• Tidak ada hasil yang ditemukan

Directory UMM :Journals:Journal_of_mathematics:AUA:

N/A
N/A
Protected

Academic year: 2017

Membagikan "Directory UMM :Journals:Journal_of_mathematics:AUA:"

Copied!
8
0
0

Teks penuh

(1)

CERTAIN COEFFICIENT INEQUALITIES FOR SAKAGUCHI TYPE FUNCTIONS AND APPLICATIONS TO FRACTIONAL

DERIVATIVE OPERATOR

S. P. Goyal, Pranay Goswami

Abstract. In the present paper, sharp upper bounds of |a3 −µa22| for the functions f(z) =z+a2z2+a3z3+...belonging to a new subclass of Sakaguchi type functions are obtained. Also, application of our results for subclass of functions defined by convolution with a normalized analytic function are given. In particular, Fekete-Szeg¨o inequalities for certain classes of functions defined through fractional derivatives are obtained.

2000Mathematics Subject Classification: 30C50; 30C45; 30C80.

Keywords: Sakaguchi functions, Analytic functions, Subordination, Fekete-Szeg¨o inequality.

1. Introduction

Let Abe the class of analytic functions of the form f(z) =z+

X

n=2

anzn (z∈∆ :={z∈C| |z|<1}) (1.1) and S be the subclass of A consisting of univalentf unctions. For two functions f, g ∈ A, we say that the function f(z) is subordinate to g(z) in ∆ and write f ≺ g or f(z) ≺ g(z), if there exists an analytic function w(z) with w(0) = 0 and |w(z)| < 1 (z ∈ ∆), such that f(z) = g(w(z)),(z ∈ ∆). In particular, if the function g is univalent in ∆, the above subordination is equivalent tof(0) =g(0) and f(∆)⊂g(∆).

Recently Owa et al. [7,8] introduced and studied a Sakaguchi type classS∗

(α, t). A function f(z)∈ Ais said to be in the classS∗

(α, t) if it satisfies Re

(1t)zf′ (z) f(z)−f(zt)

(2)

for some α ∈[0,1) and for all z ∈ ∆. Forα = 0 and t =−1, we get the class the class S∗

(0,−1) studied be Sakaguchi [9]. A function f(z) ∈S∗

(α,−1) is called Sakaguchi function of orderα.

In this paper, we define the following class S∗

(φ, t), which is generalization of the class S∗

(α, t).

Definition 1.1. Let φ(z) = 1 +B1z+B2z2+... be univalent starlike function with respect to ’1’ which maps the unit diskonto a region in the right half plane which is symmetric with respect to the real axis, and let B1 >0. Then function f ∈ A is

in the class S∗

(φ, t) if

(1−t)zf′ (z)

f(z)−f(zt) ≺φ(z), |t| ≤1, t6= 1 (1.5)

AgainT(φ, t)denote the subclass ofAconsisting functionsf(z)such thatzf′ (z)∈ S∗

(φ, t).

When φ(z) = (1 +Az)/(1 +Bz),(−1 ≤ B < A ≤ 1), we denote the subclasses

S∗

(φ, t) and T(φ, t) by S∗

[A, B, t] andT[A, B, t]respectively.

Obviously S∗

(φ,0) ≡ S∗

(φ). When t = −1, then S∗

(φ,−1) ≡ S∗

s(φ), which is a known class studied by Shanmugam et al. [10]. For t= 0 andφ(z) = (1 +Az)/(1 + Bz), (−1 ≤ B < A ≤ 1), the subclass S∗

(φ, t) reduces to the class S∗ [A, B] studied by Janowski [3]. For 0≤α < 1 let S∗

(α, t) :=S∗

[1−2α,−1;t], which is a known class studied by Owa et al. [8]. Also, for t=−1 and φ(z) = 1+(1−2α)z

1−z , our class reduces to a known class S(α,−1) studied by Cho et al. ([1], see also [8]).

In the present paper, we obtain the Fekete-Szeg¨oinequality for the functions in the subclass S∗

(φ, t). We also give application of our results to certain functions defined through convolution (or Hadamard product) and in particular, we consider the class Sλ(φ, t) defined by fractional derivatives.

To prove our main results, we need the following lemma:

Lemma 1.2. ([4]) If p(z) = 1 +c1z+c2z2... is an analytic function with positive

real part in, then

|c2−vc21| ≤

  

 

−4v+ 2 if v≤0, 2 if 0≤v≤1, 4v−2 if v≥1.

When v < 0 or v > 1, the equality holds if and only if p(z) is (1 +z)/(1−z) or one of its rotations. If 0 < v < 1, then the equality holds if and only if p(z) is

(1 +z2)/(1z2) or one of its rotations. If v= 0, the equality holds if and only if p(z) =

1

2 + 1 2λ

1 +z

1−z +

1

2 − 1 2λ

1z

(3)

or one of its rotations. Ifv= 1, the equality holds if and only ifp(z)is the reciprocal of one of the functions such that the equality holds in the case of v= 0.

Also the above upper bound is sharp, and it can be improved as follows when

0< v <1:

|c2−vc21|+v|c1|2 ≤2 (0< v≤1/2)

and

|c2−vc21|+ (1−v)|c1|2 ≤2 (1/2< v≤1). 2. Main Results

Our main result is contained in the following Theorem : Theorem 2.1. If f(z) given by (1.1) belongs toS∗

(φ, t), then

|a3−µa22| ≤

   

  

1 (t+2)(1−t)

h

B2+B12

1+t 1−t

−µB2

1

2+t 1−t

i

if µ≤σ1, B1

(t+2)(1−t) if σ1 ≤µ≤σ2,

(t+2)(11 −t)

h

B2+B121+1−tt

−µB122+1−tt

i

if µ≥σ2,

where

σ1 := (1−t) B1(2 +t)

−1 +B2 B1

+B1

1 +t

1−t

,

and

σ2:=

(1−t) B1(2 +t)

1 +B2 B1

+B1

1 +t

1−t

.

The result is sharp. Proof. Letf ∈S∗

(φ, t). Then there exists a Schwarz functionw(z)∈ Asuch that (1−t)zf′

(z)

f(z)−f(zt) =φ(w(z)) (z∈∆; |t| ≤1, t6= 1) (2.1) If p1(z) is analytic and has positive real part in ∆ andp1(0) = 1, then

p1(z) = 1 +w(z)

1−w(z) = 1 +c1z+c2z

2+... (z∆). (2.2)

From (2.2), we obtain

w(z) = c1 2z+

1 2 c2−

c2 1 2

!

z2+... (2.3)

Let

p(z) = (1−t)zf ′

(z)

f(z)−f(tz) = 1 +b1z+b2z

(4)

which gives

b1 = (1−t)a2 and b2= (t2−1)a22+ (2−t−t2)a3. (2.5) Since φ(z) is univalent andp≺φ, therefore using (2.3), we obtain

p(z) =φ(w(z)) = 1 +B1c1 2 z+

(

1 2 c2−

c21 2

!

B1+ 1 4c

2 1B2

)

z2+... (z∈∆), (2.6) Now from (2.4), (2.5) and (2.6), we have

(1−t)a2= B1c1 2 ,

1 2 c2−

c21 2

!

B1+1 4c

2

1B2 = (t2−1)a22+(2−t−t2)a3, |t| ≤1, t6= 1. Therefore we have

a3−µa22=

B1 2(1−t)(t+ 2)

h

c2−vc21

i

, (2.7)

where

v:= 1 2

1−B2

B1 −B1

1 +t

1−t

+µB1

2 +t

1−t

Our result now follows by an application of Lemma 1.2. To shows that these bounds are sharp, we define the functions Kφn(n= 2,3...) by

(1−t)zKφ

n(z)

Kφn(z)−K ′

φn(tz)

=φ(zn−1

), Kφn(0) = 0 = [Kφn]

′ (0)−1

and the function Fλ and Gλ (0λ1) by (1−t)zFλ′(z)

Fλ(z)−Fλ(tz) =φ

z(z+λ)

1 +λz

, Fλ(0) = 0 = [Fλ]′(0)−1 and

(1−t)zG′λ(z) Gλ(z)−Gλ(tz)

z(z+λ)

1 +λz

, Gλ(0) = 0 = [Gλ]′(0)−1. Obviously the functionsKφn, Fλ, Gλ∈S

(φ, t). Also we writeKφ:=Kφ2. If µ < σ1

or µ > σ2, then equality holds if and only if f is Kφ or one of its rotations. When σ1< µ < σ2, the equality hods if and only iff isKφ3 or one of its rotations. µ=σ1

then equality holds if and only iff isFλ or one of its rotations. µ=σ2 then equality holds if and only if f is Gλ or one of its rotations.

Ifσ1≤µ≤σ2 , in view of Lemma 1.2, Theorem 2.1 can be improved. Theorem 2.2. Let f(z) given by (1.1) belongs toS∗

(φ, t). and σ3 be given by

σ3 := 1 B1

1t

2 +t B2 B1

−B1

1 +t

1−t

(5)

If σ1 < µ≤σ3, then

a3−µa

2 2 + 1 B12

(B1−B2)

1t

2 +t

−B12

1 +t

2 +t

+µB21

|a2|2 ≤

B1 (1−t)(t+ 2).

If σ3 < µ≤σ2, then

a3−µa

2 2 + 1 B2 1

(B1+B2)

1t

2 +t

+B12

1 +t

2 +t

+µB12

|a2|2 ≤

B1 (1−t)(t+ 2) Example 2.3. Let−1≤B < A≤1. If f(z)∈ Abelongs to S∗

[A, B;t], then

|a3−µa22| ≤       

B−A (2+t)(1−t)

h

B−(A−B)1+t 1−t

+µ(A−B)2+t 1−t

i

if µ≤σ∗ 1, A−B

(2+t)(1−t) if σ

1 ≤µ≤σ ∗ 2, A−B

(t+2)(1−t)

h

B−(A−B)1+1−tt

+µ(A−B)2+1−tt

i

if µ≤σ∗ 2,

where

σ∗ 1 =

(1−t) (2 +t)

− 1 +B

(A−B) +

1 +t

1−t

,

and

σ∗ 2 =

(1−t) (2 +t)

1B

(A−B) +

1 +t

1−t

.

In particular, if f ∈S(α, t), then

|a3−µa22| ≤

        

2(1−α) (2+t)(1−t)

h

1 + 2(1−α)1+1−tt

−2µ(1−α)2+1−tt

i

if µ≤σ∗∗ 1 , 2(1−α)

(2+t)(1−t) if σ

∗∗

1 ≤µ≤σ ∗∗ 2 , 2 1−α

(t+2)(1−t)

h

(1−2α)−α1+1−tt

−µα2+1−tt

i

if µ≥σ∗∗ 2 ,

where

σ∗∗ 1 =−

1 +t

2 +t

and

σ∗∗ 2 =

(1−t) (2 +t)

1

(1−α) −

1 +t

1−t

(6)

3. Applications to functions defined by fractional derivatives

For two analytic functions f(z) = z+ ∞

P

n=0

anzn and g(z) = z+ ∞

P

n=0

gnzn, their convolution (or Hadamard product) is defined to be the function (f ∗g)(z) = z+

P

n=0

angnzn. For a fixed g∈ A, let Sg(φ, t) be the class of functionsf ∈ Afor which (f∗g)∈S∗

(φ, t).

Definition 3.1. Let f(z) be analytic in a simply connected region of the z-plane containing origin. The fractional derivative of f of order λis defined by

0Dzλf(z) := 1 Γ(1−λ)

d dz

z

Z

0

(z−ζ)−λf(ζ)dζ (0λ <1), (3.1)

where the multiplicity of (z−ζ)−λ is removed by requiring thatlog(zζ)is real for (z−ζ)>0

Using definition 3.1, Owa and Srivastava (see [5],[6]; see also [11], [12]) introduced a fractional derivative operator Ωλ :A −→ Adefined by

(Ωλf)(z) = Γ(2−λ)zλ0Dλzf(z), (λ6= 2,3,4, ...) The class Sλ(φ, t) consists of the functions f ∈ A for which Ωλf S

(φ, t). The class Sλ(φ, t) is a special case of the classSg(φ, t) when

g(z) =z+ ∞

X

n=2

Γ(n+ 1)Γ(2−λ) Γ(n+ 1−λ) z

n (z∆).

Now applying Theorem 2.1 for the function (f ∗g)(z) =z+g2a2z2+g3a3z3+..., we get following theorem after an obvious change of the parameter µ:

Theorem 3.2 Let g(z) =z+ ∞

P

n=2

gnzn (gn>0).If f(z)is given by (1.1) belongs to Sg(φ, t), then

|a3−µa22| ≤     

   

1 g3(2+t)(1−t)

h

B2+B12

1+t 1−t

−µg3

g2 2

B122+1−tt

i

if µ≤η1, B1

g3(2+t)(1−t) if η1 ≤µ≤η2,

g 1

3(2+t)(1−t)

h

B2+B12

1+t 1−t

−µg3

g2 2

B212+1−tt

i

if µ≥η2,

where

η1 := g

2 2

g3B1

1−t 2+t

h

−1 +B2

B1 +B1

1+t 1−t

i

η2 := g

2 2

g3B1

1−t 2+t

h

1 +B2

B1 +B1

1+t 1−t

(7)

The result is sharp.

Since

Ωλf(z) =z+ ∞

X

n=2

Γ(n+ 1)Γ(2−λ) Γ(n+ 1−λ) z

n,

We have

g2 :=

Γ(3)Γ(2−λ) Γ(3−λ) =

2

2−λ (3.2)

and

g3 :=

Γ(4)Γ(2−λ) Γ(4−λ) =

6

(2−λ)(3−λ). (3.3)

Forg2,g3given by (3.2) and (3.3) respectively, Theorem 3.2 reduces to the following :

Theorem 3.3. Let λ <2. If f(z) given by (1.1) belongs to(φ, t). Then

|a3−µa22| ≤

    

   

(2−λ)(3−λ) 6(2+t)(1−t)

h

B2+B12

1+t 1−t

−32µ3−λ 2−λ

B2 1

2+t 1−t

i

if µ≤η∗ 1, (2−λ)(3−λ)

6(2+t)(1−t)B1 if η ∗

1 ≤µ≤η ∗ 2,

−(26(2+−λt)(3)(1−−λt))

h

B2+B12

1+t 1−t

−32µ3−λ 2−λ

B122+1−tt

i

if µ≥η∗ 1,

where

η1:= (2(3−−λ)λB)1

1−t 2+t

h

−1 +B2

B1 +B1

1+t 1−t

i

η2:= (3 −λ) (2−λ)B1

1−t 2+t

h

1 +B2

B1 +B1

1+t 1−t

i

.

The result is sharp.

Remark. Fort=−1 in aforementioned Theorems 2.1, 2.2, 3.2, 3.3 and example 2.3, we arrive at the results obtained recently by Shanmugham et al. [10].

References

[1] N. E. Cho, O. S. Kwon and S. Owa,Certain subclasses of Sakaguchi functions, SEA Bull. Math.,17(1993), 121-126.

[2] A. W. Goodman, Uniformaly convex functions, Ann. Polon. Math., 56 (1991), 87-92.

[3] W. Janowski, Some extremal problems for certain families of analytic func-tions, Bull. Acad. Plolon. Sci. Ser. Sci. Math. Astronomy , 21(1973), 17-25.

[4] W. Ma and D. Minda,A unified treatment of some special classes of univalent functions, in : Proceedings of Conference of Complex Analysis, Z. Li., F. Ren, L Yang, and S. Zhang (Eds.), Intenational Press (1994), 157-169.

(8)

[6] S. Owa and H. M. Srivastava,Univalent and starlike generalized hypegeometric functions, Canad. J. Math.,39 (5) (1987), 1057-1077.

[7] S. Owa, T. Sekine, and R. Yamakawa, Notes on Sakaguchi type functions, RIMS Kokyuroku, 1414(2005), 76 - 82.

[8] S. Owa, T. Sekine, and R. Yamakawa, On Sakaguchi type functions, Appl. Math. Comput., 187(2007), 356-361.

[9] K. Sakaguchi, On a certain univalent mapping, J. Math. Soc. Japan, 11 (1959), 72-75.

[10] T. N. Shanmugham, C. Ramachandran, and V. Ravichandran,Fekete - Szeg

problem for a subclasses of starlike functions with respect to symmetric points, Bull. Korean Math. Soc. 43 (3) (2006), 589-598.

[11] H. M. Srivastava and S. Owa,An application of fractional derivative, Math. Japon.,29 (3) (1984), 383-389.

[12] H. M. Srivastava and S. Owa,Univalent Functions, Fractional Calculus and Their Applications, Halsted Press/ John Wiley and Sons, Chichester / New York, 1989.

S. P. Goyal

Department of Mathematics University of Rajasthan Jaipur (INDIA) - 302055 email:[email protected]

Pranay Goswami

Department of Mathematics Amity University Rajasthan Jaipur (INDIA) - 302002

Referensi

Dokumen terkait

Demikian juga wewenang, tugas dan fungsi BHP yang diatur dalam KUHPdt dan S 1872 Nomor 166 tentang Instruksi untuk Balai Harta Peninggalan mengenai perwalian, dan kewajiban BHP

Pokja I ULP pada Pemerintah Kabupaten Hulu Sungai Selatan akan melaksanakan.. Pelelangan Umum dengan pascakualifikasi untuk paket pekerjaan konstruksi

Modal sosial pemilik UMK sektor informal di wilayah Jawa Timur yang menjadi responden dalam penelitian ini memiliki hubungan dengan kinerja bisnisnya pada beberapa

Panitia Pengadaan pada Badan Kepegawaian Negara Kantor Regional VIII Banjarmasin akan melaksanakan Pelelangan Umum dengan pascakualifikasi untuk paket pekerjaan

Dengan ini diberitahukan bahwa setelah diadakan penelitian oleh panitia pengadaan barang / jasa konsultansi Bidang Pengairan Dinas Pekerjaan Umum Kab..

Cahaya Abadi Indah adalah strategi tipe 5 atau best-value focus yang memproduksi suatu produk kepada sejumlah kecil konsumen dengan nilai tambah terbaik, karena perusahaan

Restrukturisasi organisasi yang dilakukan oleh PT. Samudra Alam Raya dilakukan untuk mencari solusi atau jalan keluar bagi masalah menurunnya kinerja

Penetapan Pemenang Pelelangan Penyedia lasa Konstruksi Pekerjaan Peningkatan Jalan Daerah/Poros Desa,.. Jalan Menuju Ponpes Syaiful Islam, Desa Jambu,