• Tidak ada hasil yang ditemukan

10 the evaluation of candidate biomarkers of

N/A
N/A
Protected

Academic year: 2017

Membagikan "10 the evaluation of candidate biomarkers of"

Copied!
5
0
0

Teks penuh

(1)

ContentslistsavailableatScienceDirect

Veterinary

Immunology

and

Immunopathology

jo u rn al h om ep a ge : w w w . e l s e v i e r . c o m / l o c at e / v e t i m m

Short

communication

The

evaluation

of

candidate

biomarkers

of

cell-mediated

immunity

for

the

diagnosis

of

Mycobacterium

bovis

infection

in

African

buffaloes

(

Syncerus

caffer

)

Wynand

J.

Goosen

a

,

David

Cooper

b

,

Robin

M.

Warren

a

,

Michele

A.

Miller

a

,

Paul

D.

van

Helden

a

,

Sven

D.C.

Parsons

a,∗

aDST/NRFCentreofExcellenceforBiomedicalTBResearch/MRCCentreforTuberculosisResearch/DivisionofMolecularBiologyand

HumanGenetics,FacultyofMedicineandHealthSciences,StellenboschUniversity,POBox19063,Tygerberg7505,SouthAfrica

bEzemveloKZNWildlife,POBox25,Mtubatuba3935,SouthAfrica

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received3September2014

Receivedinrevisedform20October2014 Accepted21October2014

Keywords: Africanbuffalo Bovinetuberculosis

Enzymelinkedimmunosorbentassay Interferongamma

Interferongamma-inducedprotein10

a

b

s

t

r

a

c

t

Weevaluatedcommerciallyavailablebovineenzymelinkedimmunosorbentassays(ELISA) andahumanIP-10ELISAtomeasureIP-10,MIG,MCP-1,MCP-2,MCP-3andIL1-RAinbuffalo plasmainordertoidentifysensitivemarkersoftheimmuneresponsetoMycobacterium bovis-specificpeptides.Additionally,wefoundthatallcodingmRNAsequencesofthese cytokinesshowedveryhighhomologywiththeirhomologuesindomesticcattle(97–99%) asdidthederivedaminoacidsequences(97–99%).Thishighsequencehomologybetween cattleandbuffaloessupportstheuseofbovineELISAsforthedetectionthesecytokinesin buffaloes.MCP-1concentrationshowedapositivecorrelationwiththatofIFN-␥(p=0.0077) andappearstooccurinfargreaterabundanceinbuffaloeswhencomparedtohumans. UsingabovineIP-10ELISA,levelsofthiscytokinewerefoundtobesignificantlyincreased inantigen-stimulatedbloodsamplesfromM.bovistestpositivebuffaloes(p<0.0001)and IP-10wasdetectedinfargreaterabundancethanIFN-␥.MeasurementofIP-10withthis ELISAmayprovetobeasensitivemarkerofM.bovisinfectioninAfricanbuffaloes.

©2014ElsevierB.V.Allrightsreserved.

1. Introduction

InAfrica,buffaloes(Synceruscaffer)areoneofthemost important maintenance hosts of a variety of pathogens whichcausediseaseindomesticcattle(MichelandBengis, 2012).Theseincludeindigenousdiseasessuchas foot-and-mouthdisease,Corridordiseaseandaliendiseasessuchas bovinebrucellosisandbovinetuberculosis(BTB)(Michel andBengis,2012).Inordertobettercontrolsuchdiseases, thedevelopmentofimprovedtestsfortheirdiagnosisand anunderstandingoftheirpathogenesisandepidemiology isessential.

Correspondingauthor.Tel.:+27219389073;fax:+27865426274.

E-mailaddress:[email protected](S.D.C.Parsons).

In the case of BTB, the immunological diagnosis of infectionreliesprimarilyonthedetectionofacell medi-ated immune responsetoMycobacteriumbovis antigens (Vordermeieretal.,2000).Examplesofsuchassaysinclude thesingleintradermaltuberculinskintest(SICTT)andthe

invitrointerferongammareleaseassays(IGRA),thelatterof whichquantifyantigen-stimulatedreleaseofthiscytokine. Recently, the specificity of IGRAs have been improved with theavailability of theBovigam PC-EC assay (BEC) utilizing peptidessimulatingtheM.bovisproteins6kDa earlysecretoryantigenictarget(ESAT-6)andthe10kDa culturefiltrateprotein(CFP-10)and theBovigamPC-HP assay (BHP) utilizing ESAT-6,CFP-10, peptides simulat-ingRv3615and3additionalmycobacterialantigens(Bass etal.,2013;Goosenetal.,2014).However,thesensitivityof BTBdiagnosisinbovidsremainssuboptimal(Vordermeier

http://dx.doi.org/10.1016/j.vetimm.2014.10.008

(2)

Table1

Enzymelinkedimmunosorbentassaykitsandcomponents,andbuffaloplasmadilutions,usedtomeasureselectedcytokinesinQFT-processedwholeblood fromAfricanbuffaloes.

Analyte Plasmadilutiona Manufacturer Productinformation

BovineIFN-␥ 1:2 MabtechAB,NackaStrand,Sweden Kitno.3115-1H-20 BovineIP-10 1:10 KingfisherBiotechInc.,StPaul,USA Primaryantibody:

PB0385B-100 Secondaryantibody: PBB0393B-050 Recombinantprotein: RP0079B-005 BovineMIG 1:2 BethylLaboratoriesInc.,Texas,USA Kitno.E11-803 BovineMCP-1 1:1000 BethylLaboratoriesInc. Kitno.E11-800 BovineMCP-3 1:10 MyBioSource,California,USA Kitno.MBS739771 BovineMCP-2 1:10 MyBioSource Kitno.MBS913274 BovineIL1-RA 1:2 MyBioSource Kitno.MBS740784 HumanIP-10 1:2 PeproTech®,RockyHill,NJ Kitno.900-K39 aFinalplasmaassaydilutionineachwell.

et al.,2000)and itis possiblethatthequantification of biomarkersotherthanIFN-␥mayimprovethesensitivityof testssuchastheBECandBHPassays(Watersetal.,2003; Vordermeieretal.,2009;Jonesetal.,2010;Blancoetal., 2011).

Inhumans,candidatebiomarkersforthediagnosisof

Mycobacterium tuberculosis infection include monocyte-derived chemokine IFN-␥-induced protein 10 (IP-10) (Ruhwald et al., 2009), monokine induced by inter-ferongamma(MIG)(Abramoetal.,2006;Chakeraetal., 2011),monocytechemoattractantprotein(MCP)-1, MCP-2,MCP–3andinterleukin1receptorantagonist(IL1-RA) (Ruhwald et al., 2009; Chakera et al., 2011). Ruhwald etal.(2009)reportedsignificantlyhigherconcentrations ofIP-10,IL1–RA,MCP-1,MCP-2andMCP-3comparedto IFN-␥inantigen-stimulatedbloodsamplesfrompatients withactivetuberculosissuggestingthatall5biomarkers holdpromise asimmunological markersof tuberculosis in humans, with IP-10 and MCP-2 showing the great-est potential.Similarly, Abramoet al. (2006) showeda correlationbetweenMIGconcentrationandIFN-␥ produc-tion in 29 BCG-vaccinated controls and 24 TB patients, identifyingMIGasanovelbiomarkerforM.tuberculosis

infection.Incattle,Aranday-Cortesetal.(2012)reported thatIP-10,MIG,GranzymeAandIL-22mRNAexpression showpromiseasbiomarkersofantigen-inducedimmune responseswhichmightbeutilizedforthediagnosisofM. bovis infection. However,using a humanIP-10 ELISA,a studyincattlewhichwereexperimentallyinfectedwithM. bovisconcludedthatIP-10isapoordiagnosticbiomarker forthedetectionofthisinfectioninthisspecies(Waters etal.,2012).

Theaimofthisstudywastoevaluatetheuseof com-merciallyavailablebovineELISAsaswellasahumanIP-10 ELISA(Watersetal.,2012)forthemeasurementofselected candidatebiomarkersofimmuneactivationinresponseto

M.bovisantigensinwholebloodfromAfricanbuffaloes.

2. Materialandmethods

2.1. Animalsandsamplepreparation

In 2012, randomly selected buffaloes in the Hluh-luwe–iMfoloziParkwerecapturedandtestedforM.bovis

infectionusingtheSICTTaspreviouslydescribed(Parsons etal.,2011).AfterSICTTassessment,wholeblood (WB) wascollectedfromallSICTT-positivebuffaloesintosodium heparintubesbyjugularvenipuncture.Immediatelyafter collection,onemlofWBfromeachanimalwastransferred toaQFTTBAntigentube(containingpeptidessimulating ESAT-6,CFP-10andTB7.7)andaQFTNiltube(containing saline), respectively.The QFT tubes were shaken vigor-ously,andwithin4hofWBtransfertotheQFTtubes,these wereincubatedat37◦Cfor20h,centrifugedat3000×g

for6minandtheplasmafractionstoredat−80◦C.To

iden-tifypositiveQFTreactors,plasmasamplesharvestedfrom theQFTtubeswereusedinamodifiedQFT(mQFT)assay usingacommerciallyavailablebovineIFN-␥ELISA(Table1) andacut-offof66pg/ml,aspreviouslydescribed(Parsons etal.,2011).Aspreviouslyreported,themQFTassayisa highlyspecifictestofM.bovisinfection(Parsonsetal.,2011, 2012;Goosenetal.,2014)andbuffaloesthattested posi-tiveonboththeSICTTandmQFTassayswereconsidered tobeinfectedforthepurposesofthisstudy.

2.2. SequencingofselectedbuffalocytokinemRNAs

(3)

Table

of HotStarTaq DNA polymerase (reagents from Qiagen) and0.4mMdNTPs(PromegaCorporation,Fitchburg,WI, USA). ThePCRreactionswereinitiatedbyincubation at 95◦C for 15minand consisted of45 cyclesof 94C for

1min,56◦Cfor1minand72Cfor1minafterwhichPCR

products were incubated for a further10min at 72◦C.

These amplification productswere sequenced withthe 3130xlGeneticAnalyzer(AppliedBiosystems,FosterCity, CA, USA) according to the manufacturer’s guidelines. Cytokine protein sequences were then inferred from cDNA sequences using the EMBOSS Transeq software (http://www.ebi.ac.uk/Tools/st/embosstranseq/). The degree of homology betweenall buffalo sequences and homologous sequences of cattle were calculated using ClustalW2software.

2.3. CytokineELISAs

TheconcentrationofIP-10,MIG,MCP-1,MCP-2, MCP-3and IL1-RAintheQFT-processedplasma sampleswas measuredusingcommerciallyavailableELISAs (Table1) accordingtothemanufacturer’sinstructions.Furthermore, theabsoluteconcentrationofIP-10inthesesampleswas calculatedwithreferencetoadilutionseriesof recombi-nanthumanandbovineIP-10forthehumanandbovine ELISAs,respectively(Table1).

2.4. Statisticalanalysis

Foreachanimal,theconcentrationofeachanalytewas characterizedas theELISAopticaldensity (OD)and the antigen-dependentsecretionofeachanalyte(ODTB-Nil)was

defined as theOD valueof theQFT TB Antigen plasma sample(ODTB)minusthatoftheQFTNilplasmasample

(ODNil).Using theseODvalues, a Wilcoxonsigned-rank

testwasusedtodetermineifthemedianconcentrationof eachanalytewassignificantlydifferentinplasmafromthe QFTNilandTBAntigentubes.Furthermore,absolute con-centrationsofantigen-specificIFN-␥andIP-10werealso comparedusingaWilcoxonsigned-ranktest.The correla-tionbetweentheODTBvalueforeachanalyteandthatof

IFN-␥wascalculatedasSpearman’scorrelationcoefficient.

3. Resultsanddiscussion

The coding mRNA sequences of IP-10, MIG, MCP-1, MCP-2,MCP-3andIL1-RAwereobtainedfortwoAfrican buffaloes andsubmittedtotheNCBI sequencedatabase (http://www.ncbi.nlm.nih.gov/genbank/) (Table 2). The availability of these sequences should prove useful for the investigation of buffalo immunology by means of gene expressionassays aspreviouslydescribed(Parsons etal.,2012).Thesequencesshowedveryhighhomology withthoseof cattle(97–99%)asdidtheinferredamino acidsequences(97–99%)(Table2).Thisdegreeof homol-ogybetweenbuffaloandcattlesuggeststhatcommercial bovineELISAkitscouldbeusedtoquantifytheseproteins inplasmasamplesfrombuffaloes.

(4)

Fig. 1.Optical densities (including medianand interquartile range) obtainedinELISAsofplasmasamplesharvestedfromQFTNiltubes() andQFTTBAntigentubes(•)followingovernight wholeblood incu-bationat37◦Cfor(a)IFN-,IP-10,andMIG,and(b)IL1-RA,MCP-1,

MCP-2andMCP-3(n=18SICTT-positive/mQFT-positiveAfricanbuffaloes;

*p<0.0001).

2007,2009).However,usingcommercialbovineELISAs, only IFN-␥ and IP-10 levels were found to be signifi-cantlyincreasedinantigen-stimulatedbloodsamplesfrom SICTT-/mQFT-positive buffaloes (Figs.1 and 2). Further-more,MCP-1wastheonlycytokinetoshowasignificant

Fig.2.ThedifferenceinplasmalevelsofIFN-␥,IP-10,MIG,IL1-RA, MCP-1,MCP-2andMCP-3harvestedfromQFTTBantigentubesandQFTNil tubesfollowingovernightwholebloodincubationat37◦C(n=18

SICTT-positive/mQFT-positiveAfricanbuffaloes).

correlation with IFN-␥ (p=0.0077). The results for the remaininganalyteswereunexpectedandweconcludethat theseareeitherpoorindicatorsofantigenstimulationin buffaloesundertheconditionsdescribedorthatthebovine ELISAsdidnotefficientlydetectthesebuffaloproteins.The latteris unexpectedgiventhehighdegreeofhomology observedbetweencattleandbuffalotranscriptsofthese analytes(Table2).However,wecannotruleoutthat tran-scriptional,translationalandpost-translationaldifferences betweencattleandbuffaloesmayalterproteinepitopes. ParticularlysurprisingweretheresultsforthehumanIP-10 ELISAwhichdetectednegligiblelevelsofIP-10inallbuffalo plasmasamples(0–137pg/ml;Fig.1).Thisisincontrastto findingsfromastudywhichusedthesameELISAreagents todetecthighlevelsofIP-10inplasmafromcattlefollowing experimentalinfectionwithM.bovis(Watersetal.,2012). Ourfindingsmayindicatethattheanti-humanIP-10 anti-bodiesusedinthisstudyhavepoorcross-reactivitytothis proteinofbuffaloesdespitetheirhighpredictedhomology withcattleIP-10(Table2).

For the MCP-1 ELISA, plasma samples were diluted 1:1000.Nonetheless,MCP-1ELISAsignalswerehighly cor-relatedwithIFNg(p=0.0077)suggestingthattheresults areatruereflectionofMCP-1abundance.Absolute con-centrations of MCP-1 were not calculated; however, in humans,atypicalplasmadilutionfactorforsuchanassay is1:8(Ruhwaldetal.,2009)andourfindingssuggestthat MCP-1isparticularlyabundantinantigen-stimulated buf-faloplasma.ThiscytokineisassociatedwithaTh2biasand enhancedproductionofIL-4(Deshmaneetal.,2009),both ofwhichareassociatedwithgreaterBTBpathologyin cat-tle(Thackeretal.,2007).Moreover,anincreaseinMCP-1 plasmaconcentrationduetoapolymorphisminthe MCP-1genepromoterregionhasbeenshowntobeassociated withanincreasedsusceptibilitytopulmonary tuberculo-sisinhumans(Flores-Villanuevaetal.,2005).Ourfindings, therefore,warrantfurtherinvestigationoftheroleof MCP-1inbuffaloBTB.

Using thebovineIP-10 ELISA,levels ofthis cytokine were shown to be elevated in antigen-stimulated samples in all SICTT-positive/mQFT-positive buffaloes (Figs. 1 and 2). In addition, antigen-specific IP-10 was released in significantly greater abundance than IFN-␥

(5)

In conclusion, we have shown thatIP-10 is a useful markerofimmuneactivationbyM.bovisantigenswhen using thebovine IP-10 ELISA. Our results highlight the limitationsimposedonveterinaryresearchbythelackof optimalimmunologicalreagentsandtheneedtointerpret experimentalresultsinthislight.Our findingsalso sug-gestthatthediagnosticpotentialofIP-10forBTBincattle bere-evaluatedusingspecies-specificreagents.Studiesare currentlyunderwaytocomparethesensitivityofIP-10 andIFN-␥asdiagnosticbiomarkersofM.bovisinfectionin Africanbuffaloes.

Acknowledgments

WethanktheNationalResearchFoundation(NRF)and Medical Research Council (MRC) for financial support. Opinionsexpressedandconclusionsarrivedatarethoseof theauthorsandarenotnecessarilytheviewsoftheNRFor MRC.Furthermore,weacknowledgetheClaudeLeon Foun-dationandtheNRFSouthAfricanResearchChairInitiative inAnimalTuberculosisforpersonalfundingandsupport. Lastly,we thank theWildlifeCapture Unitof Ezemvelo KZN-Wildlifefortheirassistance.

References

Aabye,M.G.,Latorre,I.,Diaz,J.,Maldonado,J.,Mialdea,I.,Eugen-Olsen, J.,Ravn,P.,Dominguez,J.,Ruhwald,M.,2013.Driedplasmaspotsin thediagnosisoftuberculosis:IP-10releaseassayonfilterpaper.Eur. Respir.J.42,495–503.

Aabye,M.G.,Ravn,P.,Johansen,I.S.,Eugen-Olsen,J.,Ruhwald,M.,2011.

Incubationof wholeblood at39◦C augmentsgamma interferon (IFN-␥)-inducedprotein10andIFN-␥responsestoMycobacterium tuberculosisantigens.Clin.VaccineImmunol.18,1150–1156.

Abramo,C.,Meijgaarden,K.E.,Garcia,D.,Franken,K.L.M.C.,Klein,M.R., Kolk, A.J., Oliveira, S.C., Ottenhoff, T.H.M., Teixeira, H.C., 2006.

MonokineinducedbyinterferongammaandIFN-(responsetoafusion proteinofMycobacteriumtuberculosisESAT-6andCFP-10inBrazilian tuberculosispatients.Microb.Infect.8,45–51.

Aranday-Cortes,E.,Hogarth,P.J.,Kaveh,D.A.,Whelan,A.O., Villarreal-Ramos, B., Lalvani, A., Vordermeier, H.M., 2012. Transcriptional profilingofdisease-inducedhostresponsesinbovinetuberculosis andtheidentificationofpotentialdiagnosticbiomarkers.PLoSOne 7,e30626.

Bass, K.E.,Nonnecke, B.J., Palmer,M.V.,Thacker, T.C.,Hardegger, R., Schroeder,B.,Raeber,A.J.,Waters,W.R.,2013.Clinicaland diagnos-ticdevelopmentsofagammainterferonrelease assayforusein bovinetuberculosiscontrolprograms.Clin.VaccineImmunol. 20, 1827–1835.

Blanco,F.C.,Bianco,M.V.,Meikle,V.,Garbaccio,S.,Vagnoni,L.,Forrellad, M.,Klepp,L.I.,Cataldi,A.A.,Bigi,F.,2011.IncreasedIL-17expressionis associatedwithpathologyinabovinemodeloftuberculosis. Tuber-culosis(Edinburgh,Scotland)91,57–63.

Chakera,A.,Bennett,S.,Cornall,R.,2011.Awholebloodmonokine-based reporterassayprovidesasensitiveandrobustmeasurementofthe antigen-specificTcellresponse.J.Transl.Med.9,143.

Deshmane, S.L., Kremlev, S., Amini, S., Sawaya, B.E., 2009. Mono-cytechemoattractantprotein-1(MCP-1):anoverview.J.Interferon CytokineRes.29,313–326.

Flores-Villanueva,P.O.,Ruiz-Morales,J.A.,Song,C.-H.,Flores,L.M.,Jo,E.-K., Monta ˜no,M.,Barnes,P.F.,Selman,M.,Granados,J.,2005.Afunctional promoterpolymorphisminmonocytechemoattractantprotein-1is associatedwithincreasedsusceptibilitytopulmonarytuberculosis.J. Exp.Med.202,1649–1658.

Goosen,W.J.,Miller,M.A.,Chegou,N.N.,Cooper,D.,Warren,R.M.,van Helden,P.D.,Parsons,S.D.C.,2014.Agreementbetweenassaysof cell-mediatedimmunityutilizingMycobacteriumbovis-specificantigens forthediagnosisoftuberculosisinAfricanbuffaloes(Synceruscaffer). Vet.Immunol.Immunopathol.160,133–138.

Jones,G.J.,Pirson,C.,Hewinson,R.G.,Vordermeier,H.M.,2010. Simultane-ousmeasurementofantigen-stimulatedinterleukin-1␤andgamma interferonproductionenhancestestsensitivityforthedetectionof

Mycobacteriumbovisinfectionincattle.Clin.VaccineImmunol.CVI

17,1946–1951.

Kabeer,B.S.A.,Sikhamani,R.,Raja,A.,2010.Comparisonofinterferon gammaandinterferongamma-inducibleprotein-10secretionin HIV-tuberculosispatients.AIDS(Lond.Engl.)24,323–325.

Michel,A.L.,Bengis,R.G.,2012.TheAfricanbuffalo:avillainfor inter-speciesspreadofinfectiousdiseasesinsouthernAfrica.Onderstepoort J.Vet.Res.79,26–30.

Parsons,S.D.C.,Cooper,D.,McCall,A.J.,McCall,W.A.,Streicher,E.M.,le Maitre,N.C.,Müller,A.,GeyvanPittius,N.C.,Warren,R.M.,vanHelden, P.D.,2011.ModificationoftheQuantiFERON-TBGold(In-Tube)assay forthediagnosisofMycobacteriumbovisinfectioninAfricanbuffaloes (Synceruscaffer).Vet.Immunol.Immunopathol.142,113–118.

Parsons,S.D.C.,Menezes,A.M.,Cooper,D.,Walzl,G.,Warren,R.M.,van Helden,P.D.,2012.Developmentofadiagnosticgeneexpressionassay fortuberculosisanditsuseunderfieldconditionsinAfricanbuffaloes (Synceruscaffer).Vet.Immunol.Immunopathol.148,337–342.

Ruhwald,M.,Bjerregaard-Andersen,M.,Rabna,P.,Eugen-Olsen,J.,Ravn, P.,2009.IP-10,MCP-1,MCP-2,MCP-3,andIL-1RAholdpromiseas biomarkersforinfectionwithM.tuberculosisinawholebloodbased T-cellassay.BMCRes.Notes2,19.

Ruhwald,M.,Bjerregaard-Andersen,M.,Rabna,P.,Kofoed,K., Eugen-Olsen,J.,Ravn,P.,2007.CXCL10/IP-10releaseisinducedbyincubation ofwholebloodfromtuberculosispatientswithESAT-6,CFP10and TB7.7.Microb.Infect.Inst.Pasteur9,806–812.

Ruhwald,M.,Dominguez,J.,Latorre,I.,Losi,M.,Richeldi,L.,Pasticci,M.B., Mazzolla,R.,Goletti,D.,Butera,O.,Bruchfeld,J.,Gaines,H., Gero-gianni,I.,Tuuminen,T.,Ferrara,G.,Eugen-Olsen,J.,Ravn,P.,Tbnet, 2011.Amulticentreevaluationoftheaccuracyandperformanceof IP-10forthediagnosisofinfectionwithM.tuberculosis.Tuberculosis (Edinburgh,Scotland)91,260–267.

Thacker,T.C.,Palmer,M.V.,Waters,W.R.,2007.Associationsbetween cytokine gene expressionand pathologyin Mycobacterium bovis

infectedcattle.Vet.Immunol.Immunopathol.119,204–213.

Vordermeier,H.M.,Cockle,P.J.,Whelan,A.O.,Rhodes,S.,Hewinson,R.G., 2000.Towardthedevelopmentofdiagnosticassaystodiscriminate betweenMycobacteriumbovisinfectionandbacilleCalmette–Guérin vaccinationincattle.Clin.Infect.Dis.30(Suppl.3),S291–S298(Off. Publ.Infect.Dis.Soc.Am.).

Vordermeier,H.M.,Villarreal-Ramos,B.,Cockle,P.J.,McAulay,M.,Rhodes, S.G.,Thacker,T.,Gilbert,S.C.,McShane,H.,Hill,A.V.S.,Xing,Z., Hewin-son,R.G.,2009.ViralboostervaccinesimproveMycobacteriumbovis

BCG-inducedprotectionagainstbovinetuberculosis.Infect.Immun. 77,3364–3373.

Waters,W.R.,Palmer,M.V.,Whipple,D.L.,Carlson,M.P.,Nonnecke,B.J., 2003.Diagnosticimplicationsofantigen-inducedgammainterferon, nitricoxide,andtumornecrosisfactoralphaproductionbyperipheral bloodmononuclearcellsfromMycobacteriumbovis-infectedcattle. Clin.Diagn.Lab.Immunol.10,960–966.

Referensi

Dokumen terkait

Adapun yang dapat dilakukan saat ini adalah melakukan evaluasi kinerja infrastruktur sisi udara sekarang untuk masa 5 sampai 10 tahun yang akan datang selama

325 LPPM Universitas Duta bangsa Surakarta, Indonesia- September, 2022 HEURISTIC EVALUATION ANALYSIS USING THE 10 NIELSEN RULE USABILITY METHOD ON THE KAI ACCESS APPLICATION

Standards that must be met in service Antenatal Care ANC include 10 T, namely measuring body weight and height, measuring blood pressure, measuring Upper Arm Circumference LiLA,