• Tidak ada hasil yang ditemukan

ANALISIS STABILITAS PADA MODEL EPIDEMIK MULTI GRUP DENGAN LAJU PENULARAN TAK LINEAR

N/A
N/A
Protected

Academic year: 2021

Membagikan "ANALISIS STABILITAS PADA MODEL EPIDEMIK MULTI GRUP DENGAN LAJU PENULARAN TAK LINEAR"

Copied!
10
0
0

Teks penuh

(1)

1

ANALISIS STABILITAS PADA MODEL EPIDEMIK MULTI GRUP

DENGAN LAJU PENULARAN TAK LINEAR

Nama : Diny Tri Winarni

NRP : 1207100048

Jurusan : Matematika FMIPA – ITS Dosen Pembimbing : Drs. M. Setijo Winarko, M.Si

Drs. Suhud Wahyudi,M.Si

Abstrak

Dalam suatu ekosistem yang terdiri dari populasi heterogen yang dapat dibagi menjadi grup homogen, penyebaran sebuah penyakit dapat terjadi secara silang diantara grup tersebut. Dengan menggunakan pendekatan dari teori graph, sistem dapat digambarkan sebagai sebuah jaringan dimana setiap simpul menunjukkan sebuah grup homogen dan sebuah busur (𝑗, 𝑖) ada jika dan hanya jika penyakit dapat menular dari grup 𝑖 ke grup 𝑗. Jika suatu bilangan reproduksi dasar 𝑅0 ≤ 1 penyakit akan hilang dan terdapat titik kesetimbangan bebas penyakit 𝑃0 yang stabil asimtotik lokal dan stabil asimtotik global, sedangkan jika 𝑅0 > 1 penyakit akan menjadi endemik dan terdapat titik kesetimbangan endemik

𝑃∗ yang stabil asimtotik global. Untuk menganalisis stabilitas lokal digunakan kriteria Routh-Hurwitz, sedangkan untuk menganalisis stabilitas global didapatkan melalui konstruksi fungsi Liapunov dengan menerapkan graph berarah.

Kata kunci: Analisis Stabilitas, Fungsi Lyapunov, Penularan Taklinear, Jaringan

I PENDAHULUAN

Persamaan diferensial adalah persamaan yang memuat turunan dari satu atau beberapa fungsi yang tidak diketahui. Persamaan diferensial sering digunakan untuk membangun model matematika yang dapat membantu mempermudah penyelesaian masalah dalam kehidupan nyata. Masalah tersebut dapat dibuat suatu model matematis dengan menggunakan asumsi tertentu, setelah itu dicari solusinya. Sistem berpasangan dari persamaan diferensial taklinear pada jaringan telah digunakan untuk memodelkan berbagai hal antara lain untuk menyelidiki sistem berpasangan dari osilator tak linear, penyebaran penyakit menular pada populasi heterogen, serta untuk menganalisis stabilitas dari sistem berpasangan pada model ekosistem kompleks [4].

Telah banyak penelitian tentang analisis stabilitas suatu model penularan penyakit menular, namun kebanyakan dari penelitian tersebut mengabaikan keheterogenan dari suatu populasi [5,6]. Dalam kehidupan sehari – hari laju penularan penyakit dapat berbeda antara sekelompok individu satu dan lainnya. Maka diperlukan sebuah konsep jaringan pada analisis penyebaran suatu penyakit menular. Deskripsi matematika dari sebuah jaringan adalah sebuah graph berarah yang terdiri dari beberapa simpul dan dihubungkan oleh busur berarah. Busur berarah mengindikasikan koneksi antar simpul. Dalam sistem model, sebuah simpul dapat berupa sebuah osilator, sebuah komunitas besar

ekologi atau sebuah lintasan, dan dapat juga berupa grup – grup homogen dalam populasi heterogen untuk sebuah penyakit menular. Sedangkan interaksi antara simpul-simpul yang ada dapat berupa koneksi fisika diantara osilator, penyebaran diantara grup-grup kecil pada lintasan, dan infeksi silang diantara grup homogen di dalam suatu populasi heterogen [4].

Untuk menjelaskan dinamika penyebaran dari suatu penyakit menular pada populasi makhluk hidup yang heterogen dapat digunakan sebuah model multi grup. Keheterogenan dalam suatu populasi dapat disebabkan oleh banyak faktor. Sekelompok individu dapat dibagi menjadi beberapa grup homogen berdasarkan perbedaan pola keterkaitan pada suatu hal, seperti pembagian populasi berdasarkan usia pada penyebaran penyakit gondok dan cacar air, serta pembagian grup berdasarkan pola hubungan seksual untuk penyakit yang menular secara seksual seperti HIV/AIDS [4].

Dalam Tugas Akhir ini dianalisis stabilitas lokal dan stabilitas global dari model epidemik multi grup dengan laju penularan taklinear. Dalam menganalisis stabilitas lokal digunakan kriteria Routh-Hurwitz, sedangkan stabilitas global didapatkan melalui konstruksi fungsi Liapunov dengan menerapkan teori graph. Setelah itu dikembangkan sebuah studi kasus analisis stabilitas pada model epidemik dua grup dengan laju penularan taklinear.

(2)

2

II TINJAUAN PUSTAKA

2.1 Penyakit Menular

Penyakit menular adalah penyakit yang disebabkan oleh kuman yang menjangkiti tubuh manusia. Kuman dapat berupa virus, bakteri, atau jamur. Penyakit menular disebut juga wabah. Wabah dalam lingkup yang lebih luas disebut epidemik, yaitu wabah yang terjadi secara lebih cepat daripada yang diperkirakan. Penyakit yang umumnya terjadi pada laju yang konstan namun cukup tinggi pada suatu populasi disebut sebagai endemik. Suatu infeksi penyakit dikatakan sebagai endemik bila setiap orang yang terinfeksi penyakit tersebut menularkannya kepada orang lain. Bila infeksi tersebut tidak lenyap dan jumlah orang yang terinfeksi bertambah, suatu infeksi dikatakan berada dalam keadaan endemik.

2.2 Dasar Teori Graph

Graph berarah atau digraph (directed graph) 𝒢(𝑉, 𝐸) berisikan dua himpunan, yaitu himpunan berhingga tak kosong 𝑉(𝒢) = {1,2, … , 𝑛} dari obyek-obyek yang disebut simpul dan himpunan berhingga (mungkin kosong) 𝐸(𝒢) yang elemennya disebut busur

(𝑖, 𝑗), sedemikian hingga setiap elemen (𝑖, 𝑗)

dalam 𝐸(𝒢) merupakan pasangan berurutan dari simpul 𝑉(𝒢). Sebuah subgraph 𝐻 dari 𝒢, dikatakan membentang jika 𝐻 dan 𝒢 memiliki himpunan simpul yang sama. Digraph 𝒢

dikatakan berbobot jika setiap busur (𝑗, 𝑖)

dikaitkan dengan suatu bilangan real positif

(𝑎𝑖𝑗), dimana bilangan yang dikaitkan tersebut disebut bobot. Bobot 𝑤(𝐻) dari sebuah subgraph 𝐻 adalah jumlahan bobot dari semua busur di 𝐻 [2].

Lintasan adalah suatu barisan berhingga (tak kosong) yang suku-sukunya bergantian simpul dan busur dimana semua simpul dan busur hanya boleh muncul satu kali. Sedangkan lintasan berarah 𝑃 pada 𝒢 adalah sebuah subgraph dengan simpul { 𝑖𝑘, 𝑖𝑘+1 , 𝑘 = 1,2, … , 𝑚 − 1}. Jika 𝑖𝑚 = 𝑖1, 𝑃 disebut cycle berarah. Sebuah subgraph terhubung 𝒯 disebut sebuah pohon jika tidak terdapat cycle, berarah ataupun tak berarah. Simpul 𝑖 merupakan akar dari sebuah pohon, jika 𝑖 bukan simpul tujuan dari beberapa busur, dan setiap simpul yang tersisa merupakan simpul tujuan dari tepat satu busur. Sebuah subgraph 𝒬 disebut unicyclic jika

𝒬 merupakan pohon berakar dimana bentuk akarnya berupa cycle berarah, dan setiap simpul di 𝒬 adalah simpul tujuan dari tepat satu busur

[4]. Pohon berakar dan graph unicyclic ditunjukkan oleh Gambar 2.1.

Gambar 2.1. (A) pohon berakar. (B) graph unicyclic

Diberikan digraph berbobot 𝒢 dengan 𝑛

simpul, misal bobot matriks 𝐴 = (𝑎𝑖,𝑗)𝑛 ×𝑛 dimana 𝑎𝑖,𝑗 merupakan bobot dari busur (𝑗, 𝑖) jika ada, dan 0 untuk yang lainnya. Graph berarah 𝒢 dikatakan terhubung kuat jika untuk sebarang pasang simpul, terdapat sebuah lintasan berarah yang menghubungkan dari satu ke lainnya. Graph terhubung berbobot (𝒢, 𝐴)

terhubung kuat jika dan hanya jika bobot matriks A tak tereduksi. Matriks Laplacian dari (𝒢, 𝐴)

didefinisikan sebagai berikut [1]:

𝐿 = 𝑎1𝑘 𝑘≠1 −𝑎12 … −𝑎1𝑛 −𝑎21 𝑎2𝑘 𝑘≠2 … −𝑎2𝑛 ⋮ −𝑎𝑛1 ⋮ −𝑎𝑛2 ⋱ … ⋮ 𝑎𝑛𝑘 𝑘≠𝑛

dengan 𝑐𝑖 adalah kofaktor dari elemen diagonal ke- 𝑖 dari

𝐿

dan memenuhi Definisi 2.1.

Definisi 2.1

Diasumsikan 𝑛 ≥ 2, dan

𝑐𝑖= 𝑤(𝒯)

𝒯𝜖𝕋𝑖

, 𝑖 = 1,2, … 𝑛 (2.1)

dengan 𝕋i adalah himpunan semua pohon pembentang 𝒯 dari (𝒢, 𝐴) yang berakar pada simpul 𝑖, dan 𝑤(𝒯) adalah bobot dari 𝒯. Jika

(𝒢, 𝐴) terhubung kuat, maka 𝑐𝑖 ≥ 0.

Definisi 2.2

Misal 𝐸 = 𝑒𝑖𝑗

𝑛×𝑛, 𝐹 = 𝑓𝑖𝑗 𝑛×𝑛 adalah matriks

tak negatif. 𝐸 ≥ 𝐹 jika 𝑒𝑖𝑗 ≥ 𝑓𝑖𝑗 untuk semua 𝑖 dan 𝑗, dan 𝐸 > 𝐹 jika 𝐸 ≥ 𝐹 dan 𝐸 ≠ 𝐹. Diasumsikan

𝑃1. Jika 𝐸 tak negatif, maka jarak spektral

𝜌 𝐸 dari 𝐸 adalah sebuah nilai eigen, dan 𝐸 memiliki sebuah vector eigen tak negatif yang bersesuaian dengan 𝜌 𝐸 .

𝑃2. Jika 𝐸 tak negatif dan tak tereduksi, maka

(3)

3 memiliki sebuah vektor eigen positif 𝑥

yang bersesuaian dengan 𝜌 𝐸 .

𝑃3. Jika 0 ≤ 𝐸 ≤ 𝐹, maka 𝜌 𝐸 ≤ 𝜌 𝐹 . Selain itu, jika 0 ≤ 𝐸 < 𝐹 dan 𝐸 + 𝐹 tak tereduksi, maka 𝜌 𝐸 < 𝜌 𝐹 .

𝑃4. Jika 𝐸 tak negatif dan tak tereduksi, dan

𝐹 adalah matriks diagonal dan positif, maka 𝐸𝐹 tak tereduksi.

dengan 𝜌 𝐸 adalah sebuah nilai eigen. Jika 𝜆

adalah nilai eigen dari 𝐸 maka 𝜆 = 𝜌 𝐸 [1].

Teorema 2.1

Diasumsikan 𝑛 ≥ 2. Misalkan 𝑐𝑖 diberikan pada Definisi 2.1 maka berlaku:

𝑐𝑖𝑎𝑖𝑗𝐹𝑖𝑗(𝑥𝑖, 𝑥𝑗 𝑛 𝑖,𝑗 =1 ) = 𝑤(𝒬) 𝒬∈ℚ 𝐹𝑟𝑠(𝑥𝑟, 𝑥𝑠) (𝑠,𝑟)∈𝐸(𝐶𝒬) (2.2)

𝐹𝑖𝑗 𝑥𝑖, 𝑥𝑗 , 1 ≤ 𝑖, 𝑗 ≤ 𝑛,adalah fungsi sebarang, ℚ

adalah himpunan semua graph unicyclic pembentang dari (𝒢, 𝐴), 𝑤(𝒬) adalah bobot dari

𝒬, 𝐶𝒬 menunjukkan cycle berarah di 𝒬, 𝐸(𝐶𝒬) adalah himpunan busur dari cycle berarah di 𝒬.

Teorema 2.2

Diasumsikan 𝑛 ≥ 2. Misalkan 𝑐𝑖 diberikan pada Definisi 2.1 maka berakibat:

𝑐𝑖𝑎𝑖𝑗𝐺𝑖(𝑥𝑖) 𝑛 𝑖,𝑗 =1 = 𝑐𝑖𝑎𝑖𝑗𝐺𝑗(𝑥𝑗) 𝑛 𝑖,𝑗 =1 (2.3) dimana 𝐺𝑖 𝑥𝑖 , 1 ≤ 𝑖 ≤ 𝑛, adalah fungsi sebarang.

2.3 Sistem Berpasangan dari Persamaan

Diferensial pada Jaringan

Sebuah jaringan ditampilkan oleh graph 𝒢

dengan 𝑛 simpul. Sistem berpasangan dibangun dengan menentukan dinamika simpul internalnya dan kemudian menggabungkan berdasarkan busur berarah di 𝒢. Diasumsikan setiap dinamika simpul dideskripsikan oleh sistem persamaan diferensial [4],

𝑢 𝑖= 𝑓𝑖 𝑡, 𝑢𝑖 (2.4)

dimana 𝑢𝑖 ∈ ℝ𝑚𝑖 dan 𝑓𝑖: ℝ × ℝ𝑚𝑖 → ℝ𝑚𝑖. Misalkan 𝑔𝑖𝑗: ℝ × ℝ𝑚𝑖× ℝ𝑚𝑗 → ℝ𝑚𝑖 merupakan pengaruh dari simpul 𝑗 pada simpul

𝑖, dan 𝑔𝑖𝑗 ≡ 0 jika tidak terdapat busur dari 𝑗 ke

𝑖 pada 𝒢. Sistem berpasangan pada graph 𝒢

digambarkan oleh persamaan berikut,

𝑢 𝑖= 𝑓𝑖 𝑡, 𝑢𝑖 + 𝑔𝑖𝑗 𝑡, 𝑢𝑖, 𝑢𝑗 𝑛

𝑗 =1

(2.5)

Misalkan 𝑉𝑖 𝑡, 𝑢𝑖 adalah fungsi Lyapunov untuk setiap sistem simpul (2.4), dapat dikonstruksi sebuah fungsi Lyapunov untuk sistem berpasangan (2.5) yaitu

𝑉 𝑡, 𝑢 = 𝑐𝑖𝑉𝑖 𝑡, 𝑢𝑖 𝑛

𝑗 =1

(2.6)

Teorema 2.3

Diasumsikan bahwa asumsi berikut terpenuhi 1) Terdapat fungsi 𝑉𝑖 𝑡, 𝑢𝑖 , 𝐹𝑖𝑗 𝑡, 𝑢𝑖, 𝑢𝑗 , dan

konstanta 𝑎𝑖𝑗 ≥ 0 sedemikian hingga 𝑉𝑖 𝑡, 𝑢 ≤ 𝑎𝑖𝑗𝐹𝑖𝑗 𝑡, 𝑢𝑖, 𝑢𝑗 , 𝑡 > 0, 𝑢𝑖∈ 𝐷𝑖 , 𝑖 = 1,2, … , 𝑛.

𝑛

𝑗 =1

2) Sekitar setiap cycle berarah 𝒞 dari graph berarah berarah (𝒢, 𝐴),, 𝐴 = 𝑎𝑖𝑗 ,

𝐹𝑟𝑠 𝑡, 𝑢𝑟, 𝑢𝑠 (𝑠,𝑟)∈𝐸(𝒞)

≤ 0, 𝑡 > 0, 𝑢𝑟∈ 𝐷𝑟, 𝑢𝑠∈ 𝐷𝑠.

3) Konstanta 𝑐𝑖 diberikan dalam (2.1)

maka 𝑉 𝑡, 𝑢 ≤ 0 untuk 𝑡 > 0 dan 𝑢 ∈ 𝐷, V

adalah fungsi Lyapunov untuk (2.5).

2.4 Model Epidemik Multi Grup dengan

Laju Penularan Taklinear

Sebuah model epidemik multi grup

𝑖 = 1,2, … , 𝑛 dengan laju penularan taklinear diberikan oleh : 𝑆 𝑖 = 𝛬𝑖− 𝑑𝑖𝑆𝑆 𝑖− 𝛽𝑖𝑗𝑓𝑖𝑗(𝑆𝑖, 𝐼𝑗) 𝑛 𝑗 =1 (2.9) 𝐸 𝑖 = 𝛽𝑖𝑗𝑓𝑖𝑗(𝑆𝑖, 𝐼𝑗) 𝑛 𝑗 =1 − 𝑑𝑖𝐸+ 𝜖 𝑖 𝐸𝑖 (2.10) 𝐼 𝑖 = 𝜖𝑖𝐸𝑖 − 𝑑𝑖𝐼+ 𝛾𝑖 𝐼𝑖 (2.11)

Model tersebut menggambarkan penyebaran penyakit menular pada populasi yang heterogen, yang dibagi menjadi 𝑛 grup homogen. Setiap grup ke-𝑖 selanjutnya dibagi menjadi 𝑆𝑖, 𝐸𝑖 dan 𝐼𝑖, dengan:

𝑆𝑖 : Populasi pada grup ke- 𝑖 yang rentan terkena penyakit (Susceptible)

𝐸𝑖 : Populasi pada grup ke- 𝑖 yang terjangkit penyakit dan dapat menularkan penyakit tetapi belum menunjukkan adanya gejala penyakit awal (Exposed)

𝐼𝑖 : Populasi pada grup ke- 𝑖 yang mengalami gejala (terinfeksi, menular dan terdiagnosis)

𝑑𝑖𝑆 : Laju kematian alami dari 𝑆𝑖

𝑑𝑖𝐸 : Laju kematian alami dari 𝐸𝑖

𝑑𝑖𝐼 : Laju kematian alami dari 𝐼𝑖

𝛬𝑖 : Laju rekruitment dari populasi pada grup ke- 𝑖

(4)

4

𝛽𝑖𝑗 : Peluang terjadinya penularan silang diantara grup terpisah 𝑆𝑖 dan 𝐼𝑗

𝛾𝑖 : Laju kesembuhan dari individu yang terinfeksi pada grup ke- 𝑖

𝜖𝑖 : Laju inkubasi pada grup ke- 𝑖

𝑓𝑖𝑗(𝑆𝑖, 𝐼𝑗) : Fungsi laju penularan silang diantara grup 𝑆𝑖 dan 𝐼𝑗

Diberikan asumsi dasar untuk fungsi

𝑓𝑖𝑗(𝑆𝑖, 𝐼𝑗) adalah : (𝐻1) 0 < lim 𝐼𝑗→0+ 𝑓𝑖𝑗 𝑆𝑖, 𝐼𝑗 𝐼𝑗 = 𝐶𝑖𝑗 𝑆𝑖 ≤ +, 0 < 𝑆𝑖≤ 𝑆𝑖0; (𝐻2) 𝑓𝑖𝑗 𝑆𝑖, 𝐼𝑗 ≤ 𝐶𝑖𝑗 𝑆𝑖 𝐼𝑗 untuk 𝐼𝑗 cukup kecil; (𝐻3) 𝑓𝑖𝑗 𝑆𝑖, 𝐼𝑗 ≤ 𝐶𝑖𝑗 𝑆𝑖 𝐼𝑗 untuk semua 𝐼𝑗> 0 (𝐻4) 𝐶𝑖𝑗 𝑆𝑖 < 𝐶𝑖𝑗 𝑆𝑖0 , 0 < 𝑆𝑖< 𝑆𝑖0

Bentuk dari 𝑓𝑖𝑗 𝑆𝑖, 𝐼𝑗 yang memenuhi

(𝐻1) − (𝐻4) meliputi laju penularan umum

seperti 𝑓𝑖𝑗 𝑆𝑖, 𝐼𝑗 = 𝐼𝑗𝑆𝑖, 𝑓𝑖𝑗 𝑆𝑖, 𝐼𝑗 = 𝐼𝑗 𝑝𝑗 𝑆𝑖𝑞𝑖, dan 𝑓𝑖𝑗 𝑆𝑖, 𝐼𝑗 = 𝐼𝑗𝑝 𝑗 𝐼𝑗+𝐴𝑗 𝑆𝑖𝑞 𝑖 𝑆𝑖+𝐵𝑖

2.5. Titik Setimbang dan Kestabilannya

Untuk 𝑖 = 1,2, … , 𝑛, pandang persamaan diferensial 𝑑𝑆1 𝑑𝑡 = 𝑓1(𝑆1 0, 𝐸 10, 𝐼10, … , 𝑆𝑛0, 𝐸𝑛0, 𝐼𝑛0) 𝑑𝐸1 𝑑𝑡 = 𝑔1(𝑆1 0, 𝐸 10, 𝐼10, … , 𝑆𝑛0, 𝐸𝑛0, 𝐼𝑛0) 𝑑𝐼1 𝑑𝑡 = 𝑕1 𝑆1 0, 𝐸 10, 𝐼10, … , 𝑆𝑛0, 𝐸𝑛0, 𝐼𝑛0 ⋮ 𝑑𝐼𝑛 𝑑𝑡 = 𝑕𝑛 𝑆1 0, 𝐸 10, 𝐼10, … , 𝑆𝑛0, 𝐸𝑛0, 𝐼𝑛0 (2.12)

Sebuah titik 𝑆10, 𝐸10, 𝐼10, … , 𝑆𝑛0, 𝐸𝑛0, 𝐼𝑛0 merupakan titik setimbang dari persamaan (2.9) – (2.11) jika memenuhi

𝑓1 𝑆10, 𝐸10, 𝐼10, … , 𝑆𝑛0, 𝐸𝑛0, 𝐼𝑛0 = 𝑔1 𝑆10, 𝐸10, 𝐼10, … , 𝑆𝑛0, 𝐸𝑛0, 𝐼𝑛0 = 𝑕1 𝑆10, 𝐸10, 𝐼10, … , 𝑆𝑛0, 𝐸𝑛0, 𝐼𝑛0 = ⋯ = 𝑕𝑛 𝑆10, 𝐸10, 𝐼10, … , 𝑆𝑛0, 𝐸𝑛0, 𝐼𝑛0 = 0

karena turunannya sama dengan nol, maka

𝑆1 𝑡 ≡ 𝑆10, 𝐸1 𝑡 ≡ 𝐸10, 𝐼1 𝑡 ≡ 𝐼10, … , 𝐼𝑛 𝑡 ≡ 𝐼𝑛0

adalah penyelesaian kesetimbangan dari persamaan (2.1) untuk semua 𝑡.

Stabilitas Lokal

Kestabilan suatu titik setimbang juga dapat diperiksa dari akar karakteristik (nilai eigen 𝜆) dengan menyelesaikan 𝐴 − 𝜆𝐼 = 0

dengan 𝐴 adalah matrik dari sistem persamaan diferensial (2.12) yang linear dan berukuran

𝑛 × 𝑛, menghasilkan polinomial dengan derajat tertinggi sama dengan ukuran matrik 𝐴 yaitu polinomial 𝑛 yang mempunyai bentuk umum

𝑞  = 𝑎0𝑛+ 𝑎

1𝑛−1+ 𝑎2𝑛−2+ ⋯ + 𝑎𝑛 = 0

Sifat stabilitas titik setimbang berdasarkan tanda bagian real dibagi menjadi 3 yaitu :

1. Stabil

Titik Setimbang dikatakan stabil jika dan hanya jika akar karakteristik (nilai eigen 𝜆) adalah real dan negatif atau mempunyai bagian real tak positif.

2. Stabil Asimtotis

Titik Setimbang dikatakan stabil asimtotis jika dan hanya jika akar karakteristik (nilai eigen 𝜆) adalah real dan negatif atau mempunyai bagian real negatif.

3. Tidak stabil

Titik Setimbang dikatakan tidak stabil jika dan hanya jika nilai eigen 𝜆 adalah real dan positif atau mempunyai paling sedikit satu niai eigen dengan bagian real positif.

Kriteria kestabilan Routh – Hurwitz

Kriteria kestabilan Routh – Hurwitz adalah metode untuk menunjukkan kestabilan sistem dengan memperhatikan koefisien dari persamaan karakteristik tanpa menghitung akar-akar karakteristik secara langsung.

Jika diketahui persamaan karakteristik dengan orde ke-𝑛, yaitu 𝑞  . Kemudian susun koefisien persamaan karakteristik menjadi

Tabel 2.1 Tabel Routh – Hurwitz 𝑛 𝑎 0 𝑎2 𝑎4 𝑛−1 𝑎 1 𝑎3 𝑎5 𝑛−2 𝑏 1 𝑏2 𝑏3 ⋮ ⋮ ⋮ ⋮ 0 𝑞 dengan 𝑏1= 𝑎1𝑎2− 𝑎0𝑎3 𝑎1 , 𝑏2= 𝑎1𝑎4− 𝑎0𝑎5 𝑎1 , 𝑏3= 𝑎1𝑎6− 𝑎0𝑎7 𝑎1 , 𝑐1= 𝑏1𝑎3− 𝑎1𝑏2 𝑏1 , 𝑐2= 𝑏1𝑎5− 𝑏3𝑎1 𝑏1

Dengan menggunakan akar karakteristik, sistem dikatakan stabil atau mempunyai bagian real negatif jika dan hanya jika elemen pada kolom pertama memiliki tanda yang sama.

2.6Kestabilan Global

Kestabilan global dari titik setimbang dapat ditentukan dengan membangun fungsi Lyapunov. Fungsi Lyapunov 𝑉(𝑥) merupakan himpunan kurva tertutup yang mengelilingi titik setimbang tertentu, jika diambil sembarang titik yang ada pada kurva tertutup maka lintasan titik tersebut akan mendekati titik setimbang.

(5)

5

III METODOLOGI

1. Mendapatkan titik setimbang dari model epidemik multi grup yaitu titik setimbang bebas penyakit dan titik setimbang endemik. 2. Mendapatkan bilangan reproduksi dasar, menentukan jenis kestabilan lokal dan global pada titik setimbang.

3. Mengambil kasus khusus sebagai penerapan dari model epidemik multi grup yaitu dengan menggunakan 𝑛 = 1,2 setelah itu dicari bilangan reproduksi dasar, empat titik setimbang, menganalisis stabilitas lokal, serta membuat simulasi dengan menggunakan software Matlab.

4. Analisis Hasil kesimpulan dan Penarikan Kesimpulan

IV ANALISIS PEMBAHASAN

4.1. Model Epidemik Multi Grup

Model epidemik multi grup merupakan model epidemik dengan 𝑖, 𝑗 = 1,2, … , 𝑛, yang memenuhi (2.9) – 92.11) atau disebut juga model epidemik 𝑛-Grup.

4.1.1. Bilangan Reproduksi Dasar

Untuk menentukan bilangan reproduksi dasar, akan digunakan metode Driessche dan Watmough [11] yang dirumuskan

𝑅0= 𝜌 𝐹12𝑉22−1𝑉21𝑉11−1

dari persamaan (2.10) dan (2.11) serta menerapkan asumsi 𝐻1 didapatkan

𝐹12= 𝛽𝑖𝑗𝐶𝑖𝑗(𝑆𝑖0) , 𝑉 11= diag 𝑑𝑖𝐸+ 𝜖𝑖 , 𝑉21 = diag 𝜖𝑖 , 𝑉22= diag 𝑑𝑖𝐼+ 𝛾𝑖 maka 𝑅0= 𝜌 𝛽𝑖𝑗𝜖𝑖𝐶𝑖𝑗(𝑆𝑖 0) 𝑑𝑖𝐸+ 𝜖 𝑖 𝑑𝑖𝐼+ 𝛾𝑖 misalkan 𝑅0= 𝜌 𝑀0 maka 𝑅0= 𝜌 𝛽11𝜖1𝐶11(𝑆10) 𝑑1𝐸+ 𝜖 1 𝑑1𝐼+ 𝛾1 ⋯ 𝛽1𝑛𝜖1𝐶1𝑛(𝑆1 0) 𝑑1𝐸+ 𝜖 1 𝑑1𝐼+ 𝛾1 ⋮ ⋱ ⋮ 𝛽𝑛1𝜖1𝐶𝑛1(𝑆𝑛0) 𝑑𝑛𝐸+ 𝜖𝑛 𝑑𝑛𝐼+ 𝛾𝑛 ⋯ 𝛽𝑛𝑛𝜖𝑛𝐶𝑛𝑛(𝑆𝑛 0) 𝑑𝑛𝐸+ 𝜖𝑛 𝑑𝑛𝐼+ 𝛾𝑛 dimana matriks 𝛽𝑖𝑗𝜖𝑖𝐶𝑖𝑗(𝑆𝑖 0) 𝑑𝑖𝐸+𝜖𝑖 𝑑𝑖𝐼+𝛾𝑖 disebut next

generation matrix. Parameter 𝑅0 disebut sebagai bilangan reproduksi dasar. Jika 𝑅0≤ 1 penyakit akan hilang dari populasi sedangkan jika 𝑅0> 1 penyakit menjadi endemik.

4.1.2. Kestabilan Lokal Titik Setimbang

Bebas Penyakit

Titik setimbang 𝑃0= 𝑆10, 0,0, … , 𝑆𝑛0, 0,0 dengan 𝑆𝑖0= 𝛬𝑖

𝑑𝑖𝑆 menunjukkan bahwa populasi Infectious tidak ada, sehingga 𝛽𝑖𝑗 = 𝐸𝑖0 = 𝐼𝑖0=

𝜖𝑖 =𝛾𝑖= 0.

Pada titik

setimbang 𝑃0 matriks

Jacobiannya adalah : 𝐽 𝑃0 = −𝑑1𝑆 0 0 0 0 0 0 0 −𝑑1𝐸 0 0 0 0 0 0 0 −𝑑1𝐼 0 0 0 0 0 0 0 −𝑑2𝑆 0 0 0 0 0 0 0 −𝑑2𝐸 0 0 ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 0 0 0 0 0 0 0 −𝑑𝑛𝐼

nilai eigen dari 𝐽 𝑃0 diperoleh dengan det 𝐽 𝑃0 − 𝜆𝐼 = 0, maka −𝑑1𝑆− 𝜆 0 0 0 0 0 0 0 −𝑑1𝐸− 𝜆 0 0 0 0 0 0 0 −𝑑1𝐼− 𝜆 0 0 0 0 0 0 0 −𝑑2𝑆− 𝜆 0 0 0 0 0 0 0 −𝑑2𝐸− 𝜆 0 0 ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 0 0 0 0 0 0 0 −𝑑𝑛𝐼− 𝜆 = 0

sehingga didapatkan nilai eigen

𝜆1= −𝑑1𝑆, 𝜆

2= −𝑑1𝐸, 𝜆3= −𝑑1𝐼, 𝜆4= −𝑑2𝑆, 𝜆5 = 𝑑2𝐸, ⋯ , 𝜆

𝑛 = −𝑑𝑛𝐼

Karena nilai eigen (𝜆1, 𝜆2, 𝜆3, ⋯ , 𝜆𝑛)

bernilai negatif pada bagian realnya, maka titik setimbang 𝑃0 bersifat stabil asimtotis lokal.

4.1.3. Kestabilan Global Titik Setimbang

Bebas penyakit Misalkan 𝑆 = 𝑆1, 𝑆2, … , 𝑆𝑛 dan 𝑆0 = 𝑆10, 𝑆 20, … , 𝑆𝑛0 maka 𝑀0= 𝑀 𝑆0 untuk 1 ≤ 𝑖 ≤ 𝑛, 0 ≤ 𝑆 ≤ 𝑆0 sehingga 0 ≤ 𝑀 𝑆 ≤ 𝑀 𝑆0 . Jika 𝑆 ≠ 𝑆0 maka 𝑀 𝑆 < 𝑀 𝑆0 . Karena 𝐿 tak tereduksi, dapat diketahui bahwa 𝑀 𝑆 dan 𝑀0 tak tereduksi, selanjutnya

𝑀 𝑆 + 𝑀0 juga tak tereduksi. Dengan menggunakan asumsi 𝑃3 didapatkan bahwa

𝜌 𝑀 𝑆 < 𝜌 𝑀0 jika 𝑆 ≠ 𝑆0.

Jika 𝑅0= 𝜌 𝑀0 ≤ 1 dan 𝑆 ≠ 𝑆0, maka

𝜌 𝑀 𝑆 < 1 dan 𝑀 𝑆 𝐼 = 𝐼 hanya memiliki solusi trivial 𝐼 = 0. Jadi 𝑃0 merupakan satu – satunya titik setimbang di Г jika 𝑅0≤ 1. Dengan menggunakan asumsi 𝑃2, misalkan 𝜔1, … , 𝜔𝑛 adalah vektor eigen dari 𝑀0 yang sesuai dengan

𝜌 𝑀0 , maka

𝜔1, … , 𝜔𝑛 𝜌 𝑀0 = 𝜔1, … , 𝜔𝑛 𝑀0 karena 𝑀0 tak tereduksi, diketahui 𝜔𝑖> 0 untuk

𝑖 = 1,2, … , 𝑛 . didefinisikan

(6)

6 𝐵 = 𝜔𝑖 𝜖𝑖𝐸𝑖− 𝑑𝑖 𝐸+ 𝜖 𝑖 𝐼𝑖 𝑑𝑖𝐸+ 𝜖𝑖 𝑑𝑖𝐼+ 𝛾𝑖 𝑛 𝑖,𝑗=1

Dengan mensubstitusikan (2.10) dan (2.11) serta asumsi (𝐻3)diperoleh : 𝐵 = 𝜔𝑖 𝜖𝑖𝛽𝑖𝑗𝐶𝑖𝑗 𝑆𝑖 𝐼𝑖 𝑑𝑖𝐸+ 𝜖 𝑖 𝑑𝑖𝐼+ 𝛾𝑖 − 𝐼𝑖 𝑛 𝑖,𝑗 =1 maka 𝐵 = 𝜔1, … , 𝜔𝑛 𝑀 𝑆 𝐼 − 𝐼 ≤ 𝜔1, … , 𝜔𝑛 𝑀 𝑆0 𝐼 − 𝐼 = 𝜔1, … , 𝜔𝑛 𝜌 𝑀0 − 1 𝐼

Jika 𝑅0= 𝜌 𝑀0 < 1 maka 𝐵 = 0 ⟺ 𝐼 = 0, jika 𝑅0= 1, maka 𝐵 = 0 menunjukkan bahwa

𝜔1, … , 𝜔𝑛 𝑀 𝑆 𝐼 = 𝜔1, … , 𝜔𝑛 𝐼 (4.1)

jika 𝑆 ≠ 𝑆0 maka

𝜔1, … , 𝜔𝑛 𝑀 𝑆 < 𝜔1, … , 𝜔𝑛 𝑀0

Maka 𝐵 = 0 ⟺ 𝐼 = 0 atau 𝑆 = 𝑆0 dengan 𝑅 0< 1, serta 𝐵 = 0 jika 𝑅0= 1. Dapat disimpulkan bahwa 𝑃0stabil asimtotik global di Г jika 𝑅0≤ 1.

4.1.4. Kestabilan Global Titik Setimbang

Endemik

Diasumsikan 𝐵 = 𝛽𝑖𝑗 tak tereduksi,

𝑅0 > 1 dan 𝑓𝑖𝑗 𝑆𝑖, 𝐼𝑗 memenuhi 𝐻1 dan

𝑆𝑖− 𝑆𝑖∗ 𝑓𝑖𝑖 𝑆𝑖, 𝐼𝑖∗ − 𝑓𝑖𝑖 𝑆𝑖∗, 𝐼𝑖∗ > 0, 𝑆𝑖≠ 𝑆𝑖∗ (4.2) 𝑓𝑖𝑗 𝑆𝑖, 𝐼𝑗 𝑓𝑖𝑖 𝑆𝑖∗, 𝐼𝑖∗ − 𝑓𝑖𝑗 𝑆𝑖∗, 𝐼𝑗∗ 𝑓𝑖𝑖 𝑆𝑖, 𝐼𝑖∗ . 𝑓𝑖𝑗 𝑆𝑖, 𝐼𝑗 𝑓𝑖𝑖 𝑆𝑖∗, 𝐼𝑖∗ 𝐼𝑗 −𝑓𝑖𝑗 𝑆𝑖 ∗, 𝐼 𝑗∗ 𝑓𝑖𝑖 𝑆𝑖, 𝐼𝑖∗ 𝐼𝑗∗ ≤ 0, 𝑆𝑖, 𝐼𝑗> 0 (4.3) Misalkan 𝑆1∗, 𝐸1∗, 𝐼1∗, … , 𝑆𝑛∗, 𝐸𝑛∗, 𝐼𝑛∗ ∈ Ѓ, dan dipilih sebuah fungsi Lyapunov

𝑉𝑖 𝑆𝑖, 𝐸𝑖, 𝐼𝑖 = 𝑓𝑖𝑖 𝜉, 𝐼𝑖∗ − 𝑓𝑖𝑖 𝑆𝑖∗, 𝐼𝑖∗ 𝑓𝑖𝑖 𝜉, 𝐼𝑖∗ 𝑆𝑖 𝑆𝑖∗ 𝑑𝜉 + 𝐸𝑖− 𝐸𝑖∗ln 𝐸𝑖 +𝑑𝑖 𝐸+ 𝜖 𝑖 𝜖𝑖 𝐼𝑖− 𝐼𝑖∗ln 𝐼𝑖

Selanjutnya fungsi Lyapunov diturunkan terhadap 𝑡 diperoleh 𝑉 𝑖= 1 − 𝑓𝑖𝑖 𝑆𝑖∗, 𝐼𝑖∗ 𝑓𝑖𝑖 𝑆𝑖, 𝐼𝑖∗ Λ𝑖− 𝑑𝑖𝑠𝑆𝑖− 𝛽𝑖𝑗𝑓𝑖𝑗 𝑆𝑖, 𝐼𝑗 𝑛 𝑗 =1 + 1 −𝐸𝑖 ∗ 𝐸𝑖 𝛽𝑖𝑗𝑓𝑖𝑗 𝑆𝑖, 𝐼𝑗 − 𝑑𝑖𝐸+ 𝜖𝑖 𝐸𝑖 𝑛 𝑗 =1 +𝑑𝑖 𝐸+ 𝜖 𝑖 𝜖𝑖 1 −𝐼𝑖 ∗ 𝐼𝑖 𝜖𝑖𝐸𝑖− 𝑑𝑖𝐼+ 𝛾𝑖 𝐼𝑖 𝑉 𝑖= 1 − 𝑓𝑖𝑖 𝑆𝑖∗, 𝐼𝑖∗ 𝑓𝑖𝑖 𝑆𝑖, 𝐼𝑖∗ 𝑑𝑖𝑠𝑆𝑖∗+ 𝛽𝑖𝑗𝑓𝑖𝑗 𝑆𝑖∗, 𝐼𝑗∗ − 𝑛 𝑗 =1 𝑑𝑖𝑠𝑆𝑖− 𝛽𝑖𝑗𝑓𝑖𝑗 𝑆𝑖, 𝐼𝑗 𝑛 𝑗 =1 + 1 −𝐸𝑖 ∗ 𝐸𝑖 𝛽𝑖𝑗𝑓𝑖𝑗 𝑆𝑖, 𝐼𝑗 𝑛 𝑗 =1 − 𝛽𝑖𝑗𝑓𝑖𝑗 𝑆𝑖∗, 𝐼𝑗∗ 𝑛 𝑗 =1 𝐸𝑖 𝐸𝑖∗ + 𝛽𝑖𝑗𝑓𝑖𝑗 𝑆𝑖 ∗, 𝐼 𝑗∗ 𝜖𝑖𝐸𝑖∗ 𝑛 𝑗 =1 1 −𝐼𝑖 ∗ 𝐼𝑖 𝜖𝑖𝐸𝑖− 𝜖𝑖𝐸𝑖∗𝐼𝑖 𝐼𝑖∗ = − 𝑑𝑖 𝑠 𝑓𝑖𝑖 𝑆𝑖, 𝐼𝑖∗ 𝑆𝑖− 𝑆𝑖∗ 𝑓𝑖𝑖 𝑆𝑖, 𝐼𝑖∗ − 𝑓𝑖𝑖 𝑆𝑖∗, 𝐼𝑖∗ + 𝛽𝑖𝑗𝑓𝑖𝑗 𝑆𝑖∗, 𝐼𝑗∗ (3 − 𝑓𝑖𝑖 𝑆𝑖∗, 𝐼𝑖∗ 𝑓𝑖𝑖 𝑆𝑖, 𝐼𝑖∗ 𝑛 𝑗 =1 +𝑓𝑖𝑗 𝑆𝑖, 𝐼𝑗 𝑓𝑖𝑖 𝑆𝑖 ∗, 𝐼 𝑖∗ 𝑓𝑖𝑗 𝑆𝑖∗, 𝐼𝑗∗ 𝑓𝑖𝑖 𝑆𝑖, 𝐼𝑖∗ −𝑓𝑖𝑗 𝑆𝑖, 𝐼𝑗 𝐸𝑖 ∗ 𝑓𝑖𝑗 𝑆𝑖∗, 𝐼𝑗∗ 𝐸𝑖 −𝐼𝑖 𝐼𝑖∗ −𝐸𝑖𝐼𝑖 ∗ 𝐸𝑖∗𝐼𝑖 ) (4.4) Misalkan 𝑎𝑖𝑗 = 𝛽𝑖𝑗𝑓𝑖𝑗 𝑆𝑖∗, 𝐼𝑗∗ , 𝐺𝑖 𝐼𝑖 = −𝐼𝐼𝑖 𝑖∗+ ln 𝐼𝑖 𝐼𝑖∗, dan 𝐹𝑖𝑗 𝑆𝑖, 𝐸𝑖, 𝐼𝑖, 𝐼𝑗 = 3 − 𝑓𝑖𝑖 𝑆𝑖∗, 𝐼𝑖∗ 𝑓𝑖𝑖 𝑆𝑖, 𝐼𝑖∗ +𝑓𝑖𝑗 𝑆𝑖, 𝐼𝑗 𝑓𝑖𝑖 𝑆𝑖 ∗, 𝐼 𝑖∗ 𝑓𝑖𝑗 𝑆𝑖∗, 𝐼𝑗∗ 𝑓𝑖𝑖 𝑆𝑖, 𝐼𝑖∗ −𝑓𝑖𝑗 𝑆𝑖, 𝐼𝑗 𝐸𝑖 ∗ 𝑓𝑖𝑗 𝑆𝑖∗, 𝐼𝑗∗ 𝐸𝑖 −𝐼𝑖 𝐼𝑖∗ −𝐸𝑖𝐼𝑖 ∗ 𝐸𝑖∗𝐼𝑖

karena 𝛽𝑖𝑗 tak tereduksi, maka 𝑎𝑖𝑗 tak tereduksi. Diasumsikan 𝑓𝑖𝑗 𝑆𝑖, 𝐼𝑗 memenuhi kondisi (4.2), sehingga persamaan (4.4) menjadi

𝑉 𝑖≤ 𝑎𝑖𝑗𝐹𝑖𝑗 𝑆𝑖, 𝐸𝑖, 𝐼𝑖, 𝐼𝑗 𝑛

𝑖,𝑗 =1

(4.5) Untuk menunjukkan bahwa 𝐹𝑖𝑗 memenuhi asumsi pada Teorema 2.3, dimisalkan 𝛷 𝑎 =

1 − 𝑎 + ln 𝑎, kemudian 𝛷 𝑎 ≤ 0 untuk 𝑎 > 0,

dan 𝛷 𝑎 = 0 jika 𝑎 = 1, selanjutnya 𝐹𝑖𝑗= 𝐺𝑖 𝐼𝑖 − 𝐺𝑗 𝐼𝑗 + 𝜙 𝑓𝑖𝑖 𝑆𝑖∗, 𝐼𝑖∗ 𝑓𝑖𝑖 𝑆𝑖, 𝐼𝑖∗ + 𝜙 𝐸𝑖𝐼𝑖 ∗ 𝐸𝑖𝐼 𝑖 +𝜙 𝐼𝑗𝑓𝑖𝑗 𝑆𝑖 ∗, 𝐼 𝑗∗ 𝑓𝑖𝑖 𝑆𝑖, 𝐼𝑖∗ 𝐼𝑗∗𝑓𝑖𝑗 𝑆𝑖, 𝐼𝑗 𝑓𝑖𝑖 𝑆𝑖∗, 𝐼𝑖∗ + 𝜙 𝑓𝑖𝑗 𝑆𝑖, 𝐼𝑗 𝐸𝑖 ∗ 𝑓𝑖𝑗 𝑆𝑖∗, 𝐼𝑗∗ 𝐸𝑖 + 𝑓𝑖𝑗 𝑆𝑖, 𝐼𝑗 𝑓𝑖𝑖 𝑆𝑖 ∗, 𝐼 𝑖∗ 𝑓𝑖𝑗 𝑆𝑖∗, 𝐼𝑗∗ 𝑓𝑖𝑖 𝑆𝑖, 𝐼𝑖∗ − 1 1 −𝐼𝑗𝑓𝑖𝑗 𝑆𝑖 ∗, 𝐼 𝑗∗ 𝑓𝑖𝑖 𝑆𝑖, 𝐼𝑖∗ 𝐼𝑗∗𝑓𝑖𝑗 𝑆𝑖, 𝐼𝑗 𝑓𝑖𝑖 𝑆𝑖∗, 𝐼𝑖∗ 𝐹𝑖𝑗≤ 𝐺𝑖 𝐼𝑖 − 𝐺𝑗 𝐼𝑗 + 𝑓𝑖𝑗 𝑆𝑖, 𝐼𝑗 𝑓𝑖𝑖 𝑆𝑖∗, 𝐼𝑖∗ 𝑓𝑖𝑗 𝑆𝑖∗, 𝐼𝑗∗ 𝑓𝑖𝑖 𝑆𝑖, 𝐼𝑖∗ − 1 1 −𝐼𝑗𝑓𝑖𝑗 𝑆𝑖 ∗, 𝐼 𝑗∗ 𝑓𝑖𝑖 𝑆𝑖, 𝐼𝑖∗ 𝐼𝑗∗𝑓𝑖𝑗 𝑆𝑖, 𝐼𝑗 𝑓𝑖𝑖 𝑆𝑖∗, 𝐼𝑖∗

Dengan kondisi (4.3) dapat ditunjukkan bahwa 𝑉𝑖, 𝐹𝑖𝑗, 𝐺𝑖, 𝑎𝑖𝑗 memenuhi asumsi pada Teorema 2.3. Sehingga fungsi 𝑉 =

𝑐𝑖𝑉𝑖 𝐸𝑖, 𝐸𝑖, 𝐼𝑖 𝑛

𝑖=1 merupakan fungsi Lyapunov untuk (2.9) – (2.11). Dari Teorema 2.3, didapat

𝑉 ≤ 0 untuk semua 𝑆1, 𝐸1, 𝐼1, … , 𝑆𝑛, 𝐸𝑛, 𝐼𝑛 ∈ Ѓ. Untuk menunjukkan 𝑃∗ stabil asimtotik global, akan diperiksa himpunan invariant kompak terbesar dimana 𝑉 = 0. Karena 𝒢, 𝐴

(7)

7 Sehingga secara tidak langsung 𝑉 = 0

menyatakan bahwa 𝑆𝑖 = 𝑆𝑖 dan 𝐹

𝑖𝑗 𝑆𝑖, 𝐸𝑖, 𝐼𝑖, 𝐼𝑗 = 0 untuk 𝑎𝑖𝑗 > 0. Dari 𝐹𝑖𝑗 𝑆𝑖, 𝐸𝑖, 𝐼𝑖, 𝐼𝑗 = 0 dan

karena 𝛷 𝑎 = 0 jika 𝑎 = 1 didapatkan

𝐸𝑖 𝐸𝑖∗ =𝐼𝑖 𝐼𝑖∗ = 𝑓𝑖𝑗 𝑆𝑖, 𝐼𝑗 𝑓𝑖𝑗 𝑆𝑖∗, 𝐼𝑗∗ =𝐼𝑗 𝐼𝑗∗ (4.6)

dengan (𝑖, 𝑗) ∈ 𝐸 𝒞𝒬 . Jika 𝑆𝑖 = 𝑆𝑖∗ untuk

1 ≤ 𝑖 ≤ 𝑛, kemudian 𝐹𝑖𝑗 = 0 jika dan hanya jika

𝐸𝑖 = 𝑐𝐸𝑖∗ dan 𝐼𝑖= 𝑐𝐼𝑖∗ untuk 𝑖 = 1,2, … , 𝑛 dengan 𝑐 adalah bilangan positif sebarang. Dari persamaan (4.6) dapat disimpulkan bahwa

𝐸𝑖 𝐸𝑖∗ =𝐼𝑖 𝐼𝑖∗ =𝐼𝑗 𝐼𝑗∗ (4.7)

Karena 𝒢 terhubung kuat jelas bahwa setiap busur (𝑖, 𝑗) di graph 𝒢 merupakan cycle dari subgraph 𝒬 sehingga persamaan (4.7) berlaku untuk setiap busur (𝑖, 𝑗). Misalkan 𝑝 dan

𝑞 merupakan simpul berbeda pada 𝒢, maka terdapat sebuah lintasan dari 𝑝 ke 𝑞. Dengan mengaplikasikan persamaan (4.7) untuk busur pada lintasan ini secara berurutan didapatkan

𝐸𝑝 𝐸𝑝∗ =𝐼𝑝 𝐼𝑝∗ =𝐼𝑞 𝐼𝑞∗ =𝐸𝑞 𝐸𝑞∗

Maka 𝑉 = 0 jika dan hanya jika 𝑆𝑖= 𝑆𝑖∗,

𝐸𝑖 = 𝑐𝐸𝑖∗ dan 𝐼𝑖= 𝑐𝐼𝑖∗ untuk 𝑖 = 1,2, … , 𝑛. Kemudian dengan mensubstitusikan ke dua persamaan pertama pada (2.9) – (2.10) diperoleh

0 = 𝛬𝑖− 𝑑𝑖𝑆𝑆

𝑖∗− 𝑑𝑖𝐸+ 𝜖𝑖 𝑐𝐸𝑖∗ (4.8)

Ruas kanan persamaan (4.8) menurun bergantung pada 𝑐. Dari titik setimbang dapat diketahui bahwa (4.8) berlaku jika dan hanya jika 𝑐 = 1, yaitu pada 𝑃∗. Hal ini menunjukkan bahwa himpunan bagian invariant kompak dari

𝑆1, 𝐸1, 𝐼1, … , 𝑆𝑛, 𝐸𝑛, 𝐼𝑛 ∈ Ѓ|𝑉 = 0 adalah 𝑃∗ ,

sehingga dapat disimpulkan 𝑃∗ stabil asimtotik global pada Ѓ jika 𝑅0> 1.

4.2. Model Epidemik Dua Grup

Diberikan 𝑖, 𝑗 = 1,2 dan 𝑓𝑖𝑗 𝑆𝑖, 𝐼𝑗 = 𝐼𝑗 𝑝𝑗 𝑆𝑖𝑞𝑖

. Maka

𝑆 1= 𝛬1− 𝑑1𝑆𝑆1− 𝛽1𝑗𝐼𝑗 𝑝𝑗 𝑆1𝑞1 2 𝑗 =1 (4.7) 𝐸 1= 𝛽1𝑗𝐼𝑗 𝑝𝑗 𝑆1𝑞1 2 𝑗 =1 − 𝑑1𝐸+ 𝜖1 𝐸1 (4.8) 𝐼 1= 𝜖1𝐸1− 𝑑1𝐼+ 𝛾1 𝐼1 (4.9) 𝑆 2= 𝛬2− 𝑑2𝑆𝑆2− 𝛽2𝑗𝐼𝑗 𝑝𝑗 𝑆2𝑞2 2 𝑗 =1 (4.10) 𝐸 2= 𝛽2𝑗𝐼𝑗 𝑝𝑗 𝑆2𝑞2 2 𝑗 =1 − 𝑑2𝐸+ 𝜖2 𝐸2 (4.11) 𝐼 2= 𝜖2𝐸2− 𝑑2𝐼+ 𝛾2 𝐼2 (4.12) 4.2.1. Titik Setimbang

Titik setimbang dari model epidemik dua grup dengan laju penularan taklinear yaitu : a. Titik Setimbang Bebas Penyakit 𝑃0=

𝑆10, 0,0, 𝑆20, 0,0 dengan 𝑆10= 𝛬1

𝑑1𝑆, 𝑆20= 𝛬2

𝑑2𝑆.

b. Titik Setimbang Endemik

𝑃∗= 𝑆

1∗, 𝐸1∗, 𝐼1∗,𝑆2∗, 𝐸2∗, 𝐼2∗

c. Titik Setimbang 𝑃1∗= 𝑆10, 0,0, 𝑆2∗, 𝐸2∗, 𝐼2∗ dimana Grup Pertama Bebas Penyakit dan Grup Kedua Terjadi Endemik.

d. Titik Setimbang 𝑃2= 𝑆

1∗, 𝐸1∗, 𝐼1∗, 𝑆20, 0,0

dimana Grup Pertama Terjadi Endemik dan Grup Kedua Bebas Penyakit

4.2.2. Bilangan Reproduksi Dasar

Dari pembahasan pada bagian 4.1.1 dan dari asumsi awal dapat diketahui bahwa

𝑅0= 𝜌 𝛽11𝜖1𝑝1𝐼1 𝑝1−1 𝑆10𝑞1 𝑑1𝐸+ 𝜖1 𝑑1𝐼+ 𝛾1 𝛽12𝜖2𝑝2𝐼2 𝑝2−1 𝑆10𝑞1 𝑑1𝐸+ 𝜖1 𝑑1𝐼+ 𝛾1 𝛽21𝜖2𝑝1𝐼1 𝑝1−1𝑆 20𝑞2 𝑑2𝐸+ 𝜖2 𝑑2𝐼+ 𝛾2 𝛽22𝜖2𝑝2𝐼2 𝑝2−1𝑆 20𝑞2 𝑑2𝐸+ 𝜖2 𝑑2𝐼+ 𝛾2

Untuk mendapatkan 𝑅0, akan dicari akar

terbesar dari matriks 𝑀0 dengan menggunakan

persamaandet 𝑀0− 𝜆𝐼 = 0, didapatkan

𝑅0 =1 2 𝛽11𝜖1𝑝1𝐼1 𝑝1−1𝑆 10𝑞1 𝑑1𝐸+ 𝜖1 𝑑1𝐼+ 𝛾1 + 𝛽22𝜖2𝑝2𝐼2 𝑝2−1𝑆 20𝑞2 𝑑2𝐸+ 𝜖2 𝑑2𝐼+ 𝛾2 + 𝛽11𝜖1𝑝1𝐼1 𝑝1−1𝑆 10𝑞1 𝑑1𝐸+ 𝜖1 𝑑1𝐼+ 𝛾1 − 𝛽22𝜖2𝑝2𝐼2 𝑝2−1𝑆 20𝑞2 𝑑2𝐸+ 𝜖2 𝑑2𝐼+ 𝛾2 2 + 4 𝛽12𝜖2𝑝2𝐼2 𝑝2−1𝑆 10𝑞1𝛽21𝜖2𝑝1𝐼1 𝑝1−1𝑆 2 0𝑞2 𝑑1𝐸+ 𝜖1 𝑑1𝐼+ 𝛾1 𝑑2𝐸+ 𝜖2 𝑑2𝐼+ 𝛾2 4.2.3. Kestabilan Lokal

Matriks Jacobian dari (4.7) – (4.12) adalah :

−𝑑1𝑆− 𝛽1𝑗𝐼𝑗 𝑝𝑗𝑞 1𝑆1 𝑞1−1 2 𝑗 =1 0 −𝛽11𝑝1𝐼1 𝑝1−1𝑆 1 𝑞1 0 0 −𝛽 12𝑝2𝐼2 𝑝2−1𝑆 1 𝑞1 𝛽1𝑗𝐼𝑗 𝑝𝑗𝑞 1𝑆1 𝑞1−1 2 𝑗 =1 − 𝑑1𝐸+ 𝜖1 𝛽11𝑝1𝐼1 𝑝1−1𝑆 1 𝑞1 0 0 𝛽 12𝑝2𝐼2 𝑝2−1𝑆 1 𝑞1 0 𝜖1 − 𝑑1𝐼+ 𝛾1 0 0 0 0 0 −𝛽21𝑝1𝐼1 𝑝1−1𝑆 2 𝑞2 −𝑑 2𝑆− 𝛽2𝑗𝐼𝑗 𝑝𝑗𝑞 2𝑆2 𝑞2−1 2 𝑗 =1 0 −𝛽22𝑝2𝐼2 𝑝2−1𝑆 2 𝑞2 0 0 𝛽21𝑝1𝐼1 𝑝1−1𝑆 2 𝑞2 𝛽 2𝑗𝐼𝑗 𝑝𝑗𝑞 2𝑆2 𝑞2−1 2 𝑗 =1 − 𝑑2𝐸+ 𝜖2 𝛽22𝑝2𝐼2 𝑝2−1𝑆 2 𝑞2 0 0 0 0 𝜖2 − 𝑑2𝐼+ 𝛾2

a.

Kestabilan Lokal Titik Setimbang 𝑷𝟎

Pada titik setimbang ini 𝛽1𝑗 = 𝛽2𝑗 = 𝜖1= 𝜖2= 𝛾1= 𝛾2= 0. Matriks Jacobiannya adalah :

𝐽 𝑃0 = −𝑑1𝑆 0 0 0 0 0 0 −𝑑1𝐸 0 0 0 0 0 0 −𝑑1𝐼 0 0 0 0 0 0 −𝑑2𝑆 0 0 0 0 0 0 −𝑑2𝐸 0 0 0 0 0 0 −𝑑2𝐼

(8)

8

𝜆1= −𝑑1𝑆, 𝜆2= −𝑑1𝐸, 𝜆3= −𝑑1𝐼, 𝜆4= −𝑑2𝑆, 𝜆5 = 𝑑2𝐸, 𝜆

6= −𝑑2𝐼

Karena nilai eigen (𝜆1, 𝜆2, 𝜆3, 𝜆4, 𝜆5, 𝜆6)

bernilai negatif pada bagian realnya, maka titik setimbang 𝑃0 bersifat stabil asimtotis lokal.

b. Kestabilan Lokal di Titik Setimbang 𝑷∗

Matriks Jacobian untuk 𝑃∗adalah :

𝐽 = −𝑎 − 𝑏 0 −𝑑 0 0 −𝑘 𝑏 −𝑐 𝑑 0 0 𝑘 0 𝜖1 𝑓 0 0 0 0 0 −𝑔 −𝑕 − 𝑖 0 −𝑙 0 0 𝑔 𝑖 −𝑗 𝑙 0 0 0 0 𝜖2 𝑚 dengan : 𝑎 = 𝑑1𝑆 𝑏 = 𝛽1𝑗𝐼𝑗∗𝑝𝑗𝑞1𝑆1 𝑞1−1 2 𝑗 =1 𝑐 = 𝑑1𝐸+ 𝜖1 𝑑 = 𝛽11𝑝1𝐼1∗𝑝1−1𝑆1∗𝑞1 𝑓 = − 𝑑1𝐼+ 𝛾1 𝑔 = 𝛽21𝑝1𝐼1∗𝑝1−1𝑆2∗𝑞2 𝑕 = 𝑑2𝑆 𝑖 = 𝛽2𝑗𝐼𝑗∗𝑝𝑗𝑞2𝑆2∗𝑞2−1 2 𝑗 =1 𝑗 = 𝑑2𝐸+ 𝜖2 𝑘 = 𝛽12𝑝2𝐼2 𝑝2−1𝑆 1∗𝑞1 𝑙 = 𝛽22𝑝2𝐼2∗𝑝2−1𝑆2∗𝑞2 𝑚 = − 𝑑2𝐼+ 𝛾2

Untuk mendapatkan nilai eigen akan dilakukan operasi baris elementer, didapatkan

𝐽 = −𝑏 𝑎 −𝑑 + 𝑎 𝑎 𝑎 −𝑘 + 𝑎 0 −𝑐 + 𝑎 𝑑 𝑎 𝑎 𝑎 0 0 𝑀 −𝑎 −𝑎 𝑎 0 0 0 𝑁 −𝑎 −𝑙 𝑔 −𝑓𝑐 + 𝑎 𝑓 − 𝜖1 𝜖1 + 𝑎 0 0 0 0 𝑃 −𝑙 𝑔 −𝑓𝑐 + 𝑎 𝑓 − 𝜖1 𝜖1 + 𝑎 0 0 0 0 0 𝑄 dengan 𝑀 =−𝑓𝑐 + 𝑎 𝑓 − 𝜖1 𝜖1 𝑁 =−(𝑕 + 1) 𝑔 −𝑓𝑐 + 𝑎 𝑓 − 𝜖1 𝜖1 − 𝑎 𝑃 =−𝑗 𝑕 −(𝑕 + 1) 𝑔 −𝑓𝑐 + 𝑎 𝑓 − 𝜖1 𝜖1 − 𝑎 − 𝑎 𝑄 =𝑚 𝜖2 𝑗(𝑕 + 𝑖) −𝑓𝑐 + 𝑎 𝑓 − 𝜖1 + 𝑗𝑎𝑔𝜖1+ 𝑎𝑕𝑔𝜖1 𝑕𝑔𝜖1 − −𝑙 𝑔 −𝑓𝑐 + 𝑎 𝑓 − 𝜖1 𝜖1 + 𝑎

nilai eigen diperoleh dari det 𝐽 𝑃∗ − 𝜆𝐼 = 0.

Karena 𝐽 𝑃∗ merupakan matriks segitiga atas,

maka nilai eigen ada pada diagonal utama. Agar sistem stabil, maka nilai real dari 𝜆

harus negatif. Dari 𝜆1 telah dapat dipastikan bahwa 𝜆1 < 0. Selanjutnya akan diberikan syarat agar 𝜆2, 𝜆3, 𝜆4, 𝜆5, 𝜆6< 0, yaitu :

1. 𝑑1𝑆< 𝑑1𝐸+ 𝜖1 2. 𝑑1𝐼+ 𝛾 1 𝑑1𝐸+ 𝜖1− 𝑑1𝑆 − 𝜖1𝑑1𝑆< 0 3. − 𝑑2𝑆+ 2𝑗 =1𝛽2𝑗𝐼𝑗∗𝑝𝑗𝑞2𝑆2∗𝑞2−1 𝜆3− 𝑑1𝑆𝛽21𝑝1𝐼1∗𝑝1−1𝑆2∗𝑞2< 0 4. − 𝑑2𝐸+ 𝜖 2 𝜆4− 𝑑1𝑆𝑑2𝑆< 0 5. − 𝑑2𝐼+ 𝛾2 𝛽21𝑝1𝐼1∗𝑝1−1𝑆2∗𝑞2𝜆5+ 𝜖2𝛽22𝑝2𝐼2∗𝑝2−1𝑆2∗𝑞2𝜆3− 𝑑1𝑆𝜖2𝛽21𝑝1𝐼1∗𝑝1−1𝑆2∗𝑞2< 0

Dapat disimpulkan bahwa titik setimbang 𝑃∗

stabil asimtotis lokal jika syarat terpenuhi.

c. Kestabilan Lokal Titik Setimbang 𝑷𝟏

Pada titik setimbang ini 𝛽11= 𝛽12= 𝛽21= 𝜖1= 𝛾1= 0. Sehingga didapatkan

𝑅1=

𝛽22𝜖2𝑝2𝐼2∗𝑝2−1𝑆2∗𝑞2 𝑑2𝐸+ 𝜖

2 𝑑2𝐼+ 𝛾2

dan matriks jacobian dari 𝑃1∗ adalah :

−𝑑1𝑆 0 0 0 0 0 0 −𝑑1𝐸 0 0 0 0 0 0 −𝑑1𝐼 0 0 0 0 0 0 −𝑑2𝑆− 𝛽22𝐼2∗𝑝2𝑞2𝑆2∗𝑞2−1 0 −𝛽22𝑝2𝐼2∗𝑝2−1𝑆2∗𝑞2 0 0 0 𝛽22𝐼2∗𝑝2𝑞2𝑆2∗𝑞2−1 − 𝑑2𝐸+ 𝜖2 𝛽22𝑝2𝐼2∗𝑝2−1𝑆2∗𝑞2 0 0 0 0 𝜖2 − 𝑑2𝐼+ 𝛾2

Dapat diketahui −𝑑1𝑆, −𝑑1𝐸, − 𝑑1𝐼+ 𝛾1 merupakan

nilai eigen dari 𝐽 𝑃1∗ sedangkan 3 nilai eigen

berikutnya diperoleh menggunakan kriteria kestabilan Routh-Hurwitz, yang kemudian menghasilkan syarat 𝑅1 > 1 agar 𝑃1∗ stabil.

d. Kestabilan Lokal Titik Setimbang 𝑷𝟐

Pada titik setimbang ini 𝛽12 = 𝛽22 =

𝛽21 = 𝜖2= 0, dan 𝑆20= 𝛬2 𝑑2𝑆. Sehingga 𝑅2= 𝛽11𝜖1𝑝1𝐼1∗𝑝1−1𝑆1∗𝑞1 𝑑1𝐸+ 𝜖 1 𝑑1𝐼+ 𝛾1

dan matriks jacobian dari 𝑃2∗ adalah :

−𝑑1𝑆− 𝛽11𝐼1∗ 𝑝1𝑞1𝑆1∗ 𝑞1 −1 0 −𝛽11𝑝1𝐼1∗ 𝑝1 −1 𝑆1∗ 𝑞1 0 0 0 𝛽11𝐼1∗ 𝑝1𝑞1𝑆1∗ 𝑞1−1 − 𝑑1𝐸+ 𝜖1 𝛽11𝑝1𝐼1∗ 𝑝1−1𝑆1∗ 𝑞1 0 0 0 0 𝜖1 − 𝑑1𝐼+ 𝛾1 0 0 0 0 0 0 −𝑑2𝑆 0 0 0 0 0 0 −𝑑2𝐸 0 0 0 0 0 0 − 𝑑2𝐼−𝛾2

Matriks 𝐽(𝑃2∗) similar dengan matriks

𝐽(𝑃1∗), dengan cara yang sama diperoleh hasil yaitu 𝑃2∗ stabil asimtotik lokal untuk 𝑅2> 1.

4.3. Simulasi Model Epidemik Dua Grup

Untuk 𝑹𝟎≤ 1

Dengan mengambil parameter

Grup Pertama Grup Kedua Nilai Awal Laju Penularan

𝛬1= 0.2 𝑑1𝑆= 0.009 𝑑1𝐸= 0.02 𝑑1𝐼= 0.025 𝜖1= 0.003 𝛾1= 0.003 𝛬2= 0.1 𝑑2𝑆= 0.007 𝑑2𝐸= 0.017 𝑑2𝐼= 0.02 𝜖2= 0.001 𝛾2= 0.002 𝑆1 0 = 15 𝐸1 0 = 1 𝐼1 0 = 4 𝑆2 0 = 10 𝐸2 0 = 1 𝐼2 0 = 3 𝛽11= 0.001 𝛽12= 0.001 𝛽21= 0.001 𝛽22= 0.001 serta koefisien 𝑝1= 1, 𝑞1= 1, 𝑝2= 1, 𝑞2= 1

diperoleh nilai 𝑅0= 0.095 < 1. Grafik laju

(9)

9 Gambar 4.1. Grafik Laju Perubahan Model

Epidemik Dua Grup dengan 𝑅0≤ 1  Laju Perubahan pada Populasi Susceptible

Pada awal laju perubahan populasi susceptible kedua grup mengalami penurunan karena adanya individu awal yang terinfeksi serta laju penularan yang kecil, namun kemudian kurva mengalami peningkatan, kemudian stabil ketika jumlah populasi sekitar 22 untuk grup pertama dan sekitar 14 untuk grup kedua. Ini menunjukkan bahwa dalam keadaan bebas penyakit, jumlah individu rentan bertambah.  Laju Perubahan pada Populasi Exposed

Pada awal laju perubahan populasi exposed kedua grup mengalami peningkatan ini disebabkan karena adanya laju penularan serta adanya individu awal yang terifeksi, sehingga beberapa individu pada populasi susceptible masuk kedalam populasi exposed. Setelah itu laju perubahan mengalami penurunan kemudian konstan menuju nol, ini menunjukkan bahwa sistem dalam kondisi bebas penyakit.

 Laju Perubahan Populasi Infectious

Laju perubahan populasi infectious pada kedua grup mengalami penurunan kemudian konstan menuju ke nol, sehingga dapat disimpulkan penyakit telah hilang dari populasi.

Untuk 𝑹𝟎> 1

Dengan mengambil parameter

Grup Pertama Grup Kedua Nilai Awal Laju Penularan

𝛬1= 0.2 𝑑1𝑆= 0.003 𝑑1𝐸= 0.004 𝑑1𝐼= 0.005 𝜖1= 0.02 𝛾1= 0.011 𝛬2= 0.1 𝑑2𝑆= 0.002 𝑑2𝐸= 0.002 𝑑2𝐼 = 0.002 𝜖2= 0.02 𝛾2= 0.012 𝑆1 0 = 30 𝐸1 0 = 2 𝐼1 0 = 8 𝑆2 0 = 20 𝐸2 0 = 2 𝐼2 0 = 6 𝛽11= 0.005 𝛽12= 0.002 𝛽21= 0.002 𝛽22= 0.002 serta koefisien 𝑝1= 1, 𝑞1= 1, 𝑝2= 1, 𝑞2= 1

diperoleh nilai 𝑅0= 9.06 > 1. Grafik laju perubahan untuk kasus ini adalah :

Gambar 4.2. Grafik Laju Perubahan Model Epidemik Dua Grup dengan 𝑅0 > 1  Laju Perubahan pada Populasi Susceptible

Laju perubahan populasi susceptible mengalami penurunan pada kedua grup dikarenakan dalam kondisi ini terjadi penyebaran penyakit atau endemik, sehingga banyak populasi susceptible yang tertular penyakit dan masuk kedalam populasi exposed. Setelah itu, laju perubahan mengalami sedikit kenaikan disebabkan oleh adanya laju rekruitmen yang cukup besar.

 Laju Perubahan pada Populasi Exposed Laju perubahan populasi exposed mengalami kenaikan pada kedua grup. Ini diakibatkan oleh adanya laju penularan penyakit yang cukup besar, sehingga banyak individu yang masuk dalam populasi exposed. Kemudian kurva laju perubahan mengalami penurunan disebabkan individu exposed kini telah menampakkan gejala penyakit menular, sehingga individu pada populasi exposed masuk kedalam populasi infectious dan kemudian stabil di sekitar 8 untuk grup pertama dan disekitar 4 untuk grup kedua. Ini diakibatkan tidak ada penambahan dari individu susceptible yang terinfeksi.

 Laju Perubahan Populasi Infectious

Laju perubahan populasi infectious pada kedua grup mengalami kenaikan karena pada populasi di kedua grup tersebut terjadi endemik. Kenaikan laju perubahan pada populasi infectious bergantung pada banyaknya individu pada populasi exposed yang telah menimbulkan gejala awal penyakit menular. Kemudian kurva laju perubahan populasi infectious mengalami penurunan dan stabil karena tidak ada penambahan dari individu exposed yang telah menampakkan gejala penyakit.

(10)

10

V KESIMPULAN DAN SARAN

1.1. Kesimpulan

Pada model epidemik multi grup :

1. Didapatkan titik setimbang bebas penyakit

𝑃0= 𝑆10, 0,0, … , 𝑆𝑛0, 0,0 dengan 𝑆𝑖0= 𝛬𝑖

𝑑𝑖𝑆, 𝑖 =

1,2, … , 𝑛 dan titik setimbang endemik

𝑃∗= 𝑆 1∗, 𝐸1∗, 𝐼1∗, … , 𝑆𝑛∗, 𝐸𝑛∗, 𝐼𝑛∗ yang memenuhi persamaan 𝛬𝑖 = 𝑑𝑖𝑆𝑆𝑖∗+ 𝛽𝑖𝑗𝑓𝑖𝑗(𝑆𝑖∗, 𝐼𝑗∗) 𝑛 𝑗 =1 𝑑𝑖𝐸+ 𝜖 𝑖 𝐸𝑖∗= 𝛽𝑖𝑗𝑓𝑖𝑗 𝑆𝑖∗, 𝐼𝑗∗ 𝑛 𝑗 =1 𝜖𝑖𝐸𝑖= 𝑑 𝑖𝐼+ 𝛾𝑖 𝐼𝑖∗

2. Didapatkan bilangan reproduksi dasar 𝑅0= 𝜌 𝛽11𝜖1𝐶11(𝑆10) 𝑑1𝐸+ 𝜖1 𝑑1𝐼+ 𝛾1 ⋯ 𝛽1𝑛𝜖1𝐶1𝑛(𝑆1 0) 𝑑1𝐸+ 𝜖1 𝑑1𝐼+ 𝛾1 ⋮ ⋱ ⋮ 𝛽𝑛1𝜖1𝐶𝑛1(𝑆𝑛0) 𝑑𝑛𝐸+ 𝜖𝑛 𝑑𝑛𝐼+ 𝛾𝑛 ⋯ 𝛽𝑛𝑛𝜖𝑛𝐶𝑛𝑛(𝑆𝑛 0) 𝑑𝑛𝐸+ 𝜖𝑛 𝑑𝑛𝐼+ 𝛾𝑛

dimana 𝜌 menyatakan jarak spektral dan matriks 𝛽𝑖𝑗𝜖𝑖𝐶𝑖𝑗(𝑆𝑖

0)

𝑑𝑖𝐸+𝜖𝑖 𝑑𝑖𝐼+𝛾𝑖 disebut next

generation matrix.

3. Didapatkan analisis stabilitas dengan mengasumsikan 𝐵 = (𝛽𝑖𝑗) tak tereduksi dan

𝑓𝑖𝑗 𝑆𝑖, 𝐼𝑗 memenihi (𝐻1), maka :

a. Jika 𝑅0≤ 1 maka 𝑃0 stabil asimtotik lokal.

b. Jika 𝑅0≤ 1 maka 𝑃0 stabil asimtotik global.

c. Jika 𝑅0> 1 maka 𝑃∗ stabil asimtotik global.

Pada model epidemik dua grup :

1. Didapatkan empat titik setimbang, yaitu titik

setimbang bebas penyakit

𝑃0= 𝑆10, 0,0, 𝑆

20, 0,0 ; titik setimbang

endemik 𝑃∗= 𝑆

1∗, 𝐸1∗, 𝐼1∗, 𝑆2∗, 𝐸2∗, 𝐼2∗ ; titik

setimbang dimana pada grup pertama bebas penyakit dan pada grup kedua terjadi endemik 𝑃1= 𝑆

10, 0,0, 𝑆2∗, 𝐸2∗, 𝐼2∗ ; titik

setimbang dimana pada grup pertama terjadi endemik dan pada grup kedua bebas penyakit 𝑃2= 𝑆

10, 0,0, 𝑆2∗, 𝐸2∗, 𝐼2∗ .

2. Didapatkan bilangan reproduksi dasar

𝑅0 =1 2 𝛽11𝜖1𝑝1𝐼1 𝑝1−1𝑆 10𝑞 1 𝑑1𝐸+ 𝜖1 𝑑1𝐼+ 𝛾1 + 𝛽22𝜖2𝑝2𝐼2 𝑝2−1𝑆 20𝑞 2 𝑑2𝐸+ 𝜖2 𝑑2𝐼+ 𝛾2 + 𝛽11𝜖1𝑝1𝐼1 𝑝1−1𝑆 10𝑞1 𝑑1𝐸+ 𝜖1 𝑑1𝐼+ 𝛾1 − 𝛽22𝜖2𝑝2𝐼2 𝑝2−1𝑆 20𝑞2 𝑑2𝐸+ 𝜖2 𝑑2𝐼+ 𝛾2 2 + 4 𝛽12𝜖2𝑝2𝐼2 𝑝2−1𝑆 10𝑞1𝛽21𝜖2𝑝1𝐼1 𝑝1−1𝑆 20𝑞2 𝑑1𝐸+ 𝜖1 𝑑1𝐼+ 𝛾1 𝑑2𝐸+ 𝜖2 𝑑2𝐼+ 𝛾2 3. Didapatkan analisis stabilitas lokal sebagai

berikut :

a. Jika 𝑅0≤ 1 maka 𝑃0 stabil asimtotik lokal.

b. Jika 𝑅0 > 1 maka 𝑃∗ stabil asimtotik lokal.

c. Jika 𝑅1> 1 maka 𝑃1∗ stabil asimtotik lokal dengan 𝑅1=

𝛽11𝜖1𝑝1𝐼1𝑝 1−1𝑆10𝑞1

𝑑1𝐸+𝜖1 𝑑1𝐼+𝛾1

d. Jika 𝑅2> 1 maka 𝑃2∗ stabil asimtotik lokal dengan 𝑅2=

𝛽22𝜖2𝑝2𝐼2𝑝 2−1𝑆20𝑞2

𝑑2𝐸+𝜖2 𝑑2𝐼+𝛾2 5.2. Saran

Pada pembahasan Tugas Akhir ini telah dijelaskan analisis stabilitas pada model epidemik multi grup dengan laju penularan taklinear secara umum. Perlu dikembangkan lagi penerapan dari model epidemik multi grup pada suatu kasus khusus untuk penelitian selanjutnya.

DAFTAR PUSTAKA

[1] Berman, A., Plemmons, R. J. 1979. Nonnegative Matrices in the Mathematical Science. New York : Academic Press.

[2] Budayasa, K. 2007. Teori Graph dan Aplikasinya. Surabaya : Unesa University Press.

[3] Finizio N., Ladas G. 1988. Ordinary Differential Equations with Modern Applications. California : Wadsworth Publishing Company Belmont. [4] Li, M. Y., Shuai, Z. Global-stability for

Coupled Systems of Differential Equation on Network. J. Differential Equation 248 (2010) 1-20.

[5] Rahmalia, D. 2010. Pemodelan Matematika dan Analisis Stabilitas dari Penyebaran Penyakit Flu Burung. Tugas Akhir S1 Jurusan Matematika ITS Surabaya.

[6] Sari, A.N. 2011. Analisis Stabilitas dari Model Penyebaran Penyakit Menular Melalui Transportasi Antar Dua Wilayah (Kota). Tugas Akhir S1 Jurusan Matematika ITS Surabaya. [7] Wiggins, S. 1990. Introduction to

Applied Nonlinear Dynamical Systems and Chaos. New York : Splinger-Verlag.

Referensi

Dokumen terkait

Berdasarkan hasil penelitian penggunaan bahasa lisan dalam kegiatan pembelajaran bahasa Indonesia siswa kelas XI MA Al- Asy’ariyah Bandar Lampung, dari persentase korpus data

bahwa penelitian untuk kasus di daerah Sumatera saja viskositas yang ditemukan cukup bervariasi sehingga dapat tergambarkan betapa esensialnya viskositas dalam

Pada penelitian ini ingin diketahui faktor-faktor apa saja yang berpengaruh pada tingkat Turnover Intentiont dari variabel prediktor yag digunakan dengan melakukan

Pemerintah Desa dan masyarakat. 2) Mewakili Kepala Desa dalam hal Kepala Desa berhalangan. 3) Melaksanakan tugas-tugas lain yang diberikan oleh Kepala Desa. Fungsi.

Hasil yang diperoleh dari penelitian sistem pendukung keputusan yang terdapat informasi pertanian yaitu input lokasi lahan, tanaman, kriteria dan proses

Penelitian ini bertujuan untuk 1) Mengembangkan permainan ular tangga berisi soal UNAS dan SBMPTN sebagai media pembelajaran fisika siswa kelas XI MIA 2 MAN 1

Penelitian yang dilakukan oleh Josiah Obaghwarhievwo Adjene dkk mengenai pengaruh konsumsi soft drink dengan dosis 50 ml/tikus/hari secara kronis pada

Tanpa kemampuan untuk menciptakan semangat kerja yang tinggi, gigih, dan motivasi bagi orang lain, pemimpin yang tidak mempunyai kemampuan ini sulit mencapai