• Tidak ada hasil yang ditemukan

DIKTAT BAHAN KULIAH GEODESI GEOMETRIK GD 2202 BOBOT 4 SKS SEMESTER IV OLEH YOHANNES NIP

N/A
N/A
Protected

Academic year: 2021

Membagikan "DIKTAT BAHAN KULIAH GEODESI GEOMETRIK GD 2202 BOBOT 4 SKS SEMESTER IV OLEH YOHANNES NIP"

Copied!
68
0
0

Teks penuh

(1)

DIKTAT BAHAN KULIAH

GEODESI GEOMETRIK

GD 2202 BOBOT 4 SKS

SEMESTER IV

OLEH

YOHANNES

NIP. 195204071986031001

PROGRAM STUDI TEKNIK GEOMATIKA

INSTITUT TEKNOLOGI SUMATERA

(2)

KATA PENGANTAR

Geodesi Geometrik adalah ilmu yang membahas mengenai bidang referensi bumi berbentuk bola dan elipsoid dengan berbagai perhitungan pada bidang lengkung dan pemecahan atas Soal Pokok Geodesi (SPG) kesatu dan kedua, dan mengenai proyeksi peta dari bidang elipsoid ke bidang datar peta. Ilmu ini wajib dipahami, baik secara teori maupun praktek, oleh mahasiswa Teknik Geomatika, terutama apabila kelak mereka menghadapi pekerjaan survey dan pemetaan dengan lingkup wilayah sangat luas atau bersifat global.

Diktat ini disusun bagi mahasiswa Teknik Geodesi - Geomatika walaupun tidak menutup kemungkinan dipergunakan juga oleh mahasiswa bidang studi lain, alumnus, atau teknisi yang berkepentingan dengan masalah ini, sebab disamping berisi penjelasan singkat mengenai konsep bidang bola dan ellipsoid, juga disertai tuntunan praktis dalam proses perhitungan beberapa contoh soal dan jawaban. Rumus-rumus yang ditampilkan tidak diuraikan penjabarannya secara rinci namun hanya dibahas penggunaannya saja. Perhitungan tidak melibatkan elevasi titik terhadap bidang referensi bola atau elipsoid. Dengan demikian, titik dianggap terletak tepat pada permukaan bidang bola atau elipsoid dimana elevasi dianggap nol. Oleh karena itu, jika ingin mempelajari ilmu Geodesi Geometrik lebih mendalam, dianjurkan mempelajari buku teks yang tercantum dalam daftar pustaka dan buku-buku teks lainnya. Materi mengenai Proyeksi Peta akan diberikan dalam buku diktat tersendiri.

Pada kesempatan ini penulis mengucapkan terima kasih kepada Program Studi Teknik Survey dan Pemetaan, Jurusan Teknik Sipil, Fakultas Teknik, Universitas Lampung yang telah memberikan bantuan dana demi tersusunnya diktat ini. Terima kasih juga penulis sampaikan kepada semua pihak yang telah banyak membantu. Segala saran dan kritik demi penyempurnaan buku ini sangat penulis harapkan. Semoga buku ini bermanfaat.

Bandarlampung, Pebruari 2016 Penulis,

(3)

DAFTAR ISI

Halaman

JUDUL ...……… i

KATA PENGANTAR ...……… ii

DAFTAR ISI ...……….. iii

DAFTAR GAMBAR ...……….. v

DAFTAR TABEL ...……….. vi

BAB I PENDAHULUAN ... …………..………...….... 1

1.1 Sejarah Penentuan Dimensi Bumi ...………. 1

1.2 Bidang Referensi Bumi ...………...….…………. 4

1.3 Evaluasi ...………...….…………. 5

BAB II BIDANG REFERENSI BOLA BUMI ...………. 6

2.1 Pengantar ...………...….…………. 6

2.2 Bidang Bola ...……….….……….… 6

2.2.1 Menentukan Selisih Lintang (Δφ) ...……….. 8

2.2.2 Menentukan Selisih Bujur (Δλ) ...……….... 8

2.2.3 Menentukan Panjang Jari-jari Lingkaran Paralel ...… 9

2.2.4 Menentukan Jarak Dua Titik Sepanjang Lingkaran Paralel ...……… 10

2.2.5 Menentukan Jarak Dua Titik Sepanjang Lingkaran Meridian ...……… 11

2.3 Evaluasi ...……….….……….… 12

BAB III BIDANG REFERENSI ELIPSOID BUMI ...……..……. 13

3.1. Pengantar ...………. 13

3.2. Bidang Geoid ...……… 13

3.3. Bidang Elipsoid ...……… 14

3.4. Parameter Elips dan Parameter Utama Elipsoid ...……… 15

3.5. Evaluasi ...………. 18

3.6. Sistem Koordinat pada Bidang Elipsoid ...……… 19

3.6.1. Sistem Koordinat Lintang-Bujur Geodetis ...……… 19

3.6.2. Sistem Koordinat Kartesian Ortogonal XYZ ...……. 21

3.7. Evaluasi ...………. 23

3.8. Hubungan Matematis antara Sistem Koordinat ...……….. 24

3.8.1. Mengkonversi dari Sistem Lintang-Bujur Geodetis ke Sistem Koordinat XYZ ...…...… 24

3.8.2. Mengkonversi dari Sistem Koordinat XYZ ke Sistem Lintang-Bujur Geodetis ...……. 27

3.8.3. Lintang geosentris  dan lintang geodetis  ... 28

3.8.4.

Lintang terreduksi  dan lintang geodetis  ... 30

(4)

BAB IV PERHITUNGAN PADA BIDANG LENGKUNG ... 32

4.1. Jari-jari Busur pada Elipsoid ...……….. 32

4.1.1. Jari-jari Busur Meridian (M) dan Busur Normal Utama (N) ..………...……… 32

4.1.2. Jari-jari Irisan Normal ...………...……….. 34

4.1.3. Jari-jari Bola Pengganti ...………...……….. 34

4.2. Evaluasi ...……….……….. 35

4.3. Panjang Busur Dua Titik pada Elipsoid ...……….. 36

4.3.1 Panjang Busur Meridian antara Dua Titik ...………. 36

4.3.2 Keliling Elipsoid pada Bidang Meridian ...………. 38

4.3.3 Penentuan Lintang Titik berdasarkan Panjang Busur Meridian dari Ekuator …………... 38

4.3.4 Panjang Busur sepanjang Garis Paralel ..………. 39

4.4. Luas Bidang pada Permukaan Elipsoid ...……….. 40

4.5. Garis Geodesik ... 42

4.6. Konvergensi Meridian ... 43

4.7. Ekses Sferis ... 44

4.8. Evaluasi ... 45

BAB V SOAL POKOK GEODESI ...……….………... 46

5.1 Pengertian ... 46

5.2 Metode Soldner ...………...……… 48

5.3 Metode Legendre ...………...…………. 51

5.4 Metode Gausz ..………...……….. 53

A. Untuk Bidang Bola ....………...……….. 53

B.

Untuk Bidang Elipsoid ....………...………

56

5.5 Evaluasi ... 61

(5)

DAFTAR GAMBAR

Halaman

Gambar 1.1 Pengukuran Erastosthenes ...……….. 1

Gambar 1.2 Perhitungan Keliling Bumi ...……….. 2

Gambar 1.3 Bentuk Bumi seperti Elips Putar ... 2

Gambar 1.4 Teknik Pengukuran Triangulasi ... 3

Gambar 2.1 Bola Bumi ...……… 6

Gambar 2.2 Sudut Lintang P ...……… 7

Gambar 2.3 Penentuan Bujur/Meridian ...……… 7

Gambar 2.4 Jari-jari Lingkaran Paralel ...……….. 9

Gambar 2.5 Jarak PQ sepanjang lingkaran paralel ...….. 10

Gambar 2.6 Jarak PQ sepanjang lingkaran meridian ...… 11

Gambar 3.1 Bidang Geoid ...……….. 13

Gambar 3.2 Permukaan bumi dan bidang acuan ...……... 14

Gambar 3.3 Parameter Elips ...……….. 15

Gambar 3.4 Bidang Elipsoid Bumi ...………. 15

Gambar 3.5 Sistem Koordinat Lintang-Bujur Geodetis ...…. 19

Gambar 3.6 Lintang Geosentris  ...…………... 20

Gambar 3.7 Lintang Terreduksi  ...…………... 20

Gambar 3.8 Sistem Koordinat Ortogonal XYZ untuk Bidang Elipsoid ...…………... 21

Gambar 3.9 Proyeksi Sistem Koordinat XYZ ...………..…. 21

Gambar 3.10 Sistem Koordinat Ortogonal XYZ untuk Acuan Bidang Datar ...……… 22

Gambar 3.11 Hubungan Sistem Koordinat , dan XYZ ...….. 24

Gambar 3.12 Relasi Sistem Koordinat XY dan  ...……….. 27

Gambar 3.13 Hubungan antara  dan  ...……… 28

Gambar 3.14 Hubungan antara  dan  ...……… 30

Gambar 4.1 Busur Meridian dan Busur Normal Utama ...….. 32

Gambar 4.2 Irisan Normal AB ...………...…… 34

Gambar 4.3 Panjang Busur Meridian ...……… 36

Gambar 4.4 Keliling Elipsoid sepanjang Meridian ...……… 38

Gambar 4.5 Busur Paralel ...………...……….. 39

Gambar 4.6 Luas Bidang di Permukaan Elipsoid ...…….. 40

Gambar 4.7 Irisan Normal dan Garis Geodesik ...……….. 42

Gambar 4.8 Konvergensi Meridian ...…...……….. 44

Gambar 4.9 Ekses Sferis . ...…...……….. 44

Gambar 5.1 Sistem Koordinat Kutub dan Kartesian ...…….. 46

Gambar 5.2 SPG 1 ...………... 47

Gambar 5.3 SPG 2 ...………...……… 47

Gambar 5.4 Metode Soldner ...…...……… 48

Gambar 5.5 Metode Legendre ...…...……… 51

(6)

DAFTAR TABEL

Halaman

Tabel 3.1. Berbagai Jenis Elipsoid di Dunia ...………. 16 Tabel 3.2. Parameter Utama Elipsoid yang

digunakan di Indonesia ...……… 17 Tabel 5.1 Penentuan Azimut Berdasarkan Kuadran ... 50

(7)

BAB I PENDAHULUAN

1.4 Sejarah Penentuan Dimensi Bumi

Geodesi adalah cabang ilmu matematika terapan, yang melalui pengukuran di permukaan bumi, bertujuan menentukan (a) bentuk dan ukuran bumi, (b) posisi atau koordinat suatu titik, (c) panjang dan arah garis, dan (d) mempelajari medan gravitasi bumi. Penentuan bentuk dan ukuran bumi ini dilakukan oleh manusia dari zaman ke zaman. Manusia berkepentingan dengan ketepatan dimensi bumi.

Dalam pandangan kuno, bumi ini dianggap bidang datar yang berbentuk seperti sebuah piringan dan menjadi pusat dari seluruh alam semesta. Pythagoras (495 SM) adalah orang pertama yang menyatakan bahwa bumi ini bukanlah pipih namun bulat seperti bola, yang kemudian didukung oleh Aristoteles (340 SM) dan Archimedes (250 SM). Namun pernyataan itu belum didasari penelitian dan pengukuran atas dimensi bumi melainkan hanya didasarkan pada fakta a.l, pada waktu terjadi gerhana bulan, bayangan bumi berbentuk lingkaran, dan pada waktu meninggalkan pantai, kapal berangsur-angsur menghilang seolah-olah tenggelam ke bawah garis horison.

Berdasarkan keyakinan bahwa bumi itu bulat, kemudian Erastosthenes (250 SM) melakukan percobaan berdasarkan rumus matematika sederhana untuk menentukan keliling bumi dengan cara sbb.: (lihat gambar 1.1):

Mula-mula Erastosthenes mendirikan tongkat di Alexandria dan membuat sumur di Syene. Jarak antara ke dua lokasi itu 5000 stadia (1 stadia = 185 meter). Ketika matahari tepat di atas sumur di Syene, diukurlah panjang bayangan tongkat. Dari harga tinggi

Tujuan Instruksional Khusus:

Setelah mempelajari materi perkuliahan ini, mahasiswa diharapkan mampu menjelaskan pengertian tentang sejarah dan teknik sederhana penentuan dimensi bumi

Gambar 1.1 Pengukuran Erastosthenes Syene Sumur Tongkat

Alexandria

Sinar matahari 5000 stadia Tepat di atas Bayangan Tongkat Sudut A = 7,2o

(8)

tongkat dan panjang bayangan diperoleh sudut = 7,2o. Karena sinar matahari yang jatuh ke bumi dianggap sejajar, maka besar sudut ini sama dengan besar sudut di pusat A.

Berdasarkan data tersebut, Erastosthenes menghitung keliling bumi sbb:

o o A Sudut 360 S Bumi Keliling  ... (1.1)

Keliling Bumi = x 5000stadia 250.000stadia 46.250km 2 , 7 360 o o  

Hasil perhitungan tersebut 16% lebih besar dari hasil ukuran masa kini, yaitu sekitar 40.009 km. Namun, kemampuan ilmuwan pada masa itu memperoleh angka hasil seperti itu, sungguhlah sangat mengagumkan.

Namun, apabila para ilmuwan sebelumnya menganggap bumi itu berbentuk bulat seperti bola, ternyata ilmuwan terkemuka Huygens dan Newton berpendapat lain. Mereka menyatakan bahwa bumi ini sebetulnya tidaklah benar-benar bulat seperti bola melainkan berbentuk agak lonjong seperti jeruk orange. Pendapat itu diperkuat oleh hasil pengukuran busur meridian oleh para ahli dari Lembaga Pengetahuan Perancis yang menyimpulkan bahwa bumi berbentuk elips putar (elipsoid) dengan sumbu minor sebagai sumbu putar (gambar 1.3).

Busur Meridian

Bentuk elips diputar Sumbu Minor

sebagai sumbu putar KU

KS

Gambar 1.3 Bentuk Bumi seperti Elips Putar BUMI

Gambar 1.2 Perhitungan Keliling Bumi S Alexandria R Syene Sudut A = 7.2o

A

S A R sudut A = 7.2o Keliling Bumi

(9)

Teknik pengukuran untuk menentukan dimensi bumi tersebut dilakukan berdasarkan kombinasi pengukuran astronomi dan pengukuran triangulasi. Pengukuran astronomi adalah pengukuran untuk mendapatkan posisi di bumi berdasarkan pengamatan benda langit (umumnya benda langit yang digunakan adalah bintang). Teknik triangulasi adalah teknik pengukuran di permukaan bumi dengan menggunakan jaring-jaring segitiga untuk mendapatkan koordinat titik-titik sudut. Dalam pengukuran triangulasi ini diukur seluruh sudut setiap segitiga. Pengukuran jarak hanya dilakukan pada garis basis, umumnya pada awal dan akhir jaringan (lihat gambar 1.4, garis basis adalah PO dan RS). Garis basis adalah garis di daerah relatif datar yang diukur jaraknya dengan sangat teliti. Melalui pengukuran sudut dan jarak ini dikombinasikan dengan pengukuran secara astronomis dapatlah ditentukan koordinat titik-titik sudut jaring-jaring tersebut. Titik-titik sudut triangulasi umumnya adalah tugu-tugu yang dipasang di puncak gunung atau bukit. Pengukuran sudut lebih diutamakan pada masa itu sebab alat pengukur sudut teodolit yang digunakan telah mampu mengamat sudut arah yang relatif jauh (mampu berjarak berkilo-kilometer), sedangkan alat pengukur jarak saat itu masih sederhana sehingga sulit mengukur jarak jauh secara langsung.

Teknik triangulasi pertama kali diperkenalkan oleh Schnellius pada tahun 1615 untuk mencari panjang 1o busur meridian. Teknik ini dikerjakan di Belanda pada sekitar lintang rata-rata 52o utara ekuator. Dari hasil pengukuran tersebut diperoleh bahwa panjang 1o busur meridian = 107,7 km.

Tahun 1669, Picard mendapat 1o busur meridian = 111,211 km dari pengukuran triangulasi di Perancis pada lintang rata-rata 48o utara. Tahun 1736, Maupertius, Clairaut, dan Celcius mendapat 1o busur meridian = 111,949 km dari pengukuran triangulasi di Lapland pada lintang rata-rata 66o utara. Tahun 1735, Bouger dan Godin Lacondamina mendapat 1o busur meridian = 110,6 km dari pengukuran triangulasi di Peru pada lintang rata-rata 10o. Di samping hasil-hasil tersebut, banyak para ahli lainnya tercatat dalam sejarah penentuan bentuk dan ukuran bumi.

Gambar 1.4 Teknik Pengukuran Triangulasi A B C E G I K J H F D

P

Q

R

S

(10)

1.5 Bidang Referensi Bumi

Dalam pengukuran dan pemetaan permukaan bumi diperlukan suatu bidang referensi (disebut juga bidang datum atau bidang acuan) yang akan dijadikan sebagai landasan atau dasar dalam perhitungan dan penempatan posisi titik. Bidang acuan tersebut ada 3 (tiga) macam, yang pemilihannya tergantung luas wilayah pemetaan dan tingkat ketelitian peta yang diinginkan, Ketiga bidang acuan itu adalah bidang datar, bidang bola, dan bidang elipsoid.

Untuk keperluan praktis, pemetaan daerah dengan ukuran jarak maksimum kurang dari 55 km, dimana bumi masih dapat dianggap datar, maka dapat digunakan bidang acuan bidang datar, sedangkan untuk ukuran jarak antara 55 km sampai dengan 100 km, dimana kelengkungan bumi sudah mulai berpengaruh namun tidak terlalu besar, maka dapat digunakan bidang bola. Untuk pemetaan dalam sistem yang mencakup wilayah lebih luas dengan jarak minimum lebih besar daripada 100 km, dimana kelengkungan bumi sudah sangat berpengaruh, maka bidang acuan harus menggunakan bidang referensi elipsoid.

Teknologi penentuan posisi menggunakan GPS (Global Positioning System), yang sistem koordinatnya berlaku secara global, menggunakan bidang referensi elipsoid. Pengikatan titik antar pulau, penentuan batas antar negara, penentuan arah dari suatu titik ke titik lain yang berjarak ribuan kilometer, memerlukan bidang referensi berbentuk elipsoid.

Oleh karena itu, ilmu tentang hitung proyeksi geodesi yang mempelajari tentang bidang referensi bumi, perhitungan posisi di atas permukaan elipsoid, dan tentang proyeksi peta harus dipahami dan dikuasai oleh para ahli dan praktisi di bidang survey dan pemetaan. Dalam buku ini hanya dibahas mengenai bidang referensi bumi dan penentuan posisi di atas bidang referensi elipsoid bumi.

(11)

1.6 Evaluasi

1. Jelaskan bagaimana teknik Erastothenes menentukan panjang keliling bumi. 2. Bagaimana cara Archimedes menunjukkan bahwa bumi itu bulat seperti bola? 3. Jika bumi dianggap sebagai bola dan diketahui besaran sebagai berikut:

4. Seandainya anda diminta menentukan panjang jari-jari bumi, dimana bumi dianggap berbentuk bola, jelaskan langkah-langkah yang akan anda lakukan (bahan diskusi). 5. Dalam pengukuran permukaan bumi diperlukan bidang referensi. Jelaskan

kegunaan bidang referensi.

6. Sebutkan 3 jenis bidang referensi bumi. Jelaskan perbedaan masing-masing.

7. Kapankah pemakaian ke 3 jenis bidang referensi tersebut? Jelaskan jawaban anda. 8. Apakah kepanjangan dari GPS? Untuk apakah teknologi GPS itu? Mengapa

teknologi ini memerlukan bidang acuan elipsoid?

9. Apakah yang dimaksud pengukuran astronomi? Dapatkah pengukuran posisi benda langit digunakan untuk menentukan posisi di bumi?

10. Salah satu teknologi pengukuran bumi adalah dengan metode triangulasi. Jelaskan secara singkat metode pengukuran ini.

11. Dari beberapa pengukuran triangulasi untuk menentukan panjang busur meridian, berapa kilometerkah kira-kira panjang 1o busur meridian? Menurut anda, samakah panjang 1o busur meridian di dekat katulistiwa dan di dekat kutub?

12. Mengapa teknik pengukuran triangulasi dulu sangat populer? Dan, mengapa kini tidak lagi populer, bahkan cenderung ditinggalkan?

13. Apakah manfaatnya seseorang yang berprofesi di bidang survey dan pemetaan mempelajari Hitung Proyeksi Geodesi?

14. Menurut anda, perlukah penentuan bidang referensi bumi dilakukan dalam perancangan sistem informasi geografis?

A

B

Jarak busur kecil AB = 100.000 kilometer Sudut  = 0o 53’ 51”

O adalah pusat bola bumi

Hitunglah:

a. Keliling lingkaran bumi ABCA b. Jari-jari bola bumi

c. Jarak busur kecil BC d. Sudut kecil BOC C

(12)

BAB II

BIDANG REFERENSI BOLA BUMI

2.4 Pengantar

Bidang referensi bumi adalah bidang beraturan yang digunakan sebagai landasan atau dasar dalam penentuan posisi titik di atas atau dekat permukaan bumi menurut perhitungan-perhitungan matematis.

Bidang acuan tersebut ada 3 (tiga) macam, yaitu bidang datar, bidang bola, dan bidang elipsoid. Penggunaan bidang datar sebagai acuan dalam penentuan posisi telah dibahas secara mendetail dalam mata kuliah Ilmu Ukur Tanah. Pada bab II ini materi pembahasan adalah mengenai bidang referensi bola.

2.5 Bidang Bola

Untuk daerah dengan luasan kecil, yaitu 55 x 55 km persegi sampai dengan 100 x 100 km persegi, atau untuk keperluan yang tidak mensyaratkan akurasi tinggi, bumi dapat dianggap sebagai bola dengan jari-jari R = 6.370.300 meter. Bola adalah benda putar yang diperoleh dari perputaran bidang lingkaran dengan sumbu putar pada garis diameternya. Sumbu putar bola bumi adalah garis yang menghubungkan titik kutub utara dan kutub selatan.

Beberapa istilah yang perlu dipahami mengenai sistem bola bumi adalah:

a. Bidang ekuator atau bidang katulistiwa adalah bidang yang melalui pusat bumi dan tegak lurus sumbu yang melalui kutub utara dan selatan. Perpotongan bidang ekuator dengan bola bumi disebut garis ekuator atau garis katulistiwa.

Tujuan Instruksional Khusus:

Setelah mempelajari materi perkuliahan ini, mahasiswa diharapkan mampu menjelaskan pengertian tentang beberapa istilah geografis dalam bidang bola bumi, menghitung selisih lintang dan bujur, menentukan panjang jari-jari lingkaran paralel, dan menghitung jarak lengkung di bidang bola bumi

Gambar 2.1 Bola Bumi Kutub Selatan (KS) Bidang Ekuator Lingkaran Paralel/ Lintang Lingkaran Meridian/ Bujur Kutub Utara (KU)

P

λ φ

Kota Greenwich

(13)

b. Bidang paralel adalah bidang yang sejajar dengan bidang ekuator, baik di sebelah utara ataupun selatan ekuator. Perpotongan bidang paralel dengan bola bumi disebut lingkaran paralel atau garis paralel.

c. Lintang suatu titik adalah besar sudut yang diukur dari bidang ekuator sampai ke garis yang menghubungkan titik pusat bumi dan titik tersebut. Bila terletak di sebelah utara ekuator disebut lintang utara dan bila di selatan ekuator disebut lintang selatan. Besar sudut lintang berkisar dari 0o (bidang ekuator) sampai dengan 90o (kutub). Lintang utara diberi tanda positip (lebih sering tidak bertanda), lintang selatan diberi tanda negatip. Bahasa Inggrisnya lintang adalah latitude. Umumnya lintang diberi simbol φ. Titik-titik yang terletak pada lingkaran paralel sama akan mempunyai lintang sama.

d. Bidang meridian adalah bidang besar yang melalui kutub utara dan kutub selatan dan tegak lurus bidang ekuator. Perpotongan bidang meridian dengan bola bumi disebut lingkaran meridian atau garis meridian.

e. Bujur suatu titik adalah besar sudut pada bidang ekuator yang diukur dari bidang meridian nol (bidang meridian yang melalui Greenwich) sampai ke bidang meridian yang melalui titik tersebut, yang jika arahnya ke timur disebut bujur timur / BT dan jika arahnya ke barat disebut bujur barat / BB. Telah disepakati secara internasional bahwa meridian yang melalui Greenwich, kota di dekat London Inggris, mempunyai harga bujur sama dengan 0o (nol derajat). Besar bujur berkisar dari 0o sampai dengan 180o. Bahasa Inggrisnya bujur adalah longitude. Umumnya bujur diberi simbol λ.

Arah ke barat Arah ke timur KU Greenwich P Q

λ

= 0o 110o

λ

p= 110o BB 135o

λ

q

=

135o BT

λ

= 180o

Gambar 2.3 Penentuan Bujur/Meridian Gambar 2.2 Sudut Lintang P

Kutub Selatan Bidang Ekuator Lingkaran Paralel P Kutub Utara P φ Pusat Bumi Lintang P

(14)

Dalam sistem koordinat geografis, posisi suatu titik di bumi dinyatakan dengan besarnya harga lintang φ dan bujur λ. Satuan lintang dan bujur adalah derajat, menit dan detik.

2.5.1 Menentukan Selisih Lintang (Δφ)

Selisih lintang (Δφ) antara 2 titik pada bola bumi dihitung berdasarkan ketentuan sebagai berikut:

a. Jika kedua titik bersama-sama berada di sebelah utara atau keduanya di selatan: Selisih lintang (Δφ) =  φ1 – φ2 

b. Jika satu titik berada di utara dan titik lainnya di selatan: Selisih lintang (Δφ) = φ1 + φ2

Catatan: perhitungan di atas tidak memperhatikan tanda minus untuk lintang selatan

2.5.2 Menentukan Selisih Bujur (Δλ)

Selisih bujur (Δλ) antara 2 titik pada bola bumi dihitung berdasarkan ketentuan sebagai berikut:

a. Jika kedua titik bersama-sama berada di sebelah barat atau keduanya di timur: Selisih bujur (Δλ) =  λ1 – λ2 

b. Jika satu titik berada di timur dan titik lainnya di barat:

                         o 2 1 o 2 1 o o 2 1 o 2 1 360 180 untuk ; ) ( 360 180 0 untuk ; ) ( bujur Selisih Contoh soal 2.1:

Tentukan selisih lintang dan bujur A dan B berikut ini: a. A (32o 43’ 23” LU, 56o 37’ 09” BB) dan B (56o 27’ 05” LU, 71o 15’ 54” BT) b. P (19o 17’ 26” LS, 48o 45’ 11” BB) dan Q (15o 40’ 35” LU, 151o 31’ 29” BT) c. K (10o 22’ 49” LU, 118o 17’ 29” BB) dan L (4o 10’ 23” LS, 54o 18’ 08” BB) Jawab:

a. Karena titik A dan B keduanya berada di sebelah utara, berdasarkan pers (2.1) diperoleh Δφ =  56o 27’ 05” – 32o 43’ 23”  = 23o 43’ 42”.

Karena titik A di sebelah barat dan B di timur, maka berdasarkan pers (2.4) diperoleh Δλ = 71o 15’ 54” + 56o 37’ 09” = 127o 53’ 03”

Ket: karena Δλ 180o maka Δλ = 12 = 127o 53’ 03”

...…..

(

2.1)

………… (2.2)

……. (2.3)

(15)

b. Titik P di sebelah selatan dan Q di utara, maka berdasarkan pers (2.2) diperoleh Δφ = 15o 40’ 35” + 19o 17’ 26” = 34o 58’ 01”.

Titik P di sebelah barat dan Q di timur, maka berdasarkan pers (2.4) diperoleh Δλ = 151o 31’ 29” + 48o 45’ 11” = 200o 16’ 40”

Namun karena Δλ >1800 maka berlaku Δλ = 360o – (λ1 + λ2) = 159o 43’ 20”

c. Titik K di sebelah utara dan L di selatan, maka berdasarkan pers (2.2) diperoleh Δφ = 4o 10’ 23” + 10o 22’ 49” = 14o 33’ 12”.

Titik K dan L keduanya terletak di sebelah barat, maka berdasarkan pers (2.3) diperoleh

Δλ =  54o 18’ 08” – 118o 17’ 29”  = 63o 59’ 21” 2.5.3 Menentukan Panjang Jari-jari Lingkaran Paralel

Panjang jari-jari lingkaran paralel tidak selalu tetap, namun berubah berkaitan dengan besarnya lintang. Semakin besar harga lintang semakin kecil jari-jari lingkaran paralelnya. Untuk lintang 90o, yaitu di titik kutub, jari-jarinya lingkaran paralelnya = nol, artinya lingkarannya berupa titik. Sedangkan, untuk lintang 0o, yaitu lingkaran pada bidang katulistiwa, jari-jarinya sama dengan jari-jari bola bumi = R. Jadi, panjang jari-jari lingkaran paralel tergantung pada besarnya lintang. Seringkali diperlukan informasi atas hasil perhitungan panjang jari-jari lingkaran paralel pada suatu lintang tertentu.

Dari gambar 2.4 terlihat bahwa, o φ = sudut lintang titik P,

o OP = R = jari-jari bola,

o PP’ = jari-jari lingkaran paralel melalui titik P.

Dari segitiga OPP’ yang siku di P’, dimana sudut OPP’ = φ, panjang OP = R, maka panjang jari-jari lingkaran paralel PP’ adalah:

PP’ = R cos φ ……… (2.5) Rumus ini berlaku baik untuk lingkaran paralel di sebelah utara maupun lingkaran paralel di sebelah selatan.

Gambar 2.4 Jari-jari Lingkaran Paralel P

φ

R U S P’ T O Lingkaran Paralel Jari-jari Lingkaran Paralel melalui P Jari-jari Bumi Sudut lintang P P’ P

O

T R

(16)

Contoh soal 2.2:

Jika jari-jari bumi = 6.370.300 meter, tentukan panjang jari-jari lingkaran paralel di titik M yang mempunyai lintang = 35o 12’ 47” U.

Jawab:

Panjang jari-jari lingkaran paralel di M = R cos φ

= 6.370.300 x cos (35o 12’ 47”) = 5.204.621,289 meter 2.5.4 Menentukan Jarak Dua Titik Sepanjang Lingkaran Paralel

Terkadang diperlukan informasi mengenai jarak antara dua titik P dan Q yang terletak pada lintang yang sama, atau disebut juga terletak sepanjang lingkaran paralel yang sama. Yang dimaksud jarak antara dua titik sepanjang lingkaran paralel adalah panjang busur terpendek dari kedua titik tersebut.

Berdasarkan gambar 2.5 dapat dijabarkan persamaan:

o

Jari-jari lingkaran paralel O’P = O’Q = R cos φ

o

o 360 sudut besar paralel lingkaran keliling PQ busur Panjang  

o

o 360 cos R 2 PQ busur Panjang     o   x2R cos 360 PQ busur Panjang o

...……... (2.6) Contoh soal 2.3 :

Suatu kota A terletak pada kira-kira 9o S, 128o T, dan kota B pada kira-kira 9o S, 142o T. Hitung panjang busur antara kedua kota itu jika R bumi = 6.370.300 meter.

Jawab:

Panjang busur paralel PQ =  x2Rcos 

360o

= x2 x6.370.300cos( 9 ) 360 128 142 o o o o    = 1.537.394,120 meter. Gambar 2.5 Jarak PQ sepanjang lingkaran paralel

P Q U S Lingkaran paralel O O’

φ

Δλ

(17)

2.5.5 Menentukan Jarak Dua Titik Sepanjang Lingkaran Meridian

Jika titik P dan Q terletak pada lingkaran meridian atau bujur yang sama maka dapat ditentukan jarak PQ sepanjang meridian tersebut. Yang dimaksud jarak antara dua titik sepanjang lingkaran meridian adalah panjang busur terpendek dari kedua titik tersebut.

Untuk bola bumi, bidang meridian merupakan lingkaran dengan jari-jari = jari-jari bumi = R. Besar jari-jari R ini tidak tergantung pada posisi bujur. Karena itu panjang busur PQ dapat dihitung dengan persamaan:

R 2 x 360 PQ meridian busur Panjang o    

...

…… (2.7)

dimana = selisih lintang

Contoh soal 2.4 :

Hitung panjang busur P (φ = 6o 06’ 19” U) dan Q (φ = 12o 34’ 29” S). Keduanya terletak bujur 110o 12’ 35”. Diketahui R bumi = 6.370,3 km.

Jawab: Selisih lintang Δφ = 6o 06’ 19”+12o 34’ 29” = 18o 40’ 48” R 2 x 360 PQ meridian busur Panjang o     = 2.076.893,010 m P Q

φ

q

φ

P U S R

(18)

2.6 Evaluasi

1. Untuk pemetaan daerah seluas 1.000 hektar, bidang referensi apakah yang anda pilih, bidang datar, bidang bola, atau bidang elipsoid? Beri penjelasan singkat.

2. Apakah yang dimaksudkan dengan garis ekuator atau katulistiwa? Berapa derajat lintang garis ekuator? Benarkah bahwa garis ekuator adalah proyeksi “gerakan” matahari mengelilingi bumi? Benarkah sumbu kutub utara-selatan tegak lurus bidang ekuator? Jika jari-jari bola bumi = 6.370.300 meter, berapakah jari-jari lingkaran ekuator?

3. Apakah yang dimaksud dengan lingkaran paralel? Berapa derajat sudut antara lingkaran paralel/lintang dan sumbu kutub utara-selatan? Benarkah jari-jari lingkaran paralel selalu tetap walaupun sudut lintangnya berubah? Benarkah lintang titik kutub adalah 90o? Jika benar, berapakah jari-jari lingkaran paralelnya? Bagaimana membedakan lintang utara dan selatan? Berapakah lintang Indonesia? Berapakah batas terbesar dan terkecil sudut lintang? Apakah istilah lintang dalam bahasa Inggris?

4. Apakah yang dimaksud lingkaran meridian? Benarkah bahwa jari-jari lingkaran meridian selalu berubah sesuai dengan perubahan sudut bujurnya? Berapakah sudut meridian Greenwich? Apakah yang dimaksud bujur timur dan bujur barat? Berapakah batas terbesar dan terkecil sudut bujur? Berapakah letak bujur Indonesia? Apakah istilah bujur dalam bahasa Inggris? Adakah keterkaitan antara perbedaan bujur dengan perbedaan waktu?

5. Jika keliling garis katulistiwa = 40.000 kilometer berapakah jarak antara 2 titik di katulistiwa yang beda bujurnya = 15”?

6. Jika titik P mempunyai posisi lintang φ = 5o 21’ 34” LU dan λ = 124o 21’ 34” BB, sedangkan titik Q mempunyai selisih lintang Δφ = 7o 33’ 02” pada arah selatan dan selisih bujur Δλ = 3o 38’ 29” pada arah barat, tentukan posisi lintang dan bujur titik Q. 7. Pada lintang berapakah jari-jari lingkaran paralelnya = 10 km? Diketahui jari-jari bumi

= 6.370.300 meter.

8. Suatu kota P terletak pada 12o U, 114o T, dan kota Q terletak di sebelah baratnya pada lintang yang sama. Tentukan bujur Q jika jarak busur antara kedua kota tersebut = 10.000 km dan R bumi = 6.370.300 meter.

9. Jika kota K dan L terletak sepanjang garis meridian yang sama dan jarak busur antara keduanya = 5.000 km, tentukan selisih lintang keduanya.

10. Mengapa dalam perhitungan jarak lengkung antara 2 titik pada meridian yang sama tidak memperhitungkan posisi bujurnya?

(19)

BAB III

BIDANG REFERENSI ELIPSOID BUMI

3.10. Pengantar

Seperti dijelaskan di muka bahwa bidang referensi yang paling mendekati bentuk bumi adalah bidang elipsoid. Namun untuk keperluan pengukuran bumi dikenal juga suatu bidang lain yang disebut bidang Geoid.

3.11. Bidang Geoid

Salah satu tugas ilmu geodesi adalah menentukan koordinat titik, jarak dan azimut garis di muka bumi untuk keperluan praktis maupun ilmiah. Namun, karena bentuk permukaan bumi sangat tidak beraturan, yaitu adanya gunung, dataran, lembah, bahkan palung laut, diperlukan suatu bidang acuan untuk perhitungan dalam penentuan posisi. Untuk keperluan praktis, misalnya untuk pengukuran sipil, dapat digunakan suatu bidang yang disebut bidang Geoid yang mengacu pada tinggi permukaan laut rata-rata (MSL = Mean Sea Level). Bidang Geoid ini terpakai untuk keperluan praktis karena ada anggapan, walaupun ternyata keliru, bahwa permukaan air laut dimana-mana mempunyai ketinggian sama. Pada kenyataannya, tinggi muka laut rata-rata Laut Jawa berbeda dengan tinggi muka laut rata-rata Samudera Hindia, dimana tinggi muka Laut Jawa lebih tinggi daripada Samudera Hindia.

Bidang geoid adalah bidang nivo pada ketinggian muka laut tenang rata-rata. Bidang nivo adalah bidang yang tegak lurus arah gravitasi bumi. Dengan demikian, bidang geoid ini tegak lurus arah gravitasi bumi. Namun, karena arah gravitasi terpengaruh oleh distribusi massa bumi sedangkan distribusi tersebut tidak merata maka arah gravitasi menjadi tidak beraturan dan tidak mengarah ke pusat bumi sehingga dengan demikian bidang geoid pun menjadi tidak beraturan. Di samping itu, sebagaimana telah dijelaskan

Gambar 3.1 Bidang Geoid gunung

palung laut Bidang Geoid

Arah gravitasi

muka laut rata-rata Tujuan Instruksional:

Setelah mempelajari materi perkuliahan ini, mahasiswa diharapkan mampu menjelaskan pengertian tentang (a) bidang referensi bumi, meliputi bidang geoid dan bidang elipsoid bumi, (b) sistem koordinat geografis, geodetis, dan ortogonal (kartesian), dan (c) hubungan matematis antara sistem koordinat,

(20)

di muka, tinggi muka laut di berbagai tempat tidak selalu sama, maka pemakaian bidang geoid sebagai acuan perhitungan posisi geodetis teliti menjadi kurang tepat. Untuk itu, diperlukan suatu bidang beraturan yang memenuhi kaidah matematika sebagai bidang acuan. Bidang itu adalah bidang elipsoid.

3.12. Bidang Elipsoid

Berdasarkan pengukuran teliti oleh para pakar bidang kebumian, bentuk bumi lebih menyerupai bentuk elipsoid daripada bola. Oleh karena itu untuk pemetaan daerah yang sangat luas,  100 km2, atau pengukuran dan perhitungan geodetis dengan ketelitian tinggi digunakanlah bidang acuan elipsoid.

Bidang elipsoid adalah bidang elips yang diputar pada sumbu minornya. Dimensi (ukuran) bidang elipsoid ini tidak ditetapkan sebarang namun dengan perhitungan-perhitungan yang sangat teliti. Agar dapat mewakili bentuk bumi, elipsoid yang dijadikan bidang acuan bumi harus mempunyai kriteria sebagai berikut:

(2) dimensi bidang elipsoid mendekati dimensi bumi sebenarnya

(3) orientasi bidang elipsoid searah dengan bumi, artinya sumbu pendek (minor) elipsoid berimpit dengan sumbu putar bumi

(4) simpangan antara bidang elipsoid dan bidang geoid di semua titik harus minimum (sekecil mungkin), agar bidang elipsoid hampir berimpit dengan bidang geoid.

(5) pusat elipsoid harus berimpit pusat bumi, dan bidang ekuator elipsoid harus berimpit bidang ekuator bumi

(6) volume elipsoid sama dengan volume geoid

(7) jumlah kuadrat beda tinggi (undulasi N) antara elipsoid dan geoid harus minimum.

Bidang elipsoid pada umumnya tidak berimpit dengan bidang geoid. Terkadang bidang elipsoid berada di bawah bidang geoid, dan demikian pula sebaliknya. Selisih tinggi antara bidang elipsoid dan bidang geoid disebut Undulasi (N). Besarnya harga undulasi di setiap titik berbeda. Pengukuran besaran undulasi melibatkan ilmu geodesi fisis (physical geodesy).

Permukaan Bumi Bidang Geoid

Bidang Elipsoid

Gambar 3.2 Permukaan bumi dan bidang acuan Muka laut rata-rata

(21)

3.13. Parameter Elips dan Parameter Utama Elipsoid

Karena bidang elipsoid adalah bangun elips yang diputar pada sumbu minornya, maka perlu dipelajari lebih dahulu parameter suatu elips.

Elips adalah tempat kedudukan titik sedemikian rupa sehingga jumlah jarak titik-titik tersebut terhadap dua titik tertentu (fokus) selalu konstan.

a. Parameter elips secara umum adalah:

o F1 dan F2, dinamakan titik fokus elips.

F1P + F2P = konstan untuk setiap kedudukan titik P sepanjang garis elips.

o Garis yang melalui kedua fokus, yaitu garis AB, disebut sumbu mayor (sumbu panjang).

o Garis yang melalui titik tengah fokus dan tegak lurus sumbu mayor, yaitu garis CD, disebut sumbu minor (sumbu pendek).

o Titik potong kedua sumbu, yaitu titik O, disebut pusat elips.

o Titik potong elips dengan kedua sumbu, yaitu titik A, B, C, dan D, disebut puncak elips

b. Parameter utama elipsoid bumi yang digunakan untuk perhitungan geodetis adalah: Gambar 3.3 Parameter Elips

P

F1 F2

Sumbu minor Sumbu mayor

A B C D O Kutub Selatan Kutub Utara O a b Pusat Bumi = Pusat Elipsoid Setengah sumbu mayor Setengah sumbu minor Permukaan Elipsoid

(22)

o setengah sumbu mayor = a o setengah sumbu minor = b

o eksentrisitas kesatu meridian elips (e), dimana:

2 2 2 2 2 ) a b ( 1 a b a e  -  -

....

... (3.1)

o eksentrisitas kedua meridian elips (e’), dimana:

1

)

b

a

(

b

b

a

'

e

2 2 2 2 2

-

... (3.2) o pemepatan/penggepengan (f), dimana: a b a f  -

……….. (3.3)

o angka konstanta (c), dimana

b a c

2

………... (3.4)

Besaran a, b, e, e’, dan f disebut parameter utama elipsoid. Tiap-tiap negara mempunyai bidang elipsoid sendiri yang sesuai untuk keperluan wilayah masing-masing. Berbagai jenis elipsoid di dunia tercantum dalam tabel 3.1. Elipsoid yang digunakan di Indonesia tercantum pada tabel 3.2.

Tabel 3.1. Berbagai Jenis Elipsoid di Dunia

Nama Elipsoid (tahun) a (meter) 1/f Negara Pemakai Everest (1830) 6.377.276,345 300,8017 India dan Malaysia

Bessel (1841) 6.377.397,155 299,1528128 Indonesia, Jepang, Korea Clarke (1878) 6.378.199 293,15 Australia, P’cis, Afrika Hayford (1909) 6.378.388 297,00 Amerika dan Kanada

Krassowsky (1948) 6.378.206 298,30 Rusia

Indonesian 1974 6.378.160 298,247 Indonesia *) World Geodetic Datum

1984 (WGS-84) 6.378.137,0 298,2572223563 Datum Geodetik Dunia Datum Geodesi

Na-sional 1995 (DGN-95) 6.378.137,0 298,2572223563

Indonesia **)

(menggunakan WGS-84)

*) tidak berlaku lagi, sudah diganti dengan DGN-95

**) S.K. Ketua Bakosurtanal No. HK.02.04/II/KA/96, 12 Pebruari 1996 tentang DGN-95 Catatan: Bila pekerjaan geodesi dilakukan dalam wilayah berukuran  100 x 100 km, elipsoid dianggap sebagai permukaan bola, sedangkan jika tidak lebih dari 55 x 55 km, dianggap bidang datar.

(23)

Tabel 3.2. Parameter Utama Elipsoid di Indonesia

Elipsoid Bessel (1841) *) Elipsoid WGS-84

Parameter Harga Parameter Harga (m)

a 6.377.397 m a 6.378.137 m b 6.356.078 m b 6.356.752,314 m e2 0,00667437223 e2 0,0066943800 e’2 0,00671921880 e’2 0.0067394968 f 0,00334277318 f 0,0033528107 c 6.398.786 m c 6.399.593,626m

*) Elipsoid Bessel ini sudah tidak digunakan lagi

Contoh soal 3.1 :

Dari tabel 3.1 di atas, diketahui bahwa untuk elipsoid Clarke 1878, a = 6.378.199 meter dan 1/f = 293,15. Hitunglah parameter lainnya, yaitu b, e2, e’2, f dan c.

Jawab:

a. Mula-mula hitung f = 1/293,15 = 0,003411222

b. Pers. (3.3) dapat diubah menjadi b = a(1-f), sehingga b = 6.356.441,541 meter

c.

Hitung e2 dengan pers. (3.1)

2 2 2 2 a b a e  - = 0,006810809

d.

Hitung e’2 dengan pers. (3.2)

2 2 2 2 b b a ' e  - = 0,006857514

e.

Hitung c dengan pers. (3.4)

b a c

2

(24)

3.14. Evaluasi

1. Apakah yang dimaksud dengan bidang geoid dan elipsoid? Mengapa bidang geoid tidak beraturan bentuknya sedangkan bidang elipsoid beraturan?

2. Bidang acuan apakah yang dipergunakan dalam pemetaan daerah seluas lebih dari 10 juta hektar, apakah bidang datar, bola, atau elipsoid? Jelaskan alasan anda? 3. Hasil pengukuran tinggi di lapangan yang mengacu pada titik peil (titik tinggi di pantai

yang diukur berdasarkan tinggi muka laut rata-rata) mengacu pada bidang geoid atau elipsoid? Jelaskan alasan anda.

4. Apakah akibatnya jika orientasi bidang elipsoid tidak searah dengan orientasi bumi? 5. Dalam bidang elipsoid bumi, manakah yang paling panjang, jari-jari lingkaran ekuator,

sumbu mayor, atau sumbu minor?

6. Dalam bidang elipsoid bumi, manakah yang berbentuk lingkaran: bidang meridian, bidang ekuator, atau bidang paralel? Jika tidak berbentuk lingkaran, berbentuk apakah bidang tersebut?

7. Mengapa bidang elipsoid harus dibuat sedekat mungkin dengan bidang geoid?

8. Mengapa terdapat berbagai bidang elipsoid dengan berbagai dimensinya? Bidang elipsoid manakah yang saat ini digunakan sebagai bidang acuan internasional?

9. Pengukuran dengan alat GPS (Global Positioning System) harus mengacu pada suatu sistem koordinat internasional. Mengapa demikian?

10. Apakah undulasi N itu? Untuk apakah data undulasi tersebut?

11. Apakah beda elips dan elipsoid? Sebutkan parameter elips secara umum dan parameter utama elipsoid.

12. Elipsoid apakah yang digunakan di Indonesia? Mengapa ada 2 jenis elipsoid di Indonesia?

13. Hitung parameter b, e2, e’2, f dan c untuk elipsoid Hayford jika diketahui a = 6.378.388 meter dan 1/f = 297,00

(25)

3.15. Sistem Koordinat pada Bidang Elipsoid

Dalam penentuan posisi secara global pada umumnya digunakan 2 sistem utama yaitu:

a. Sistem Koordinat Lintang-Bujur, yaitu penentuan posisi titik berdasarkan besaran lintang dan bujur. Lintang dan bujur yang mengacu pada bidang bola bumi disebut lintang dan bujur geografis. Lintang dan bujur yang mengacu pada bidang elipsoid bumi disebut lintang dan bujur geodetis, sistem koordinat ini dikenal dengan nama Sistem Koordinat Lintang – Bujur Geodetis. Berkaitan dengan itu, dikenal pula lintang geosentris dan lintang terreduksi

b. Sistem Koordinat Kartesian Ortogonal XYZ, yaitu penentuan posisi titik berdasarkan jarak titik tersebut terhadap titik awal O pada masing-masing sumbu x, y dan z yang saling tegak lurus.

3.15.1. Sistem Koordinat Lintang-Bujur Geodetis

Dalam sistem koordinat ini, posisi suatu titik, misal titik P, ditentukan berdasarkan besar sudut lintang geodetis () dan sudut bujur (), yang dinyatakan dengan P (, ).

Dalam mempelajari sistem koordinat ini, ada beberapa hal yang harus diperhatikan, a.l.: o Karena bumi berbentuk elipsoid, garis normal terhadap bidang meridian yang melalui

titik P tidak memotong pusat elipsoid O, kecuali jika P terletak tepat di ekuator ( = 0o) atau di kutub ( = 90o), namun memotong sumbu minor di titik N. Garis normal adalah garis yang tegak lurus suatu bidang. Jika bidang acuan adalah bidang bola, maka garis normal dari titik P pasti akan memotong pusat bola.

o Meridian atau bujur nol adalah meridian atau bujur yang melalui Greenwich.

o Sudut antara meridian nol dan meridian P disebut bujur geodetis () P. Bujur di sebelah timur meridian nol disebut bujur timur, dan di sebelah barat disebut bujur barat. Besarnya sudut bujur adalah dari 0o sampai dengan 180o.

KS KU Meridian Nol

P R Q O N Ekuator Meridian P

Gambar 3.5 Sistem Koordinat Lintang-Bujur Geodetis Greenwich

(26)

o

Sudut antara garis normal yang melalui P, yaitu garis PN, dan bidang ekuator disebut lintang geodetis () P. Lintang di sebelah utara ekuator disebut lintang utara dan bernilai positip, sedangkan di sebelah selatan ekuator disebut lintang selatan dan bernilai negatip.Besarnya sudut lintang adalah dari 0o sampai dengan 90o.

 Lintang Geosentris

Sudut lintang geosentris () titik P adalah sudut yang terbentuk oleh garis yang melalui P ke pusat elips dan bidang ekuator. Jadi ada perbedaan dalam lintang geosentris dan lintang geodetis, sebab pada lintang geosentris, garis dari titik P bukan merupakan garis normal, namun garis yang mengarah ke pusat elipsoid. Lintang geosentris dapat dikonversi ke lintang geodetis, dan sebaliknya.

 Lintang Terreduksi

Dalam penentuan lintang terreduksi, ada dua bidang referensi yang digunakan yaitu bidang elipsoid dan bidang bola. Pusat bola dan elipsoid berimpit, sedangkan panjang jari-jari bola R sama dengan panjang semi mayor elipsoid a. Jika harga z titik P diperpanjang sehingga memotong lingkaran maka akan diperoleh titik P’. Sudut  yang terbentuk dari garis P’O dan OR disebut lintang terreduksi ().

Gambar 3.6. Lintang Geosentris  S

P U O a b Lintang geosentris Bidang elips

Gambar 3.7 Lintang Terreduksi 

Q

KU b a R P KS O

P’

z

Bidang lingkaran Lintang Terreduksi

(27)

3.15.2. Sistem Koordinat Kartesian Ortogonal XYZ

Sistem Kartesian XYZ berpusat di O, dengan sumbu X adalah garis yang melalui perpotongan bidang meridian nol dan bidang ekuator. Meridian nol adalah bidang meridian yang melalui kota Greenwich. Sumbu X positip terletak pada bagian yang mengarah ke Greenwich. Sumbu Y terletak pada bidang ekuator dan tegak lurus sumbu X, dengan Y positip berada pada sebelah kiri sumbu X bila dipandang dari sisi Kutub Utara. Sumbu Z adalah sumbu yang melalui kutub, berimpit dengan sumbu minor elipsoid bumi, dimana Z positip pada arah ke Kutub Utara.

Apabila gambar 3.8 dilihat dari arah Kutub Utara atau diproyeksikan dengan KU (kutub Utara) sebagai pusat sumbu maka diperoleh gambar 3.9 berikut ini:

Sistem koordinat ortogonal XYZ untuk bidang elipsoid ini seringkali disalah-tafsirkan sama dengan sistem koordinat XYZ untuk bidang datar. Kedua sistem ini mirip, namun sesungguhnya mempunyai perbedaan prinsip yang tidak boleh dicampur-adukkan. Dalam sistem koordinat XYZ untuk bidang datar, sumbu X positip mengarah ke timur, sumbu Y positip mengarah ke utara, dan sumbu z menyatakan tinggi atau elevasi terhadap bidang datum, dengan pusat koordinat berada di permukaan bumi (gambar 3.8). Dalam sistem

Greenwich KU Kuadran I Kuadran II Kuadran IV Kuadran III Garis Katulistiwa Y negatip X positip Y positip X negatip

Gambar 3.9 Proyeksi Sistem Koordinat XYZ Gambar 3.8 Sistem Koordinat Ortogonal XYZ untuk

bidang Elipsoid KS

KU

Meridian Nol P O Ekuator Sumbu X Sumbu Y Sumbu Z Greenwich

(28)

koordinat XYZ untuk bidang elipsoid, sumbu X positip mengarah ke meridian nol, sumbu Y positip mengarah ke sudut 90o terhadap sumbu X berlawanan arah jarum jam, dan sumbu z mengarah ke kutub utara, dengan pusat koordinat berada di pusat elipsoid.

Sumbu Y ke arah Utara Sumbu X ke arah Timur Sumbu Z = elevasi

Bidang datum datar permukaan bumi

Gambar 3.10 Sistem Koordinat Ortogonal XYZ untuk Acuan Bidang Datar

(29)

3.16. Evaluasi

1. Apakah perbedaan prinsip antara lintang geografis, geodetis, geosentris, dan terreduksi? Untuk mempermudah penjelasan, sebaiknya disertai gambar.

2. Apakah perbedaan sistem koordinat XYZ pada bidang datar dengan sistem koordinat XYZ pada bidang elipsoid. Benarkah jika pusat koordinat XYZ dan sumbu Y kedua sistem tersebut diimpitkan dan sumbu Y positip keduanya mengarah ke utara maka kedua sistem itu menjadi sama? Jelaskan jawaban anda.

3. Seandainya anda berada di pusat bumi, dimana kutub selatan berada di atas anda dan wajah anda menghadap ke depan ke garis meridian nol. Sistem yang digunakan adalah koordinat XYZ untuk bidang elipsoid bumi. Kemanakah arah sumbu x positip, ke depan atau ke belakang anda? Kemanakah arah sumbu Y positip, ke kanan atau ke kiri anda? Kemanakah sumbu Z positip, ke atas atau ke bawah anda?

4. Apakah yang dimaksudkan dengan garis normal? Benarkah bahwa sudut lintang geosentris tidak mengacu pada garis normal? Lintang apa sajakah yang sudutnya mengacu pada garis normal?

5. Berapakah lintang dan bujur rumah atau tempat kos anda? Carilah data tersebut di peta. Apakah sistem koordinat lintang-bujur tersebut? Geografis atau geodetis? Jika anda juga menemui koordinat dalam X dan Y, sistem apakah yang digunakan?

Kutub Selatan

Sumbu Y positip ? Sumbu Y positip ?

(30)

3.17. Hubungan Matematis antara Sistem Koordinat

Oleh karena kedua sistem koordinat itu, yaitu sistem koordinat lintang-bujur dan XYZ, sering digunakan, maka perlu diketahui hubungan matematis antara keduanya agar perhitungan dalam sistem yang satu dapat dikonversikan ke sistem yang lainnya, demikian pula sebaliknya.

3.17.1. Mengkonversi dari Sistem Lintang-Bujur Geodetis ke Sistem Koordinat XYZ

Untuk mengkonversi sistem koordinat diperlukan hubungan matematis antara kedua sistem tersebut. Karena penjabaran rumus-rumusnya cukup rumit dan panjang maka berikut ini hanya diberikan rumus akhir saja. Rumus perhitungan tersebut tergantung pada parameter yang diketahui dan jenis elipsoid yang digunakan.

a. Diketahui: harga lintang-bujur (,) suatu titik, besaran parameter elipsoid a, b, dan e2 Ditanyakan : Koordinat (x, y, z) titik tersebut

Rumus yang digunakan adalah :

      2 2 2 2 2 sin b cos a cos cos a x

.…………... (3.5a)       2 2 2 2 2 sin b cos a sin cos a y

...……….. (3.6a)      2 2 2 2 2 2 sin b cos a sin ) e 1 ( a z -

…………..…... (3.7a) Greenwich P (x,y,z) = (,) Sumbu X Sumbu Y Sumbu Z

KU

KS Ekuator

N O

(31)

b. Diketahui: harga lintang-bujur (,) suatu titik, besaran parameter elipsoid a dan e2 Ditanyakan : Koordinat (x, y, z) titik tersebut Rumus yang digunakan adalah :

    2 2sin e 1 cos cos a x

..……….…... (3.5b)     2 2sin e 1 sin cos a y

………... (3.6b)    2 2 2 sin e 1 sin ) e 1 ( a z

………... (3.7b) Catatan:

o Jika titik tersebut berada di lintang selatan, dalam perhitungannya harus diberi tanda negatip, misalnya  = 17o 09’ 54,1” LS, menjadi  = – 17o 09’ 54,1”

o Jika titik tersebut berada di bujur barat, dalam perhitungannya harus diubah menjadi 360o – , misalnya  = 121o 42’ 29.5” BB, menjadi  = 360 – 121o 42’ 29.5“ = 238o 17’ 30.5”

Contoh soal 3.2 :

1. Hitung koordinat xyz titik P ( = 17o 09’ 54,1” LU;  = 121o 42’ 29.5” BT). Elipsoid yang digunakan GRS-67.

Jawab:

Parameter GRS-67 adalah a = 6.378.160 m, b = 6.356.774, dan e2 = 0,0066947594 A. Menghitung dengan rumus 3.5a, 3.6a, dan 3.7a:

Agar lebih memudahkan perhitungan bagi yang belum terbiasa, ada baiknya rumus-rumus tersebut dipecah menjadi beberapa rumus-rumus perhitungan yang lebih sederhana.

1. Misalkan A = a cos , didapat A = 6.094.068,325 2. Misalkan B = b sin , didapat B = 1.876.042,366

3. Hitung C A2B2 = 6.376.300,159 4. Hitung Da.Acos = -2,042926 x 1013 5. Hitung Ea.A sin = 3,3067204 x 1013 6. Hitung Fa2(1e2)sin = 1,1925577 x 1013 7. Diperoleh C D x  = - 3.203.936,412 meter

(32)

8. Diperoleh C E y  = 5.185.954,881 meter 9. Diperoleh C F z  = 1.870.297,371 meter

B. Menghitung dengan rumus 3.5b, 3.6b, dan 3.7b.

1. Hitung W = 1e2sin2 = 0,999416895 = 0,999708405 2. Hitung A = a cos  = 6.094.068,325

3. Hitung B = A cos  = -3.203.002,159 4. Hitung C = A sin  = 5.184.442,682 5. Hitung D = a(1-e2) sin  = 1.869.752,002 6. W B x  = - 3.203.936,411 meter 7. W C y  = 5.185.954,880 meter 8. W D z  = 1.870.297,371 meter

2. Hitung koordinat xyz titik P ( = 8o 23’ 11,8” LS;  = 25o 32’ 46,7” BB). Elipsoid yang digunakan GRS-67.

Jawab:

Parameter GRS-67 adalah a = 6.378.160 m, b = 6.356.774, dan e2 = 0,0066947594 A. Menghitung dengan rumus 3.5a, 3.6a, dan 3.7a:

Agar lebih memudahkan perhitungan bagi yang belum terbiasa, ada baiknya rumus-rumus tersebut dipecah menjadi beberapa rumus-rumus perhitungan yang lebih sederhana.

1. Misalkan A = a cos , didapat A = 6.309.954,780 2. Misalkan B = b sin , didapat B = – 927.147,256

3. Hitung C A2B2 = 6.377.705,807 4. Hitung Da.Acos = 3,63113 x 1013 5. Hitung Ea.A sin = -1,73557 x 1013 6. Hitung Fa2(1e2)sin = -5,89367 x 1012 7. Diperoleh C D x  = 5.693.480,469 meter 8. Diperoleh C E y  = – 2.721.301,281 meter 9. Diperoleh C F z  = – 924.104,339 meter

(33)

3.17.2. Mengkonversi dari Sistem Koordinat XYZ ke Sistem Lintang-Bujur Geodetis

Sebagai kebalikan dari perhitungan di atas, kini yang diketahui adalah harga P (x,y,z) dan yang akan ditentukan adalah harga lintang dan bujur titik P tersebut. Rumus-rumus berikut digunakan untuk menentukan harga  dan  jika diketahui harga x,y,z dan besaran parameter elipsoid e.

Langkahnya adalah sebagai berikut: (a) Hitung harga  dengan rumus:

x y

tan ………. (3.8)

(b) Hitung harga  dengan rumus:

) e 1 ( x cos z tan 2     ………. (3.9) Catatan:

a. Jika z positip maka lintangnya utara, jika z negatip maka lintangnya selatan. b. Dalam menghitung  perlu diperhatikan ketentuan berikut (lihat gambar 3.12)

o jika titik tersebut berada pada kuadran I (x positip dan y positip), hasil perhitungan nilai  positip dan bujurnya adalah bujur Timur.

o jika berada pada kuadran II (x positip dan y negatip), hasil perhitungan nilai  negatip, nilai  tersebut dikalikan –1 agar bernilai positip, dan bujurnya adalah bujur Barat.

o jika berada pada kuadran III (x negatip dan y negatip), hasil perhitungan nilai  positip, nilai  akhir = 180o – nilai  mula-mula, dan bujurnya adalah bujur Barat. o jika berada pada kuadran IV (x negatip dan y positip), hasil perhitungan nilai 

negatip, nilai  akhir = 180o + nilai  mula-mula dan bujurnya adalah bujur Timur.

Greenwich KU  = 0o  = 90o BT  = 90o BB  = 180o Kuadran I Kuadran II Kuadran IV Kuadran III Garis Katulistiwa Y negatip X positip Y positip X negatip

(34)

Contoh soal 3.3 :

1. Hitung  dan  untuk titik P (-3.203.936,411 m, 5.185.954,880 m, 1.870.297,371 m). Digunakan bidang elipsoid GRS-67.

Jawab: 1. Hitung 1,61861979 411 , 936 . 203 . 3 880 , 954 . 185 . 5 x y tan    

 . Karena x negatip dan y

positip, maka titik P berada pada kuadran IV.

2.  = arctan (-1,61861979) = - 58o 17’ 30,47” + 180o (ditambah 180o karena terletak di kuadran IV). Sehingga diperoleh  = 121o 42’ 29,53” BT

3. Hitung ) e 1 ( x cos z tan 2     = 0,308882967

4.  = arctan (0,308882967) = 17o 09’ 54,1” Utara (karena nilai z positip)

2. Hitung  dan  untuk titik P (5.693.480,469 m, –2.721.301,281 m, –924.104,339 m). Digunakan bidang elipsoid GRS-67.

Jawab: 1. Hitung 469 , 480 . 693 . 5 281 , 301 . 721 . 2 x y

tan  = -0.477967966. Karena x positip dan y

negatip, titik P berada pada kuadran II, sehingga bujurnya adalah bujur barat 2.  = arctan (-0.477967966) = - 25o 32’ 46,7” x (-1) (dikali –1 karena terletak di

kuadran II). Sehingga diperoleh  = 25o 32’ 46,7” BB 3. Hitung ) e 1 ( x cos z tan 2     = -0.147428385 4.  = arctan (-0.147428385) = -8o 23’ 11,8” = 8o 23’ 11,8” LS 3.17.3. Lintang geosentris  dan lintang geodetis 

Lintang geosentris () titik P adalah sudut yang terbentuk oleh garis yang melalui P ke pusat elipsoid O dan bidang ekuator, sedangkan lintang geodetis () titik P adalah sudut yang terbentuk oleh garis normal yang melalui P ke N dan bidang ekuator.

Gambar 3.13. Hubungan antara  dan  S

P U O N a b

(35)

Hubungan matematis antara kedua jenis lintang tersebut adalah:    tan  ) e 1 ( 1 tan b a tan 2 2 2 -... (3.10a) atau  tan (1e )tan  a b tan 2 2 2 ... (3.10b)

untuk selisih (-) kecil, dimana   , digunakan persamaan:

   e sin2 2 1 ) ( - 2 ... (3.11a) dimana  = 180/ =57,29577951, sehingga       e sin2 2 1 2 ……… (3.11b)       e sin2 2 1 2 ……… (3.11c) Contoh soal 3.4 :

Hitung lintang geodetis  titik P yang berada pada lintang geosentris  = 13o 54’ 17,4” LS, elipsoid yang digunakan GRS-67.

Jawab:

Parameter GRS-67 a = 6.378.160 m, b = 6.356.774 m, e2 = 0,0066947594, o = 180/,

A. Dengan rumus 3.10a

1. Hitung:  tan  b a tan 2 2 = 0,249233063 2.  = arctan 0,249233063 = 13o 59’ 41,56” LS B. Dengan rumus 3.11b 3.

e

sin

2

2

1

2 = 13o 54’ 17,4” + 0o 05’ 22,11” = 13o 59’ 39,51” LS

(36)

3.17.4. Lintang terreduksi  dan lintang geodetis 

Sudut  yang terbentuk dari garis P’O dan OR disebut lintang terreduksi.

Hubungan matematis antara lintang terreduksi  dan lintang geodetis  adalah:

    e sin2 4 1 ) ( sin - 2 ... (3.12)

untuk selisih ( - ) kecil, dimana   , digunakan persamaan:

     e sin2 4 1 ) ( - 2 ... (3.13) sehingga       e sin2 4 1 2 ... (3.13a)       e sin2 4 1 2 ... (3.13b) Contoh soal 3.5 :

Hitung lintang terreduksi  jika P berada pada lintang geodetis  = 13o 54’ 17,4” LS, elipsoid yang digunakan GRS-67.

Jawab: a = 6.378.160 m, b = 6.356.774 m, dan e2 = 0,0066947594, A. Dengan rumus 3.12 1. Hitung    e sin2 4 1 ) ( sin - 2 = 0,000780836 2.  -  = arcsin(0,000780836) = 0o 02’ 41,05” 3.  =  - 0o 02’ 41,05” = 13o 54’ 17,4” – 0o 02’ 41,05” = 13o 51’ 36,35” Bidang elips

Gambar 3.14 Hubungan antara  dan 

Q

KU b a R P KS O

P’

z

Bidang lingkaran

(37)

B. Dengan rumus 3.13b 1. Hitung e sin2 4 1 2 = 4 1 x 0,0066947594 x 180/ x sin (2 x 13o 54’ 17,4”) = 0o 02’ 41,1” 2. Hitung  e sin2 4 1 2 = 13o 54’ 17,4” – 0o 02’ 41,1” = 13o 51’ 36,3” Terlihat, selisih harga  dan  hanya berbeda 0,05” (cukup kecil).

3.18. Evaluasi

1. Dalam penentuan lintang-bujur suatu titik berdasarkan sistem koordinat XYZ maka dapat dirumuskan bahwa: (isilah titik-titik pada kolom 4 dan 5)

Sistem Koordinat XYZ Sistem Koordinat Lintang-Bujur

X Y Z Lintang  Bujur 

positip positip positip ... s/d ... LU/LS ... s/d ... BT/BB positip negatip positip ... s/d ... LU/LS ... s/d ... BT/BB negatip negatip positip ... s/d ... LU/LS ... s/d ... BT/BB negatip positip positip ... s/d ... LU/LS ... s/d ... BT/BB

2. Jika koordinat geodetis P adalah  = 5o 11’ 23,1” LU dan  = 103o 26’ 04,2” BT, dan elipsoid yang digunakan GRS-67, berapakah koordinat ortogonal titik P tersebut? 3. Jika koordinat ortogonal P = (-1,475,826.596 m, 6,178,367.073 m, 573,086.026 m),

dan elipsoid yang digunakan GRS-67, berapakah koordinat geodetis titik P tersebut? 4. Hitung lintang geosentris  dan lintang terreduksi  jika titik P berada pada lintang

(38)

BAB IV

PERHITUNGAN PADA BIDANG LENGKUNG

4.1 Jari-jari Busur pada Elipsoid

3.18.1. Jari-jari Busur Meridian (M) dan Busur Normal Utama (N)

Pada bidang bola, jari-jari busur setiap titik di permukaan bola tersebut akan sama, yaitu sebesar jari-jari bola. Namun, pada bidang elipsoid, jari-jari busur di setiap titik pada bidang elipsoid tidak sama. Bahkan, jari-jari busur di suatu titik pun, misalnya titik A, akan berbeda-beda tergantung arah busur tersebut.

Ada 2 jenis jari-jari utama pada suatu titik di permukaan elipsoid,

(a) Jari-jari busur meridian (M), yaitu jari-jari busur bidang meridian pada titik tersebut, (b) Jari-jari normal utama (N), yaitu jari-jari busur normal utama pada titik tersebut. Busur

normal utama adalah busur yang terletak bidang normal utama, yaitu bidang yang melalui garis normal dan tegak lurus bidang meridian.

Besar jari-jari busur meridian (M) dapat dihitung dengan rumus:

3 2 2 2 3 2 2 2 2 2 2 ) sin e 1 ( ) e 1 ( a ) sin b cos a ( b a M       ... (4.1)

o Di ekuator, dimana lintang  = 0o, panjang M = a b2

= a (1-e2)

o Di kutub, dimana lintang  = 90o, panjang

2 2 e 1 a b a M - 

Gambar 4.1 Busur Meridian dan Busur Normal Utama KS KU Meridian Nol A a P Ekuator Busur Meridian A Garis Normal

Busur Normal Utama A Tujuan Instruksional:

Setelah mempelajari materi perkuliahan ini, mahasiswa diharapkan mampu menjelaskan teori dan melakukan perhitungan pada bidang elipsoid, yaitu perhitungan panjang jari-jari busur, panjang busur, luas bidang pada permukaan, garis geodesik, konvergensi meridian, dan ekses sferissebagai dasar dalam pemecahan Soal Pokok Geodesi.

(39)

Besar jari-jari busur normal utama (N) dapat dihitung dengan rumus:       2 2 2 2 2 2 2 sin e 1 a sin b cos a a N -... (4.2)

o Di ekuator, dimana lintang  = 0o, besar N = a o Di kutub, dimana lintang  = 90o, besar

2 2 e 1 a b a N - 

Jika dibuat perbandingan N dan M maka diperoleh:

           2 2 2 2 2 2 2 2 2 2 cos ' e 1 e 1 sin e 1 b sin b cos a M N ... (4.3)

Menggunakan N dari pers. 4.2, maka pers. 3.5b, 3.6b, dan 3.7b pada bab III di muka

dapat ditulis menjadi.:

x = N cos  cos  ... (4.4)

y = N cos  sin  ... (4.5)

z = N (1-e2) sin  ... (4.6)

Contoh soal 4.1 :

Diketahui : koordinat geodetis P ( = 5o 11’ 23,1” LU,  = 103o 26’ 04,2” BT). Elipsoid yang digunakan GRS-67

Hitung: koordinat titik P tersebut dalam sistem koordinat ortogonal Jawab:

Parameter elipsoid GRS-67 adalah a = 6.378.160 m, b = 6.356.774 m, dan e2 = 0,0066947594

Berdasarkan rumus-rumus pada bab III dan persamaan di atas maka,

o Hitung W = 1e2sin2 = 0,999972611 o Hitung N = 1 0.99997261 160 . 378 . 6 w a  = 6.378.334,694

o Hitung x = N cos  cos  = -1.475.826,596 meter o Hitung y = N cos  sin  = 6.178.367,073 meter o Hitung z = N (1-e2) sin  = 573.086,026 meter

(40)

3.18.2. Jari-jari Irisan Normal

Irisan normal terhadap bidang elipsoid adalah garis lengkung hasil perpotongan antara bidang normal dengan permukaan elipsoid tersebut. Irisan normal bersudut 90o terhadap bidang meridian disebut irisan normal utama. Irisan normal AB membentuk sudut  dengan bidang meridian. Sudut  disebut azimut irisan normal AB di titik A.

Jika jari-jari irisan normal AB di titik A adalah Rmaka menurut dalil EULER:

N sin M cos R 1 2 2     ... (4.7) ) cos cos ' e 1 ( N R 2 2 2    ... (4.8)

Catatan: Jika azimut irisan

o  = 0o, berarti irisan tersebut adalah garis meridian, maka R = M

o  = 90o, berarti irisan tersebut adalah irisan normal utama, maka R = N

3.18.3. Jari-jari Bola Pengganti

Kadang-kadang untuk keperluan tertentu atau untuk luasan kecil, elipsoid dianggap sebagai bola dengan jari-jari tertentu R. Ada berbagai cara untuk menentukan jari-jari R bola pengganti. Berikut berbagai cara menentukan jari-jari bola pengganti elipsoid:

a.

Bola berjari-jari Rt: 3 b a a Rt    ... (4.9) b. Bola berjari-jari Rr: Rr a ... (4.10)

Bila pusatnya di titik O disebut Bola Reduksi.

c. Bola ekuivalen yang dibentuk agar luas bola = luas elipsoid, maka:

...) e 7 4 e 5 3 e 3 2 1 ( b Re   2  4  6  ... (4.11)

Gambar 4.2 Irisan Normal AB

A KU KS Meridian A

R

Q Meridian B B KU B A

Irisan Normal AB Azimut Irisan Normal AB di A

(41)

Bola ekuivalen digunakan untuk proyeksi ekuivalen. Proyeksi ekuivalen adalah sistem proyeksi dimana luas daerah hasil proyeksi sama dengan luas daerah mula-mula. d. Bola Gausz dengan jari busur rata-rata Gausz R:

NM R  ... (4.12) 2 2 W e 1 a R - ... (4.13)

Digunakan untuk proyeksi konform. Proyeksi konform adalah sistem proyeksi dimana besar sudut hasil proyeksi sama dengan besar sudut mula-mula.

e. Bola yang dibentuk berdasarkan volume bola = volume elipsoid, maka

b a

Rv3  2 Rv 3a2b ... (4.14)

4.2 Evaluasi

1. Apakah perbedaan antara busur meridian, busur normal, dan busur normal utama? Dalam bidang elipsoid, apakah bentuk busur meridian dan busur normal utama? 2. Benarkah M dan N berubah jika lintangnya berubah? Bagaimana jika bujurnya

berubah? Di posisi manakah N = M? Berapakah perbandingan N dan M di ekuator dan di kutub?

3. Apakah yang dimaksud azimut irisan normal? Jika A terletak di ekuator dengan azimut

AB = 45o, buktikan bahwa jari-jari irisan normal AB (RAB) adalah :

2 2 2 AB b a ab 2 R  

4. Jika luasan 100.000 ha diproyeksikan secara konform, apakah hasilnya mempunyai luas sama? Jika tidak, sistem proyeksi apakah yang harus digunakan?

5. Untuk elipsoid GRS-67, hitunglah jari-jari bola pengganti Rt, bola reduksi Rr, bola ekuivalen Re, bola Gausz, dan bola Rv.

6. Hitung jari-jari busur meridian M dan busur normal N untuk lintang geodetis  = 0o 14’ 23”,. Elipsoid yang digunakan GRS-67.

7. Hitung jari-jari irisan normal AB untuk lintang geodetis  = 5o 11’ 23,1” LU, jika azimut AB = 26o 06’ 25,5”. Elipsoid yang digunakan GRS-67.

(42)

4.3 Panjang Busur Dua Titik pada Elipsoid

4.3.1 Panjang Busur Meridian antara Dua Titik

Panjang busur meridian adalah panjang garis antara dua titik pada permukaan elip yang terletak pada bidang meridian yang sama.

Rumus perhitungan panjang busur meridian S dari 1 s.d 2 adalah:

...] ) 4 sin 4 (sin 4 C ) 2 sin 2 (sin 2 B ) ( A )[ e 1 ( a S 2 1 2 1 2 1 o 2 2 1 -  - -  -    -      ...(4.15) dimana:

2 dan 1 = lintang titik P2 dan P1;

o = 57,2957795131; A = e .... 64 45 e 4 3 1 2 4 ; B = e .... 16 15 e 4 3 2 4   ; C = e .... 64 15 4

Pers. 4.15 dapat disederhanakan menjadi:

)... 4 sin 4 (sin E ) 2 sin 2 (sin E ) ( E S12  02-122- 142- 1 ... (4.16) dimana: o 2 0 A ) e 1 ( a E   - ; 2 B ) e 1 ( a E2- - 2 ; 4 C ) e 1 ( a E4  - 2 Contoh soal 4.2 :

1. Hitung panjang busur PQ, dimana kedua titik P dan Q terletak pada meridian (bujur) sama. Lintang P adalah 1 = 22o 53’ 04” dan lintang Q adalah 2 = 24o 07’ 32”.

Elipsoid yang digunakan GRS-67. Jawab :

1 = 22o 53’ 04” dan 2 = 24o 07’ 32”. o = 57,2957795131

a = 6.378.160 m, b = 6.356.774 m, dan e2 = 0,0066947594 Gambar 4.3 Panjang Busur Meridian

P1 P2 KU



Meridian P2-P1 KS Panjang busur meridian S12

(43)

a. Hitung A = 2 e4 64 45 e 4 3 1  = 1,005052583 b. Hitung B = 2 e4 16 15 e 4 3  = 0,005063088 c. Hitung C = e4 64 15 = 1,05046 x 10 -5 d. Hitung o 2 0 A ) e 1 ( a E   - = 111.133,3199 e. Hitung 2 B ) e 1 ( a E2 - - 2 = -16.038,49549 f. Hitung 4 C ) e 1 ( a E4  - 2 = 16,63793325 g. Hitung 2 -1 = 1o 14’ 28” = 1,241111111

h. Hitung sin22 - sin21 = 0,029538341

i. Hitung sin42 – sin41 = -0,006072384

j. Hitung S12 E0(2-1)E2(sin22-sin21)E4(sin42-sin41)

diperoleh panjang busur PQ, S = 137.454,947 meter

2. Hitung panjang busur dari ekuator  = 0o ke  = 1o,  = 0o 1’, dan  = 0o 0’ 1” Elipsoid yang digunakan GRS-67

Jawab : Dengan persamaan 4.16 dan hasil perhitungan Eo, E2, E4, di atas dapat

dihitung, ) 0 . 4 sin 1 . 4 (sin E ) 0 . 2 sin 1 . 2 (sin E ) 0 1 ( E S1 0 o o 2 o o 4 o o 0 o o  -  -  -= 111.133,320 + (- 559,735) + 1,161 -= 110.574,746 meter ) ' 0 . 4 sin ' 1 . 4 (sin E ) ' 0 . 2 sin ' 1 . 2 (sin E ) ' 0 ' 1 ( E S10''0 -  2 -  4 = 1.852,222 + (- 9,331) + 0,019 = 1.842,910 meter ) " 0 . 4 sin " 1 . 4 (sin E ) " 0 . 2 sin ' 1 . 2 (sin E ) " 0 " 1 ( E S10""0 -  2 -  4 = 30,870 + (- 0,156) + 0.000 = 30,715 meter

Gambar

Gambar 1.1  Pengukuran Erastosthenes  Syene  Sumur Tongkat Alexandria Sinar matahari 5000 stadia  Tepat di atas  Bayangan Tongkat Sudut A = 7,2o
Gambar 1.2  Perhitungan Keliling Bumi  S Alexandria R Syene Sudut A = 7.2o  A  S A R sudut A = 7.2o Keliling Bumi
Gambar 1.4  Teknik Pengukuran Triangulasi  A B C E G  I  K J H F D P Q R S
Gambar 2.1   Bola Bumi Kutub Selatan (KS)  Bidang Ekuator Lingkaran  Paralel/ Lintang Lingkaran  Meridian/ BujurKutub Utara (KU)
+7

Referensi

Dokumen terkait