• Tidak ada hasil yang ditemukan

Paper-9-Acta24.2010. 83KB Jun 04 2011 12:03:15 AM

N/A
N/A
Protected

Academic year: 2017

Membagikan "Paper-9-Acta24.2010. 83KB Jun 04 2011 12:03:15 AM"

Copied!
6
0
0

Teks penuh

(1)

AN INTEGRAL FORMULA FOR WILLMORE SURFACES IN AN N-DIMENSIONAL SPHERE

M˙IHR˙IBAN K ¨ULAHCI, DURSUN SOYLU AND MEHMET BEKTAS¸

Abstract. A surface x:M Sn is called a Willmore surface if it is a critical surface of the Willmore functional. In this paper, we obtain an integral formula using self-adjoint operator for compact Willmore surfaces in Sn.

2000Mathematics Subject Classification: 53C42, 53A10.

1. Introduction

We use the same notations and terminologies as in [2], [5], [6]. Let x : M → Sn be a surface in an n-dimensional unit sphere space Sn. If hαij de-notes the second fundamental form of M, S dede-notes the square of the length of the second fundamental form, Hdenotes the mean curvature vector, and H denotes the

mean curvature of M, then we have

S =X α

X

(hα ij)

2

, H=X

α

Hαeα, Hα = 1 2

X

k

kk, H=|H|,

where eα(3≤α≤n) are orthonormal vector fields ofM in Sn. We define the following nonnegative function on M:

(1.1) ρ2=S−2H2,

which vanishes exactly at the umbilic points of M.

The Willmore functional is the following non-negative functional (see[1])

(1.2) w(x) =

Z

M

ρ2dv =

Z

M

(2)

that this functional is an invariant under conformal transformations ofSn. Ximin [8] studied compact space-like submanifolds in a de Sitter spaceMpn+p(c). Furthermore, in [9], the authors studied Willmore submanifolds in a sphere.

In this paper we studied Willmore surfaces inSnand using the method of proof which is given in [4], [8], [9], we obtained an integral formula.

1. Local Formulas

Let x : M → Sn be a surface in an n-dimensional unit sphere. We choose an orthonormal basis e1, ..., en of Sn such that {e1, e2} are tangent to x(M) and {e3, ..., en}is a local frame in the normal bundle. Let{w1, w2} be the dual forms of {e1, e2}.We use the following convention on the ranges of indices:

1≤i, j, k, ...≤2 ; 3≤α, β, γ, ...≤n. Then we have the structure equations

(2.1) dx = X

i wiei,

(2.2) dei =

X

j

wijej+

X

ij α,j

wjeα−wix,

(2.3) deα = −Xhαij i,j

wjei+X β

wαβeβ , hαij =hαji

The Gauss equations and Ricci equations are

(2.4) Rijkl = (δikδjl−δilδjk) +

X

α

(hαikjl−hαiljk),

(2.5) Rik = δik+ 2

X

α

Hαhαik−Xhαij α,j

jk,

(2.6) 2K = 2 + 4H2 −S,

(2.7) Rβα12 =

X

i

(hβ1ii2−hβ2ii1),

whereKis the Gauss curvature ofM andS= P α,i,j

(hα ij)

2

is the norm of the square of the second fundamental form, H = P

α

Hαeα = (1 2)

P

α (P

α

(3)

= 1 2

P

α

tr(hα)eα is the mean curvature vector and H=|H|is the mean curvature of

M.

We have the following Codazzi equations and Ricci identities:

(2.8) hαijk−hαikj = 0,

(2.9) hαijkl−hαijlk = hαijklRmikl+

X

m

imRmjkl+

X

β

ijRβαkl

where hαijk and hαijkl are defined by

(2.10) X

k

ijkwk = dhαij +

X

k

kjwki+

X

k

ikwkj+

X

β

ijwβα,

(2.11) X

l

ijklwl = dhαijk+

X

l

ljkwli+

X

l

ilkwlj+

X

l

ijlwlk

+X β

ijkwβα.

AsM is a two-dimensional surface, we have from (2.6) and (1.1)

(2.12) 2K = 2 + 4H2−S = 2 + 2H2−ρ2, (2.13) Rijkl = K(δikδjl−δilδjk) , Rik=Kδik.

By a simple calculation, we have the following calculations [3]:

(2.14) 1 2△S=

X

α,i,j,k (hα

ijk) 2

+X α,i,j

ijtr(hα)ij+2Kρ2−

X

α,β

(Rβα12)2.

1. Proof Of The Theorem

Theorem. Let M be a compact Willmore surface in an n-dimensional unit sphere Sn.Then, we have

0 =

Z

[|∇S|+X α,i,j

ijtr(hα)ij+ 2Kρ2 −X

α,β

(Rβα12)2

−4|∇H|2−X i

(4)

Proof.

We know from (2.6) that

(2.15) 4H2

−S = 2K−2.

Taking the covariant derivative of (2.15) and using the fact that K = const., we obtain

4HHk=X i,j,α

ij.hαijk,

and hence, by Cauchy-Schwarz inequality, we have

X

k

16 H2(Hk)2 =X k

(X i,j,α

ij.hαijk)2 ≤X i,j,α

(hαij) 2

.X i,j,k,α

(hαijk)2

that is

(2.16) 16H2k∇Hk2≤S.k∇Sk. On the other hand, the Laplacian△hα

ij of the fundamental formhαij is defined to beP

k

ijkk, and hence using (2.8), (2.9) and the assumption thatM has flat normal bundle, we have

△hαij =X m

imRmjkk+

X

m

mkRmijk+tr(hα)ij.

Since the normal bundle of M is flat, we choosee3, ...en such that

ij =λαiδij.

We define an operatoracting on f by [7]:

(2.17) f =X i,j

(5)

Since (2Hαδij hα

ij) is trace-free it follows from [4] that the operator is self-adjoint to the L2-inner product of M, i.e.,

Z

f

M g=

Z

g

M f.

Thus we have the following computation by use of (2.17) and (2.14)

2H = 2H△(2H)−X i

λαi(2H)ii

= 1

2△(2H) 2

−X i

(2H)2 i −

X

i

λαi(2H)ii

(2.18) 2H = 1

2△S+△K−4|∇H| 2

−X i

λαi(2H)ii

Putting (2.14) in (2.18), we have

(2.19) 2H = X

α,i,j,k

(hαijk)2+ X α,i,j,k

ijtr(hα)ij+ 2Kρ2−X α,β

(Rβα12)2

+△K−4|∇H|2−X i

λαi(2H)ii.

Now we assume thatM is compact and we obtain the following key formula by integrating (2.19) and noting R

M

△Kdv= 0 and R M

(2H)dv = 0,

0 =

Z

[|∇S|+X α,i,j

ijtr(hα)ij+ 2Kρ2−

X

α,β

(Rβα12)2

−4|∇H|2−X i

λαi(2H)ii]dv.

References

[1] Bryant, R., A duality theorem for Willmore surfaces, J.Differential Geom. 20, (1984), 23-53.

(6)

[3] Chern, S. S., Do Carmo, M. and Kobayashi, S., Minimal submanifolds of a sphere with second fundamental form of constant length, in F.Brower(ed.), Func-tional Analysis and Related Fields, Springer-Verlag, Berlin, (1970), pp.59-75.

[4] Haizhong, L., Rigidity theorems of hypersurfaces in a sphere, Publications De L’istitut Mathematique, Novelle serie, tome 67(81), (2000), 112-120.

[5] Haizhong, L., Willmore hypersurfaces in a sphere, Asian J. Math. 5(2001), 365-378.

[6] Haizhong, L., Willmore surfaces inSn, Annals of Global Analysis and Geom-etry 21, Kluwers Academic Publishers, Netherlands,(2002), 203-213.

[7] Haizhong, L., Willmore submanifolds in a sphere, (2002), arXiv:math.DG/0210239vl

[8] Liu, X., Space-like submanifolds with constant scalar curvature, C.R.Acad. Sci. Paris, t.332, Serie1, (2001), p.729-734.

[9] K¨ulahcı, M., Bekta¸s, M., Erg¨ut, M., A note on willmore subanifolds in a sphere, Kirghizistan National Academy, Integral Differential Equations Researchs, (2008), p.146-150.

Mihriban K¨ulahcı

Department of Mathematics University of Firat

Address: Firat University, Science Faculty, Mathematics Department, 23119, Elazig , T¨urkiye.

email: [email protected] Dursun Soylu

Department of Primary Teaching University of Gazi

Address: Gazi University, Gazi Faculty of Education, Department of Primary Teach-ing, Mathematics Teaching Programme, 06500, Be¸sevler/Ankara, T¨urkiye.

email:[email protected] Mehmet Bekta¸s

Department of Mathematics University of Firat

Address: Firat University, Science Faculty, Mathematics Department, 23119, Elazig , T¨urkiye.

Referensi

Dokumen terkait

Dari hasil penelitian yang dilakukan oleh peneliti, PT.Unichem Candi Indonesia menunjukkan bahwa dari sisi strategy perusahaan memiliki visi dan misi yang jelas,

Selanjutnya bagi pihak-pihak yang merasa berkeberatan atas penetapan pemenang lelang diberi kesempatan untuk menyampaikan sanggahan kepada Pokja Konstruksi ULP

Berdasarkan analisa data, pembahasan dan pengujian hipotesis yang berkaitan dengan pengaruh corporate entrepreneurship terhadap kinerja perusahaan manufaktur pada

Dharma Praja No.01 Gunung Tinggi Kode Pos 72271 Kabupaten Tanah Bumbu - Kalimantan Selatan.. PENGUMUMAN PEMENANG Nomor

Demikian pengumuman ini, atas perhatian dan partisipasi Saudara – saudara dalam pelelangan paket pekerjaan konstruksi di atas kami ucapkan

KUPANG JAYA ELEKTRIK Tidak memenuhi syarat Gugur.

Dharma Praja No.1 Gunung Tinggi Kode Pos 72171 Kabupaten Tanah Bumbu - Kalimantan Selatan.. PENGUMUMAN PEMENANG Nomor

Panitia Pengadaan pada Badan Kepegawaian Negara Kantor Regional VIII akan melaksanakan Pemilihan Langsung Ulang dengan pascakualifikasi untuk paket pekerjaan