase (reagents from Qiagen) and0.4mMdNTPs(PromegaCorporation,Fitchburg,WI, USA). ThePCRreactionswereinitiatedbyincubation at 95◦C for 15minand consisted of45 cyclesof 94◦C for
1min,56◦Cfor1minand72◦Cfor1minafterwhichPCR
products were incubated for a further10min at 72◦C.
These amplification productswere sequenced withthe 3130xlGeneticAnalyzer(AppliedBiosystems,FosterCity, CA, USA) according to the manufacturer’s guidelines. Cytokine protein sequences were then inferred from cDNA sequences using the EMBOSS Transeq software (http://www.ebi.ac.uk/Tools/st/embosstranseq/). The degree of homology betweenall buffalo sequences and homologous sequences of cattle were calculated using ClustalW2software.
2.3. CytokineELISAs
TheconcentrationofIP-10,MIG,MCP-1,MCP-2, MCP-3and IL1-RAintheQFT-processedplasma sampleswas measuredusingcommerciallyavailableELISAs (Table1) accordingtothemanufacturer’sinstructions.Furthermore, theabsoluteconcentrationofIP-10inthesesampleswas calculatedwithreferencetoadilutionseriesof recombi-nanthumanandbovineIP-10forthehumanandbovine ELISAs,respectively(Table1).
2.4. Statisticalanalysis
Foreachanimal,theconcentrationofeachanalytewas characterizedas theELISAopticaldensity (OD)and the antigen-dependentsecretionofeachanalyte(ODTB-Nil)was
defined as theOD valueof theQFT TB Antigen plasma sample(ODTB)minusthatoftheQFTNilplasmasample
(ODNil).Using theseODvalues, a Wilcoxonsigned-rank
testwasusedtodetermineifthemedianconcentrationof eachanalytewassignificantlydifferentinplasmafromthe QFTNilandTBAntigentubes.Furthermore,absolute con-centrationsofantigen-specificIFN-␥andIP-10werealso comparedusingaWilcoxonsigned-ranktest.The correla-tionbetweentheODTBvalueforeachanalyteandthatof
IFN-␥wascalculatedasSpearman’scorrelationcoefficient.
3. Resultsanddiscussion
The coding mRNA sequences of IP-10, MIG, MCP-1, MCP-2,MCP-3andIL1-RAwereobtainedfortwoAfrican buffaloes andsubmittedtotheNCBI sequencedatabase (http://www.ncbi.nlm.nih.gov/genbank/) (Table 2). The availability of these sequences should prove useful for the investigation of buffalo immunology by means of gene expressionassays aspreviouslydescribed(Parsons etal.,2012).Thesequencesshowedveryhighhomology withthoseof cattle(97–99%)asdidtheinferredamino acidsequences(97–99%)(Table2).Thisdegreeof homol-ogybetweenbuffaloandcattlesuggeststhatcommercial bovineELISAkitscouldbeusedtoquantifytheseproteins inplasmasamplesfrombuffaloes.
Fig. 1.Optical densities (including medianand interquartile range) obtainedinELISAsofplasmasamplesharvestedfromQFTNiltubes() andQFTTBAntigentubes(•)followingovernight wholeblood incu-bationat37◦Cfor(a)IFN-␥,IP-10,andMIG,and(b)IL1-RA,MCP-1,
MCP-2andMCP-3(n=18SICTT-positive/mQFT-positiveAfricanbuffaloes;
*p<0.0001).
2007,2009).However,usingcommercialbovineELISAs, only IFN-␥ and IP-10 levels were found to be signifi-cantlyincreasedinantigen-stimulatedbloodsamplesfrom SICTT-/mQFT-positive buffaloes (Figs.1 and 2). Further-more,MCP-1wastheonlycytokinetoshowasignificant
Fig.2.ThedifferenceinplasmalevelsofIFN-␥,IP-10,MIG,IL1-RA, MCP-1,MCP-2andMCP-3harvestedfromQFTTBantigentubesandQFTNil tubesfollowingovernightwholebloodincubationat37◦C(n=18
SICTT-positive/mQFT-positiveAfricanbuffaloes).
correlation with IFN-␥ (p=0.0077). The results for the remaininganalyteswereunexpectedandweconcludethat theseareeitherpoorindicatorsofantigenstimulationin buffaloesundertheconditionsdescribedorthatthebovine ELISAsdidnotefficientlydetectthesebuffaloproteins.The latteris unexpectedgiventhehighdegreeofhomology observedbetweencattleandbuffalotranscriptsofthese analytes(Table2).However,wecannotruleoutthat tran-scriptional,translationalandpost-translationaldifferences betweencattleandbuffaloesmayalterproteinepitopes. ParticularlysurprisingweretheresultsforthehumanIP-10 ELISAwhichdetectednegligiblelevelsofIP-10inallbuffalo plasmasamples(0–137pg/ml;Fig.1).Thisisincontrastto findingsfromastudywhichusedthesameELISAreagents todetecthighlevelsofIP-10inplasmafromcattlefollowing experimentalinfectionwithM.bovis(Watersetal.,2012). Ourfindingsmayindicatethattheanti-humanIP-10 anti-bodiesusedinthisstudyhavepoorcross-reactivitytothis proteinofbuffaloesdespitetheirhighpredictedhomology withcattleIP-10(Table2).
For the MCP-1 ELISA, plasma samples were diluted 1:1000.Nonetheless,MCP-1ELISAsignalswerehighly cor-relatedwithIFNg(p=0.0077)suggestingthattheresults areatruereflectionofMCP-1abundance.Absolute con-centrations of MCP-1 were not calculated; however, in humans,atypicalplasmadilutionfactorforsuchanassay is1:8(Ruhwaldetal.,2009)andourfindingssuggestthat MCP-1isparticularlyabundantinantigen-stimulated buf-faloplasma.ThiscytokineisassociatedwithaTh2biasand enhancedproductionofIL-4(Deshmaneetal.,2009),both ofwhichareassociatedwithgreaterBTBpathologyin cat-tle(Thackeretal.,2007).Moreover,anincreaseinMCP-1 plasmaconcentrationduetoapolymorphisminthe MCP-1genepromoterregionhasbeenshowntobeassociated withanincreasedsusceptibilitytopulmonary tuberculo-sisinhumans(Flores-Villanuevaetal.,2005).Ourfindings, therefore,warrantfurtherinvestigationoftheroleof MCP-1inbuffaloBTB.
Using thebovineIP-10 ELISA,levels ofthis cytokine were shown to be elevated in antigen-stimulated samples in all SICTT-positive/mQFT-positive buffaloes (Figs. 1 and 2). In addition, antigen-specific IP-10 was released in significantly greater abundance than IFN-␥
In conclusion, we have shown thatIP-10 is a useful markerofimmuneactivationbyM.bovisantigenswhen using thebovine IP-10 ELISA. Our results highlight the limitationsimposedonveterinaryresearchbythelackof optimalimmunologicalreagentsandtheneedtointerpret experimentalresultsinthislight.Our findingsalso sug-gestthatthediagnosticpotentialofIP-10forBTBincattle bere-evaluatedusingspecies-specificreagents.Studiesare currentlyunderwaytocomparethesensitivityofIP-10 andIFN-␥asdiagnosticbiomarkersofM.bovisinfectionin Africanbuffaloes.
Acknowledgments
WethanktheNationalResearchFoundation(NRF)and Medical Research Council (MRC) for financial support. Opinionsexpressedandconclusionsarrivedatarethoseof theauthorsandarenotnecessarilytheviewsoftheNRFor MRC.Furthermore,weacknowledgetheClaudeLeon Foun-dationandtheNRFSouthAfricanResearchChairInitiative inAnimalTuberculosisforpersonalfundingandsupport. Lastly,we thank theWildlifeCapture Unitof Ezemvelo KZN-Wildlifefortheirassistance.
References
Aabye,M.G.,Latorre,I.,Diaz,J.,Maldonado,J.,Mialdea,I.,Eugen-Olsen, J.,Ravn,P.,Dominguez,J.,Ruhwald,M.,2013.Driedplasmaspotsin thediagnosisoftuberculosis:IP-10releaseassayonfilterpaper.Eur. Respir.J.42,495–503.
Aabye,M.G.,Ravn,P.,Johansen,I.S.,Eugen-Olsen,J.,Ruhwald,M.,2011.
Incubationof wholeblood at39◦C augmentsgamma interferon (IFN-␥)-inducedprotein10andIFN-␥responsestoMycobacterium tuberculosisantigens.Clin.VaccineImmunol.18,1150–1156.
Abramo,C.,Meijgaarden,K.E.,Garcia,D.,Franken,K.L.M.C.,Klein,M.R., Kolk, A.J., Oliveira, S.C., Ottenhoff, T.H.M., Teixeira, H.C., 2006.
MonokineinducedbyinterferongammaandIFN-(responsetoafusion proteinofMycobacteriumtuberculosisESAT-6andCFP-10inBrazilian tuberculosispatients.Microb.Infect.8,45–51.
Aranday-Cortes,E.,Hogarth,P.J.,Kaveh,D.A.,Whelan,A.O., Villarreal-Ramos, B., Lalvani, A., Vordermeier, H.M., 2012. Transcriptional profilingofdisease-inducedhostresponsesinbovinetuberculosis andtheidentificationofpotentialdiagnosticbiomarkers.PLoSOne 7,e30626.
Bass, K.E.,Nonnecke, B.J., Palmer,M.V.,Thacker, T.C.,Hardegger, R., Schroeder,B.,Raeber,A.J.,Waters,W.R.,2013.Clinicaland diagnos-ticdevelopmentsofagammainterferonrelease assayforusein bovinetuberculosiscontrolprograms.Clin.VaccineImmunol. 20, 1827–1835.
Blanco,F.C.,Bianco,M.V.,Meikle,V.,Garbaccio,S.,Vagnoni,L.,Forrellad, M.,Klepp,L.I.,Cataldi,A.A.,Bigi,F.,2011.IncreasedIL-17expressionis associatedwithpathologyinabovinemodeloftuberculosis. Tuber-culosis(Edinburgh,Scotland)91,57–63.
Chakera,A.,Bennett,S.,Cornall,R.,2011.Awholebloodmonokine-based reporterassayprovidesasensitiveandrobustmeasurementofthe antigen-specificTcellresponse.J.Transl.Med.9,143.
Deshmane, S.L., Kremlev, S., Amini, S., Sawaya, B.E., 2009. Mono-cytechemoattractantprotein-1(MCP-1):anoverview.J.Interferon CytokineRes.29,313–326.
Flores-Villanueva,P.O.,Ruiz-Morales,J.A.,Song,C.-H.,Flores,L.M.,Jo,E.-K., Monta ˜no,M.,Barnes,P.F.,Selman,M.,Granados,J.,2005.Afunctional promoterpolymorphisminmonocytechemoattractantprotein-1is associatedwithincreasedsusceptibilitytopulmonarytuberculosis.J. Exp.Med.202,1649–1658.
Goosen,W.J.,Miller,M.A.,Chegou,N.N.,Cooper,D.,Warren,R.M.,van Helden,P.D.,Parsons,S.D.C.,2014.Agreementbetweenassaysof cell-mediatedimmunityutilizingMycobacteriumbovis-specificantigens forthediagnosisoftuberculosisinAfricanbuffaloes(Synceruscaffer). Vet.Immunol.Immunopathol.160,133–138.
Jones,G.J.,Pirson,C.,Hewinson,R.G.,Vordermeier,H.M.,2010. Simultane-ousmeasurementofantigen-stimulatedinterleukin-1andgamma interferonproductionenhancestestsensitivityforthedetectionof
Mycobacteriumbovisinfectionincattle.Clin.VaccineImmunol.CVI
17,1946–1951.
Kabeer,B.S.A.,Sikhamani,R.,Raja,A.,2010.Comparisonofinterferon gammaandinterferongamma-inducibleprotein-10secretionin HIV-tuberculosispatients.AIDS(Lond.Engl.)24,323–325.
Michel,A.L.,Bengis,R.G.,2012.TheAfricanbuffalo:avillainfor inter-speciesspreadofinfectiousdiseasesinsouthernAfrica.Onderstepoort J.Vet.Res.79,26–30.
Parsons,S.D.C.,Cooper,D.,McCall,A.J.,McCall,W.A.,Streicher,E.M.,le Maitre,N.C.,Müller,A.,GeyvanPittius,N.C.,Warren,R.M.,vanHelden, P.D.,2011.ModificationoftheQuantiFERON-TBGold(In-Tube)assay forthediagnosisofMycobacteriumbovisinfectioninAfricanbuffaloes (Synceruscaffer).Vet.Immunol.Immunopathol.142,113–118.
Parsons,S.D.C.,Menezes,A.M.,Cooper,D.,Walzl,G.,Warren,R.M.,van Helden,P.D.,2012.Developmentofadiagnosticgeneexpressionassay fortuberculosisanditsuseunderfieldconditionsinAfricanbuffaloes (Synceruscaffer).Vet.Immunol.Immunopathol.148,337–342.
Ruhwald,M.,Bjerregaard-Andersen,M.,Rabna,P.,Eugen-Olsen,J.,Ravn, P.,2009.IP-10,MCP-1,MCP-2,MCP-3,andIL-1RAholdpromiseas biomarkersforinfectionwithM.tuberculosisinawholebloodbased T-cellassay.BMCRes.Notes2,19.
Ruhwald,M.,Bjerregaard-Andersen,M.,Rabna,P.,Kofoed,K., Eugen-Olsen,J.,Ravn,P.,2007.CXCL10/IP-10releaseisinducedbyincubation ofwholebloodfromtuberculosispatientswithESAT-6,CFP10and TB7.7.Microb.Infect.Inst.Pasteur9,806–812.
Ruhwald,M.,Dominguez,J.,Latorre,I.,Losi,M.,Richeldi,L.,Pasticci,M.B., Mazzolla,R.,Goletti,D.,Butera,O.,Bruchfeld,J.,Gaines,H., Gero-gianni,I.,Tuuminen,T.,Ferrara,G.,Eugen-Olsen,J.,Ravn,P.,Tbnet, 2011.Amulticentreevaluationoftheaccuracyandperformanceof IP-10forthediagnosisofinfectionwithM.tuberculosis.Tuberculosis (Edinburgh,Scotland)91,260–267.
Thacker,T.C.,Palmer,M.V.,Waters,W.R.,2007.Associationsbetween cytokine gene expressionand pathologyin Mycobacterium bovis
infectedcattle.Vet.Immunol.Immunopathol.119,204–213.
Vordermeier,H.M.,Cockle,P.J.,Whelan,A.O.,Rhodes,S.,Hewinson,R.G., 2000.Towardthedevelopmentofdiagnosticassaystodiscriminate betweenMycobacteriumbovisinfectionandbacilleCalmette–Guérin vaccinationincattle.Clin.Infect.Dis.30(Suppl.3),S291–S298(Off. Publ.Infect.Dis.Soc.Am.).
Vordermeier,H.M.,Villarreal-Ramos,B.,Cockle,P.J.,McAulay,M.,Rhodes, S.G.,Thacker,T.,Gilbert,S.C.,McShane,H.,Hill,A.V.S.,Xing,Z., Hewin-son,R.G.,2009.ViralboostervaccinesimproveMycobacteriumbovis
BCG-inducedprotectionagainstbovinetuberculosis.Infect.Immun. 77,3364–3373.
Waters,W.R.,Palmer,M.V.,Whipple,D.L.,Carlson,M.P.,Nonnecke,B.J., 2003.Diagnosticimplicationsofantigen-inducedgammainterferon, nitricoxide,andtumornecrosisfactoralphaproductionbyperipheral bloodmononuclearcellsfromMycobacteriumbovis-infectedcattle. Clin.Diagn.Lab.Immunol.10,960–966.