• Tidak ada hasil yang ditemukan

STK 500. Pengantar Teori Statistika. Eigenvalues and Eigenvectors

N/A
N/A
Protected

Academic year: 2021

Membagikan "STK 500. Pengantar Teori Statistika. Eigenvalues and Eigenvectors"

Copied!
82
0
0

Teks penuh

(1)

Eigenvalues and

Eigenvectors

Pengantar Teori Statistika

STK 500

(2)

Eigenvalues and Eigenvectors

Example 1: if we have a matrix A:

   2 44 -4 A

then



                          2  2 4 1 0 4 -4 0 1 2 - 4 4 -4 - 2 4 16 0 or 2 24 0 A I

which implies there are two roots or

eigenvalues :

=-6 and

=4.

(3)

Eigenvalues and Eigenvectors

For a square matrix A, let I be a

conformable identity matrix. Then the

scalars satisfying the polynomial equation

|A -

I| = 0 are called the eigenvalues (or

characteristic roots) of A.

The equation |A -

I| = 0 is called the

characteristic equation or the

determinantal equation.

(4)

Eigenvalues and Eigenvectors

For a matrix A with eigenvectors

, a

nonzero vector x such that Ax =

x is called

an eigenvector (or characteristic vector) of A

associated with

.

(5)

Example 1

if we have a matrix A:

   2 44 -4 A                                    1 1 2 2 1 2 1 1 2 1 2 2 1 2 x x 2 4 6 4 -4 x x 2x 4x 6x 8x 4x 0 and 4x 4x 6x 4x 2x 0 Ax x

Fixing x

1

=1 yields a solution for x

2

of –2.

with eigenvalues

= -6 and

= 4, the

(6)

Example 1

Note that eigenvectors are usually normalized

so they have unit length, i.e.,

Thus our arbitrary choice to fix x

1

=1 has no

impact on the eigenvector associated with

= -6.

For our previous example we have:

x e x'x                            1 1 1 -2 -2 5 -2 5 1 1 -2 -2 5 x e x'x

(7)

Example 1

For matrix A and eigenvalue

= 4, we have

                               1 1 2 2 1 2 1 1 2 1 2 2 1 2 x x 2 4 4 4 -4 x x 2x 4x 4x 2x 4x 0 and 4x 4x 4x 4x 8x 0 Ax x

We again arbitrarily fix x

1

=1, which now

yields a solution for x

2

of 1/2.

(8)

Normalization of Eigenvectors

Normalization to unit length yields

Again our arbitrary choice to fix x

1

=1 has no

impact on the eigenvector associated with

= 4.

                                   1 1 1 2 1 1 1 2 2 2 5 1 5 5 1 1 4 5 1 2 1 2 2 x e x'x

(9)

Characteristic equation:

3 2 1 0 0 2 0 ( 2) 0 0 0 2 I A

        

Eigen value :

 2

Example 2

Find the eigenvalues and corresponding

eigenvectors for the matrix A. What is the

dimension of the eigenspace of each eigenvalue?

2

0

0

0

2

0

0

1

2

A

(10)

The eigenspace of

λ

= 2:

1 2 3 0 1 0 0 ( ) 0 0 0 0 0 0 0 0 x I A x x

                                x 0 , , 1 0 0 0 0 1 0 3 2 1                                     t s t s t s x x x 1 0

0 0 , : the eigenspace of corresponding to 2

0 1 s t s t R A                             

Thus, the dimension of its eigenspace is 2.

(11)

(1) If an eigenvalue

1

occurs as a multiple root (k

times) for the characteristic polynominal, then

1

has multiplicity k.

(2) The multiplicity of an eigenvalue is greater than

or equal to the dimension of its eigen space.

(12)

Find the eigenvalues and corresponding eigenspaces for 1 3 0 3 1 0 0 0 2 A                              2 0 0 0 1 3 0 3 1

I A(

2) (2

 4) 0 1 2 eigenvalues

4,

2     1 1 2 2

The eigenspaces for these two eigenvalues are as follows. {(1, 1, 0)} Basis for 4 {(1, 1, 0), (0, 0, 1)} Basis for 2 B B

     

Example 3

(13)

Find the eigenvalues of the matrix A and find a basis for each of the corresponding eigenspaces

            3 0 0 1 0 2 0 1 10 5 1 0 0 0 0 1 A Characteristic equation: 2 1 0 0 0 0 1 5 10 1 0 2 0 1 0 0 3 ( 1) ( 2)( 3) 0 I A                       Eigenvalues:

1 1,

2  2,

3  3

According to the note on the previous slide, the dimension of the eigenspace of λ1 = 1 is at most to be 2

 For λ2 = 2 and λ3 = 3, the dimensions of their eigenspaces are at most to be 1

(14)

1 (1)  1 1 2 1 3 4 0 0 0 0 0 0 0 5 10 0 ( ) 1 0 1 0 0 1 0 0 2 0 x x I A x x                                          x 1 2 3 4 2 0 2 1 0 , , 0 2 0 2 0 1 x t x s s t s t x t x t                                                        1 2 0 2 , 0 0 1 0                                       

is a basis for the eigenspace

corresponding to 1 1

The dimension of the eigenspace of λ1 = 1 is 2

(15)

2 (2)   2 1 2 2 3 4 1 0 0 0 0 0 1 5 10 0 ( ) 1 0 0 0 0 1 0 0 1 0 x x I A x x                                          x 1 2 3 4 0 0 5 5 , 0 1 0 0 x x t t t x t x                                         0 1 5 0                          

is a basis for the eigenspace

corresponding to 2  2

The dimension of the eigenspace of λ2 = 2 is 1

(16)

3 (3)   3 1 2 3 3 4 2 0 0 0 0 0 2 5 10 0 ( ) 1 0 1 0 0 1 0 0 0 0 x x I A x x                                         x 1 2 3 4 0 0 5 5 , 0 0 0 1 x x t t t x x t                                         1 0 5 0                           

 is a basis for the eigenspace

corresponding to 3  3

The dimension of the eigenspace of λ3 = 3 is 1

(17)

Eigenvalues and Eigenvectors

Theorem 1

. Eigenvalues for triangular matrices

If A is an n

n triangular matrix, then its eigenvalues are

the entries on its main diagonal

 Finding eigenvalues for triangular and diagonal matrices

2 0 0 (a) 1 1 0 5 3 3 A            2 0 0 (a) 1 1 0 ( 2)( 1)( 3) 0 5 3 3 I A                    1 2, 2 1, 3 3        

(18)

Eigenvalues and Eigenvectors

 Finding eigenvalues for triangular and diagonal matrices

1 0 0 0 0 0 2 0 0 0 (b) 0 0 0 0 0 0 0 0 4 0 0 0 0 0 3 A                   1 2 3 4 5 (b)   1,   2,  0,   4,  3

(19)

Definition 1: A square matrix A is called

diagonalizable if there exists an invertible matrix

P such that P

–1

AP is a diagonal matrix (i.e., P

diagonalizes A)

Diagonalization

Definition 2: A square matrix A is called

(20)

Diagonalization

Theorem 2

: Similar matrices have the same eigenvalues

If A and B are similar n

n matrices, then they have the

same eigenvalues

AP P

B B

A and are similar   1

1 1 1 1 1 1 1 ( ) I B I P AP P IP P AP P I A P P I A P P P I A P P I A I A

                     

Since A and B have the same characteristic equation, they are with the same eigenvalues

For any diagonal matrix in the form of D = λI, P–1DP = D

(21)

Example 5

Eigenvalue problems and diagonalization programs

          2 0 0 0 1 3 0 3 1 A

Characteristic equation:

2 1 3 0 3 1 0 ( 4)( 2) 0 0 0 2 I A

           1 2 3 The eigenvalues :

 4,

 2,

 2 (1)

 4 the eigenvector 1 1 1 0            p

(22)

(2)

  2 the eigenvector 2 3 1 0 1 , 0 0 1                     p p 1 1 2 3 1 1 0 4 0 0 [ ] 1 1 0 , and 0 2 0 0 0 1 0 0 2 P P AP                    p p p 2 1 3 1 [ ] 1 1 0 2 0 0 1 1 0 0 4 0 0 0 1 0 0 2 P P AP                        p p p If

 The above example can prove Thm. 2 numerically since the eigenvalues for both A and P–1AP are the same to be 4, –2, and –2

The reason why the matrix P is constructed with eigenvectors of A is demonstrated in Thm. 3 on the next slide

(23)

Diagonalization

Theorem 3: An nn matrix A is diagonalizable if and only if it

has n linearly independent eigenvectors

()

1

1 2 1 2

Since is diagonalizable, there exists an invertible s.t.

is diagonal. Let [ n] and ( , , , n), then

A P D P AP P D diag       p p p  1 2 1 2 1 1 2 2 0 0 0 0 [ ] 0 0 [ ] n n n n PD                     p p p p p p

Note that if there are n linearly independent eigenvectors, it does not imply that there are n distinct eigenvalues. It is possible to have only one eigenvalue with multiplicity n, and there are n linearly independent eigenvectors for this

eigenvalue

However, if there are n distinct eigenvalues, then there are n linearly independent eigenvectors and thus A must be diagonalizable

(24)

1 1 2 1 1 2 2 (since ) [ n] [ n n] AP PD D P AP A A A        p p pp p p , 1, 2, ,

(The above equations imply the column vectors of are eigenvectors of , and the diagonal entries in are eigenvalues of )

i i i i i A i n P A D A    ppp 1 2

Because is diagonalizable is invertible

Columns in , i.e., , , , , are linearly independent (see p. 4.101 in the lecture note or p. 246 in the text book)

n

A P

P

p p p

Thus, has linearly independent eigenvectorsA n

1 2 1 2

Since has linearly independent eigenvectors , , with corresponding eigenvalues , , , then

n n A n    p p p , 1, 2, , i i i Ai npp  Let P [p p1 2 pn] ()

Diagonalization

(25)

1 2 1 2 1 1 2 2 1 2 1 2 [ ] [ ] [ ] 0 0 0 0 [ ] 0 0 n n n n n n AP A A A A PD                        p p p p p p p p p p p p 1 2 1

Since , , , are linearly independent

is invertible (see p. 4.101 in the lecture note or p. 246 in the text book)

is diagonalizable

(according to the definition of the diagonali n P AP PD P AP D A       p p p

zable matrix on Slide 7.27)

Note that 's are linearly independent eigenvectors and the diagonal entries in the resulting diagonalized are eigenvalues of

i

i D A

p

(26)

Example 6

 A matrix that is not diagonalizable

Show that the following matrix is not diagonalizable

1 2 0 1 A      Characteristic equation: 1 2 2 ( 1) 0 0 1 I A             1 1

The eigenvalue  1, and then solve ( IA)x0 for eigenvectors

1 1 0 2 1 eigenvector 0 0 0 I A I A p                 

Since A does not have two linearly independent eigenvectors,

(27)

Diagonalization

Steps for diagonalizing an n

n square matrix:

Step 2: Let

P [p p1 2 pn]

Step 1: Find n linearly independent

eigenvectors for A

with corresponding eigenvalues

1, 2, n p p p

Step 3:

               n D AP P

       0 0 0 0 0 0 2 1 1 where Api

ipi, i 1, 2, , n 1, 2, , n

 

(28)

Example 6

Diagonalizing a matrix

diagonal. is such that matrix a Find 1 1 3 1 3 1 1 1 1 1 AP P P A                

Characteristic equation:

1 1 1 1 3 1 ( 2)( 2)( 3) 0 3 1 1 I A

             1 2 3 The eigenvalues :

 2,

 2,

3

(29)

2 1 

G.-J. E. 1 1 1 1 1 0 1 1 1 1 0 1 0 3 1 3 0 0 0 I A                          1 2 1 3 1 0 eigenvector 0 1 x t x x t                                 p 2 2  

1 4 G.-J. E. 1 2 4 3 1 1 1 0 1 5 1 0 1 3 1 1 0 0 0 I A                            1 1 4 1 2 4 2 3 1 eigenvector 1 4 x t x t x t                                  p

Example 6

(30)

3 3 

G.-J. E. 3 2 1 1 1 0 1 1 0 1 0 1 1 3 1 4 0 0 0 I A                         1 2 3 3 1 eigenvector 1 1 x t x t x t                                 p 1 2 3 1 1 1 1

[ ] 0 1 1 and it follows that

1 4 1 2 0 0 0 2 0 0 0 3 P P AP                      p p p

Example 6

(31)

Note: a quick way to calculate A

k

based on the

diagonalization technique

1 1 2 2 0 0 0 0 0 0 0 0 (1) 0 0 0 0 k k k k n n D D                                   1 1 1 1 1 repeat times 1 1 2 (2) 0 0 0 0 , where 0 0 k k k k k k k k k n D P AP D P AP P AP P AP P A P A PD P D                             

Diagonalization

(32)

Diagonalization

Theorem 4: Sufficient conditions for diagonalization If an nn matrix A has n distinct eigenvalues, then the

corresponding eigenvectors are linearly independent and thus A is diagonalizable.

Proof :

Let λ1, λ2, …, λn be distinct eigenvalues and corresponding

eigenvectors be x1, x2, …, xn. In addition, consider that the first

m eigenvalues are linearly independent, but the first m+1

eigenvalues are linearly dependent, i.e.,

1 1 1 2 2 , (1)

m  cc  cm m

x x x x

where ci’s are not all zero. Multiplying both sides of Eq. (1) by A

yields 1 1 1 2 2 1 1 1 1 1 2 2 2 (2) m m m m m m m m A Ac Ac Ac c c c

           x x x x x x x x

(33)

On the other hand, multiplying both sides of Eq. (1) by λm+1 yields

1 1 1 1 1 2 1 2 1 (3)

m m c m c m cm m m

x

x

x  

x

Now, subtracting Eq. (2) from Eq. (3) produces

1( m 1 1 1 2( m 1 2 2 m( m 1 m m=0

c

)xc

)x  c

)x

Since the first m eigenvectors are linearly independent, we can infer that all coefficients of this equation should be zero, i.e.,

1( m 1 1 2( m 1 2 m( m 1 m =0

c

)c

)   c

)

Because all the eigenvalues are distinct, it follows all ci’s equal to 0, which contradicts our assumption that xm+1 can be expressed as a linear combination of the first m eigenvectors. So, the set of n

eigenvectors is linearly independent given n distinct eigenvalues, and according to Thm. 3, we can conclude that A is diagonalizable.

(34)

Determining whether a matrix is diagonalizable

           3 0 0 1 0 0 1 2 1 A

Because A is a triangular matrix, its eigenvalues are

1 1, 2 0, 3 3.

 

According

to Thm. 4

, because these three values

are distinct, A is diagonalizable.

(35)

Symmetric Matrices and Orthogonal

Diagonalization

A square matrix A is symmetric if it is equal to its

transpose:

T

A A

Example symmetric matrices and nonsymetric matrices

           5 0 2 0 3 1 2 1 0 A      1 3 3 4 B           5 0 1 0 4 1 1 2 3 C

(symmetric)

(symmetric)

(nonsymmetric)

(36)

Thm 5: Eigenvalues of symmetric matrices

If A is an nn symmetric matrix, then the following properties

are true.

a) A is diagonalizable (symmetric matrices are guaranteed to has n linearly independent eigenvectors and thus be

diagonalizable).

b) All eigenvalues of A are real numbers

c) If  is an eigenvalue of A with multiplicity k, then has k

linearly independent eigenvectors. That is, the eigenspace of

has dimension k.

The above theorem is called the Real Spectral Theorem, and the set of eigenvalues of A is called the spectrum of A.

Symmetric Matrices and

(37)

Prove that a 2 × 2 symmetric matrix is diagonalizable.

     b c c a A

Proof:

Characteristic equation:

0 ) ( 2 2             a b ab c b c c a A I

2 2 2 2 2 2 2 2 2 2 4 ) ( 4 2 4 4 2 ) ( 4 ) ( c b a c b ab a c ab b ab a c ab b a                0 

As a function in

, this quadratic polynomial function

has a nonnegative discriminant as follows

(38)

0 4 ) ( (1) ab 2  c2  0 ,    a b c 0

itself is a diagonal matrix. 0 a c a A c b a            0 4 ) ( ) 2 ( ab 2  c2 

The characteristic polynomial of A has two distinct real

roots, which implies that A has two distinct real

eigenvalues. According to

Thm. 5

, A is diagonalizable.

(39)

Symmetric Matrices and

Orthogonal Diagonalization

 Orthogonal matrix : A square matrix P is called orthogonal if it is invertible and 1

(or )

T T T

P  P PPP PI

Thm. 6: Properties of orthogonal matrices

An nn matrix P is orthogonal if and only if its column

vectors form an orthonormal set.

1 1 1 2 1 1 1 1 2 1 2 1 2 2 2 1 2 1 2 2 2 1 1 2 1 2 T T T n n T T T T n T T T n n n n n n n n P P I                               p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p

Proof: Suppose the column vectors of P form an orthonormal set, i.e.,

1 2 n

, where i j 0 for and i i 1.

Pp p p p p  ij p p 

(40)

Show that P is an orthogonal matrix.

              5 3 5 5 3 4 5 3 2 5 1 5 2 3 2 3 2 3 1 0 P

If P is a orthogonal matrix, then

1 T T

P  PPPI 1 2 2 1 2 2 3 5 3 5 3 3 3 2 1 2 1 4 3 5 5 5 3 5 5 5 2 4 2 3 3 5 3 5 3 5 3 5

1

0

0

0

0

1

0

0

0

1

0

T

PP

I

     

 

 

 

 

 

 

 

 

 

 

Example 9

(41)

1 2 1 3 2 3 1 1

2 2 3 3

we can produce 0 and

1.             p p p p p p p p p p p p 1 2 3

So, { , , } is an orthonormal set. (Thm. 7.8 can be illustrated by this example.)

p p p 1 2 2 3 3 3 2 1 1 5 2 5 3 5 2 4 3 5 3 5 3 5

Moreover, let  , , and 0 ,

                        p p p

Symmetric Matrices and

(42)

Thm. 7: Properties of symmetric matrices

Let A be an nn symmetric matrix. If 1 and 2 are distinct eigenvalues

of A, then their corresponding eigenvectors x1 and x2 are orthogonal.

(Thm. 6 only states that eigenvectors corresponding to distinct eigenvalues are linearly independent

1( 1 2) ( 1 1) 2 ( 1) 2 ( 1) 2 ( 1 ) 2 T T T A A Ax x   xxxxx xx x because is symmetric 1 2 1 2 1 2 2 2 2 2 2 ( ) ( ) ( ) ( ) ) A T T T A A     x xx xx xx1x(x x1  1 2 1 2 1 2 1 2 1 2

The above equation implies ( )( ) 0, and because

, it follows that 0. So, and are orthogonal.

 

 

      x x x x x x

 For distinct eigenvalues of a symmetric matrix, their corresponding

eigenvectors are orthogonal and thus linearly independent to each other

Note that there may be multiple x1 and x2 corresponding to 1 and 2

Symmetric Matrices and

Orthogonal Diagonalization

(43)

Thm.8: Fundamental theorem of symmetric matrices

Let A be an nn matrix. Then A is orthogonally diagonalizable

and has real eigenvalues if and only if A is symmetric.

A matrix A is orthogonally diagonalizable if there exists an orthogonal matrix P such that P–1AP = D is diagonal.

()

1 1

1

is orthogonally diagonalizable

is diagonal, and is an orthogonal matrix s.t. ( ) ( ) T T T T T T T T T T A D P AP P P P A PDP PDP A PDP P D P PDP A               Proof:

() See the next two slides

Symmetric Matrices and

(44)

Let A be an n

n symmetric matrix.

(1)

Find all eigenvalues of A and determine the multiplicity

of each.

According to Thm. 7, eigenvectors corresponding to

distinct eigenvalues are orthognoal

(2) For each eigenvalue of multiplicity 1, choose a unit

eigenvector.

(3) For each eigenvalue of multiplicity k

2, find a set of k

linearly independent eigenvectors. If this set {v

1

, v

2

, …,

v

k

} is not orthonormal, apply the Gram-Schmidt

orthonormalization process.

Symmetric Matrices and

(45)

(4) The composite of steps (2) and (3) produces an orthonormal set of n eigenvectors. Use these orthonormal and thus linearly independent eigenvectors to form the columns of P.

i. According to Thm. 7, the matrix P is orthogonal

ii. Following the diagonalization process, D = P–1AP is diagonal

iii. therefore, the matrix A is orthogonally diagonalizable

Symmetric Matrices and

(46)

 Determining whether a matrix is orthogonally diagonalizable          1 1 1 1 0 1 1 1 1 1 A           0 8 1 8 1 2 1 2 5 2 A      1 0 2 0 2 3 3 A       2 0 0 0 4 A Orthogonally diagonalizable Symmetric matrix

Example 10

(47)

 Orthogonal diagonalization

Find an orthogonal matrix that diagonalizes .

2 2 2 2 1 4 2 4 1 P A A            Sol: 0 ) 6 ( ) 3 ( ) 1 (

IA

 2

  1 6, 2 3 (has a multiplicity of 2)

 

 1 1 2 2 1 1 1 3 3 3 1 (2)

 6, v  (1,  2, 2)  uv  ( ,  , ) v 2 2 3 (3)

 3, v  (2, 1, 0), v  ( 2, 0, 1)

Linearly independent but not orthogonal

Verify Thm. 7 that

v1·v2 = v1·v3 = 0

(48)

Gram-Schmidt Process: 3 2 2 4 2 2 3 3 2 5 5 2 2 (2, 1, 0),  ( , , 1)       v w w v w v w w w 3 2 2 1 2 4 5 2 5 5 3 3 5 3 5 3 5 2 3 ( , , 0), (  , , )  w   wu u w w              5 3 5 3 2 5 3 4 5 1 3 2 5 3 2 5 2 3 1 0 P           3 0 0 0 3 0 0 0 6 P 1AP 1 2 3 u u u

Verify Thm. 7 that after the Gram-Schmidt orthonormalization process, i) w2 and w3 are eigenvectors of A corresponding to the eigenvalue of 3, and ii) v1·w2 = v1·w3 = 0

(49)

Beberapa Teorema Akar Ciri dan Vektor Ciri

Jika λ adalah akar ciri matriks A dengan vektor ciri

padanannya x, maka untuk fungsi tertentu g(A)

akan mempunyai akar ciri g(λ) dengan x vektor ciri

padanannya.

Kasus khusus :

1.

Jika λ adalah akar ciri matriks A, maka cג adalah

akar ciri matriks cA dengan c≠0 sebarang skalar

Bukti : c A x = c λ x

x vektor ciri padanan λ dari matriks A

x vektor ciri padanan c λ dari matriks cA

(50)

Beberapa Teorema Akar Ciri dan Vektor Ciri

2. Jika ג adalah akar ciri matriks A, dengan x vektor ciri padanannya, maka cג+k adalah akar ciri matriks (cA+kI) dengan x vektor ciri padanannya.

Bukti : c A x + k x = c λ x + k x (c A + k I)x = (c λ + k) x

(tidak dapat diperluas untuk A + B, dengan A , B sebarang matriks n x n )

3. λ2 adalah akar ciri dari matriks A2 (dapat diperluas untuk

Ak)

Bukti : A x = λ x

A(A x) = A(λ x )

(51)

Beberapa Teorema Akar Ciri dan Vektor Ciri

4. 1/ λ adalah akar dari matriks A-1

Bukti : A x = λ x

A-1 (A x) = A-1(λ x ) x= λ A-1x

A-1x = λ-1 x

5. Kasus (1) dan (2) dapat digunakan untuk mencari akar ciri dan vektor ciri dari polinomial A

Contoh :

(A3 + 4 A2 -3 A + 5 I ) x = A3x + 4 A2 x -3 Ax + 5 x

= λ 3x + 4 λ 2 x -3 λ x + 5 x =(λ3 + 4λ 2 -3 λ + 5)x

 λ3 + 4 λ 2 -3 λ + 5 adalah akar ciri dari A3 + 4 A2 -3 A + 5 I dan x vektor ciri padanannya

(52)

Beberapa Teorema Akar Ciri dan Vektor Ciri

Sifat (5) dapat diperluas untuk deret tak hingga.

Misal : akar ciri A adalah λ, maka (1- λ) adalah

akar ciri dari (I-A).

Jika (I-A) nonsingular, maka (1- λ)

-1

adalah akar

ciri dari (I-A)

-1

.

Jika -1< λ <1, maka (1- λ)

-1

=1+ λ + λ

2

+....

Jika akar ciri A memenuhi -1< λ <1, maka (I-A)

-1

(53)

Beberapa Teorema Akar Ciri dan Vektor Ciri

6.

Jika matriks A berukuran (n x n) dengan akar ciri

λ

1

, ..., λ

n

maka

a.

ǀ

Aǀ=∏ λ

i

b.

tr(A)=∑ λ

i

Bukti :

(-λ)

3

+ (-λ)

2

tr

1

(A) +(-λ) tr

2

(A) + ǀAǀ=0

Dengan tr

i

(A)= jumlah minor utama, tr

1

(A)= tr

(A)

tr

2

(A )=ǀa

11

a

22

ǀ+ ǀa

11

a

33

ǀ + ǀa

22

a

33

ǀ

tr

3

(A )=ǀa

11

a

22

a

33

ǀ

0 33 32 31 23 22 21 13 12 11        a a a a a a a a a

(54)

Beberapa Teorema Akar Ciri dan

Vektor Ciri

Bukti (lanjutan):

Secara umum

(-λ)

n

+(-λ)

n-1

tr

1

(A) +(-λ)

n-2

tr

2

(A) + ...

+(-λ)tr

n-1

(A) +ǀAǀ=0

Jika λ

1

, ..., λ

n

akar ciri dari persamaan tersebut maka

1

-λ) (λ

2

-λ)... (λ

n

-λ)=0

(-λ)

n

+(-λ)

n-1

∑ λ

i

+(-λ)

n-2

i ≠j

λ

i

λ

j

+...+ ∏ λ

i

=0

(55)

Beberapa Teorema Akar Ciri dan Vektor Ciri

Jika A dan B berukuran (n x n) atau A berukuran

(n x p) dan B berukuran (p x n), maka akar ciri

(tak nol) AB sama dengan akar ciri BA. Jika x

vektor ciri AB, maka Bx vektor ciri BA

Jika A berukuran (n x n), maka

1.

Jika P (n x n) nonsingular, maka A dan P

-1

AP

mempunyai akar ciri yang sama

2.

Jika C (n x n) matriks ortogonal, A dan

(56)

Teorema Matriks Simetrik

1.

a. Akar ciri λ

1

, ..., λ

n

adalah real

b. Vektor ciri x

1

, ..., x

n

bersifat ortogonal

Bukti (1a):

Ambil λ bilangan kompleks dengan x vektor ciri padanannya

Jika λ= a+ib dan λ*= a-ib, x={x

i

}= a+ib dan x*={x

i

*}= a-ib

Maka A x = λ x→

x*’ A x

=x*’λx= λ x*’x

dan A x* = λ*x* →

x*’Ax

= (Ax *)’x =(λ*x*)’ x=λ*

x*’x

Sehingga λ* x*’x = λ x*’x,dan x*’x≠0 adalah jumlah

kuadrat → λ* = λ atau a+ib= a-ib berarti b=0

(57)

Teorema Matriks Simetrik

Bukti (1b):

Misalkan λ

1

≠ λ

2

dengan vektor ciri x

1

≠x

2

dan

A=A’,

serta Ax

k

= λ x

k

λ

1

x

2

’x

1

= x

2

’ λ

1

x

1

= x

2

’ Ax

1

= x

1

’ A’x

2

= x

1

’ Ax

2

= x

1

’ λ

2

x

2

=

λ

2

x

1

’ x

2

→ λ

1

, λ

2

≠0, maka x

1

’x

2

=0 (ortogonal)

2.

A dapat dinyatakan sebagai A=CDC’ (dekomposisi

spektral) dengan D adalah matriks diagonal dengan

unsur diagonalnya λ

i

dan C adalah matriks dengan

unsur pada kolomnya x

1

padanan akar ciri λ

i

(58)

Teorema Matriks Simetrik

3.

Matriks (semi) definit positif

a.

Jika A definit positif, maka λ

i

>0 untuk i=1,...,n

b.

Jika A semi definit positif, maka λ

i

≥0 untuk

i=1,...,n. Banyaknya akar ciri λ

i

>0 sama

dengan rank(A)

Catatan : Jika A definit positif dapat ditentukan A

½

.

Karena λ

i

>0 maka pada dekomposisi spektral

A= A

½

A

½

=(A

½

)

2

(59)

Teorema Matriks Simetrik

4.

Jika A singular, idempoten, dan simetrik, maka A semi

definit positif

Bukti : A= A

dan A =A

2

maka A =A

2

=A A= A’A

(semi definit positif)

5.

Jika A simetrik idempoten dengan rank (A)=r maka A

mempunyai r akar ciri bernilai 1 dan (n-r) akar ciri

bernilai 0

Bukti :

Ax

= λ x

dan

A

2

x

= λ

2

x

karena A =A

2

A

2

x

= λ

2

x

Ax

= λ

2

x

λ

x

= λ

2

x

(λ- λ

2

)x=0 . Karena

x≠0 maka

(λ- λ

2

) =0

λ

bernilai

0 atau 1.Berdasarkan teorema (4),

maka A semi definit

positif dengan r menyatakan banyaknya

λ>0

(60)

Teorema Matriks Simetrik

6. Jika A idempoten dan simetrik dengan pangkat r, maka rank(A)=tr(A)=r

(61)

Teorema

Jika A (n x n) matriks idempoten, P matriks nonsingular (n xn) dan C matriks ortogonal (n xn) maka :

a. I-A idempoten

b. A(I-A)=0 dan (I-A) A=0

c. P-1 A P idempoten

d. C’A C idempoten (jika A simetrik maka C’A C

idempoten simetrik

Jika A (n x p) dengan rank(A)=r, A- adalah kebalikan umum

A dan (A’ A) - adalah kebalikan umum (A’ A), maka A- A, A A- dan A(A’ A)- A idempoten

(62)

Quadratic Forms

A Quadratic From is a function

Q(x) = x’Ax

in k variables x

1

,…,x

k

where

and A is a k x k symmetric matrix.

 

 

  

 

 

x

1 2 k

x

x

x

(63)

Note that a quadratic form has only squared

terms and crossproducts, and so can be

written

then

 

 

 

x

1

A

2

x

and

1 4

x

0

2

x

x'Ax

2 2 1 1 2 2

Q( ) =

= x + 4x x - 2x

Suppose we have

 

 



x

k k ij i j i 1 j 1

Q

a x x

Quadratic Forms

(64)

Spectral Decomposition and

Quadratic Forms

Any k x k symmetric matrix can be

expressed in terms of its k

eigenvalue-eigenvector pairs (

i

, e

i

) as

This is referred to as the spectral

decomposition of A.

k

' i i i i 1

A

e e

(65)

Spectral Decomposition and

Quadratic Forms

For our previous example on eigenvalues and

eigenvectors we showed that

 

2 4

4

4

A

has eigenvalues

1

= -6 and

2

= -4, with

corresponding (normalized) eigenvectors

1 2

1

2

5

,

5

,

-2

1

5

5

e

e

(66)

Can we reconstruct A?

 

 

 

k ' i i i i 1

1

2

5

1

-2

5

2

1

6

-2

+4

1

5

5

5

5

5

5

1 -2

4

2

2 4

5

5

5 5

6

-2 4

4

2 1

4 4

5

5

5 5

A

e e

A

Spectral Decomposition and

Quadratic Forms

(67)

Spectral decomposition can be used to

develop/illustrate many statistical results/

concepts. We start with a few basic concepts:

- Nonnegative Definite Matrix – when any k x

k matrix A such that

0

x’Ax

x’ =[x

1

, x

2

, …, x

k

]

the matrix A and the quadratic form are said

to be nonnegative definite.

Spectral Decomposition and

Quadratic Forms

(68)

- Positive Definite Matrix – when any k x k

matrix A such that

0 < x’Ax

x’ =[x

1

, x

2

, …, x

k

]



[0, 0, …, 0]

the matrix A and the quadratic form are said

to be positive definite.

Spectral Decomposition and

Quadratic Forms

(69)

Example - Show that the following quadratic

form is positive definite:

2 2

1 2 1 2

6x + 4x - 4 2x x

We first rewrite the quadratic form in matrix

notation:

  

 

 

 

1 1 2 2

x

6

-2 2

Q( ) = x

x

x

= '

-2 2

4

x

x Ax

Spectral Decomposition and

Quadratic Forms

(70)

Now identify the eigenvalues of the resulting

matrix A (they are

1

= 2 and

2

= 8).



  



                      2         1 0 6 -2 2 0 1 -2 2 4 6 - -2 2 6 4 -2 2 -2 2 0 2 2 4 -or 10 16 2 8 0 A I

Spectral Decomposition and

Quadratic Forms

(71)

Next, using spectral decomposition we can

write:

k

'

 

'

 

'

'

' i i i 1 1 1 2 2 2 1 1 2 2 i 1

2

8

A

e e

e e

e e

e e

e e

where again, the vectors e

i

are the

normalized and orthogonal eigenvectors

associated with the eigenvalues

1

= 2 and

2

= 8.

Spectral Decomposition and

Quadratic Forms

(72)

 

k ' i i i i 1

1

2

3

1

2

3

2

-1

2

3

+8

-1

3

2

3

3

3

3

1

2

2

2

6

3

3

3

3

2 2

2

2

8

2

4

2 2

2

1

3

3

3

3

A

e e

A

Sidebar - Note again that we can recreate the

original matrix A from the spectral

decomposition:

Spectral Decomposition and

Quadratic Forms

(73)

Because

1

and

2

are scalars,

premultiplication and postmultiplication by

x’ and x, respectively, yield:

' ' ' ' ' 2 2 1 1 2 2 1 2

2

8

2y + 8y

0

x Ax

x e e x

x e e x

where

At this point it is obvious that x’Ax is at

least nonnegative definite!

'

'

'

'

1 1 1 1 2 2 2 2

y

x e

e x

and y

x e

e x

Spectral Decomposition and

Quadratic Forms

(74)

We now show that x’Ax is positive definite,

i.e.

' 2 2 1 2

2y + 8y

0

x Ax

From our definitions of y

1

and y

2

we have

 

 

 

 

 

 

 

 

 

' 1 1 1 ' 2 2 2

y

or

y

e

e

x

x

y Ex

Spectral Decomposition and

Quadratic Forms

(75)

Since E is an orthogonal matrix, E’ exists.

Thus,

'

x E y

But 0

x = E’y implies y

0 .

At this point it is obvious that x’Ax is

positive definite!

Spectral Decomposition and

Quadratic Forms

(76)

This suggests rules for determining if a k x k

symmetric matrix A (or equivalently, its

quadratic form x’Ax) is nonegative definite

or positive definite:

- A is a nonegative definite matrix iff

i

0, i =

1,…,rank(A)

- A is a positive definite matrix iff

i

> 0, i =

1,…,rank(A)

Spectral Decomposition and

Quadratic Forms

(77)

Square Root Matrices

Because spectral decomposition allows us

to express the inverse of a square matrix in

terms of its eigenvalues and eigenvectors, it

enables us to conveniently create a square

root matrix.

Let A be a p x p positive definite matrix

with the spectral decomposition

k

' i i i i 1

(78)

Also let P be a matrix whose columns are

the normalized eigenvectors e

1

, e

2

, …, e

p

of

A, i.e.,

 

2 2 p

P

e

e

e

Then

k

'

 

' i i i i 1

A

e e

P P

where P’P = PP’ = I and

            1 2 p 0 0 0 0 0 0 0

(79)

Now since

(P

-1

P’)P

P’=P

P’(P

-1

P’)=PP’=I

we have

 

 

k -1 1 ' ' i i i 1 i

1

A

P

P

e e

              1 1 2 2 p 0 0 0 0 0 0

Next let

(80)

The matrix

1 k 1 ' ' 2 2 i i i i 1

P P

e e

A

is called the square root of A.

(81)

The square root of A has the following

properties:

' 1 1 2 2

A

A

1 1 2 2

A A

A

-1 1 1 -1 2 2 2 2

A A

A A

I

 

-1 -1 -1 1 1 2 2

where

2 2 -1

A A

A

A

A

(82)

Next let

-1

denote the matrix matrix

whose columns are the normalized

eigenvectors e

1

, e

2

, …, e

p

of A, i.e.,

 

2 2 p

P

e

e

e

Then

k

'

 

' i i i i 1

A

e e

P P

where P’P = PP’ = I and

            1 2 p 0 0 0 0 0 0 0

Referensi

Dokumen terkait