• Tidak ada hasil yang ditemukan

paper 05-18-2009. 103KB Jun 04 2011 12:03:06 AM

N/A
N/A
Protected

Academic year: 2017

Membagikan "paper 05-18-2009. 103KB Jun 04 2011 12:03:06 AM"

Copied!
10
0
0

Teks penuh

(1)

SOME SUBCLASS OF ANALYTIC FUNCTIONS

Firas Ghanim and Maslina Darus

Abstract. In this paper we introduce a new class M∗(α, β, γ, A, λ)

con-sisting analytic and univalent functions with negative coefficients. The object of the paper is to show some properties for the class M∗(α, β, γ, A, λ).

2000 Mathematics Subject Classification: 30C45.

Key words: Analytic functions, Starlike functions, Convex function, Nega-tive coefficients.

1. Introduction

LetS denote the class of normalised analytic univalent function f defined by f(z) = z+

X

n=2

anzn (1)

for z ∈D={z :|z|<1} .

Let T denote the subclass of S consisting functions of the form

f(z) =z−

X

n=2

|an|zn. (2) Further, we define the class M(α, β, γ, A, λ) as follows:

Definition. A function f given by (1.1) is said to be a member of the class

M(α, β, γ, A, λ) if it satisfies

zf′(z)−f(z)

αzf′(z)Af(z)(1λ) (1A)γf(z)

< β

where 0≤α ≤1, β(0< β≤1), −1≤A <1, 0≤λ ≤1 and 0≤γ <1 for all

(2)

Let us write

M∗(α, β, γ, A, λ) = T ∩ M(α, β, γ, A, λ). (3) We note that when A =−1 and λ = 12 the class of functions was studied by Darus [5]. Under the same condition, if we replace zff(′(zz)) with f′(z) we get back to the class of L∗(α) and various other subclasses of L∗ which have been studied rather extensively by Kim and Lee [4], Uralegaddi and Sarangi [1], and Al-Amiri [2]. If λ= 0, β = 1 and A=−1 the class of functions was given by Silverman [3].

Next, our first result will concentrate on the coefficient estimate for the classes M(α, β, γ, A, λ) and M∗(α, β, γ, A, λ).

2.Coefficient Inequalities

In this section we will prove a sufficient condition for a function analytic inD to be in M(α, β, γ, A, λ).

Theorem 1. If f ∈S satisfies

X

n=2

(n−1 +β(nα−A−(1−λ) (1−A)γ))|an| ≤

β(α−A−(1−λ) (1−A)γ) (4)

where 0 ≤ α ≤ 1, 0 < β ≤ 1, −1 ≤ A < 1, 0 ≤ λ ≤ 1 and 0 ≤ γ < 1, then

f(z)∈M(α, β, γ, A, λ). Proof. Let us suppose that

X

n=2

(n−1 +β(nα−A−(1−λ) (1−A)γ))|an|

≤β(α−A−(1−λ) (1−A)γ)∈S. It suffices to show that

zf′(z)

f(z) −1

αzff(z(z))−A−(1−λ) (1−A)γ

(3)

zf′(z)

f(z) −1

αzff(z(z)) −A−(1−λ) (1−A)γ

=

P

n=2(n−1)anz

n

α−A−(1−λ) (1−A)γ+ P∞

n=2(nα−A−(1−λ) (1−A)γ)anz

n

<

P

n=2(n−1)|an|

α−A−(1−λ) (1−A)γ− P∞

n=2(nα−A−(1−λ) (1−A)γ)|an|

.

from (5), the last expression satisfies

X

n=2

(n−1)|an|

≤β α−A−(1−λ) (1−A)γ−

X

n=2

(nα−A−(1−λ) (1−A)γ)|an|

!

that is

X

n=2

(n−1 +β(nα−A−(1−λ) (1−A)γ))|an|

≤β(α−A−(1−λ) (1−A)γ) which is equivalent to our condition of the theorem. So thatf ∈M(α, β, γ, A, λ). Hence the theorem.

Next we give a necessary and sufficient condition for a function f ∈ T to be in the class M∗(α, β, γ, A, λ).

Theorem 2. Let the function f be defined by (2) and let f ∈ T. Then

(4)

Proof. With the aid of Theorem 1, it suffices to show the (only if) part. Assume that f ∈M∗(α, β, γ, A, λ). Then

zf′(z)

f(z) −1

αzff(z(z)) −A−(1−λ) (1−A)γ

=

P

n=2(n−1)anz

n

α−A−(1−λ) (1−A)γ− P∞

n=2(nα−A−(1−λ) (1−A)γ)anz

n

<

P

n=2(n−1)|an|

α−A−(1−λ) (1−A)γ− P∞

n=1(nα−A−(1−λ) (1−A)γ)|an|

Similarly, the method in Theorem 1 applies and obtained the required result. The result is sharp for function f of the form

fn(z) = z− β(α−A−(1−λ) (1−A)γ)z

n

(n−1 +β(nα−A−(1−λ) (1−A)γ)), n≥2. (6) Corollary 1. Let the functionf be defined by (2) and letf ∈M∗(α, β, γ, A, λ), then

an ≤ β(α−A−(1−λ) (1−A)γ)

(n−1 +β(nα−(1−λ) (1−A)γ)) n ≥2. (7) 3. Growth and Distortion Theorem

Growth and distortion properties for functionsf in the class M∗(α, β, γ, A, λ)

are given as follows:

Theorem 3. If the functionf be defined by (4) is in the classM∗(α, β, γ, A, λ), then for 0<|z|=r <1, we have

r− β(α−A−(1−λ) (1−A)γ)r

2

(5)

≤r+ β(α−A−(1−λ) (1−A)γ)r

2

(1 +β(2α−A−(1−λ) (1−A)γ))

with equality for

f2(z) =z−

β(α−A−(1−λ) (1−A)γ)z2

(1 +β(2α−A−(1−λ) (1−A)γ)), (z =ir, r).

and

1− 2β(α−A−(1−λ) (1−A)γ)r

(1 +β(2α−A−(1−λ) (1−A)γ)) ≤ |f

(z)|

≤1 + 2β(α−A−(1−λ) (1−A)γ)r (1 +β(2α−A−(1−λ) (1−A)γ))

with equality for

f2(z) =z−

β(α−A−(1−λ) (1−A)γ)z2

(1 +β(2α−A−(1−λ) (1−A)γ)), (z =±ir,±r).

Proof. Since f ∈M∗(α, β, γ, A, λ), Theorem 1 yields the inequality

X

n=2

an≤ β(α−A−(1−λ) (1−A)γ)

(1 +β(2α−A−(1−λ) (1−A)γ)). (8) Thus, for 0<|z|=r <1, and making use of (8), we have

|f(z)| ≤ |z|+

X

n=2

an|zn| ≤r+r2

X

n=2

an

≤r+ r

2βA(1λ) (1A)γ)

(1 +β(2α−A−(1−λ) (1−A)γ)). and

|f(z)| ≥ |z|+

X

n=2

an|zn| ≥r+r2

X

n=2

an

≥r+ r

2βA(1λ) (1A)γ)

(6)

Besides, from Theorem 1, it follow that

X

n=2

nan ≤ 2β(α−A−(1−λ) (1−A)γ)

(1 +β(2α−A−(1−λ) (1−A)γ)). (9) Thus

|f′(z)| ≤1 +

X

n=2

nan z

n−1 ≤

1 +r

X

n=2

nan ≤1 + 2rβ(α−A−(1−λ) (1−A)γ) (1 +β(2α−A−(1−λ) (1−A)γ)) and

|f′(z)| ≥1−

X

n=2

nan z

n−1 ≥

1−r

X

n=2

nan ≥1− 2rβ(α−A−(1−λ) (1−A)γ)

(1 +β(2α−A−(1−λ) (1−A)γ)) Hence completes the proof of Theorem 3.

4.Radii of Starlikeness and Convexity

The radii of starlikeness and convex for the classM∗(α, β, γ, A, λ) is given by

the following theorem:

Theorem 4. If the functionf be defined by (2) is in the classM∗(α, β, γ, A, λ), then f(z) is starlike of order ρ(0≤ρ < 1) in the disk |z| < r1(α, β, γ, A, λ, ρ) where r1(α, β, γ, A, λ, ρ) is the largest value for which

r1 =r1(α, β, γ, A, λ, ρ)

= inf n≥2

(1−ρ) [(n−1) +β(nα−A−(1−λ) (1−A)γ)] (n−ρ)β(α−A−(1−λ) (1−A)γ)

! 1

n−1

(7)

The result is sharp for function fn(z) given by (6).

Proof. It suffices to show that

zf′(z)

f(z) −1

<1−ρ, f or |z| ≤r1.

We have

zf′(z) f(z) −1

≤ ∞ P

n=2(n−1)

β(α−A−(1−λ)(1−A)γ)|z|n−1

(n−1+β(nα−A−(1−λ)(1−A)γ))

1− P∞ n=2

β(α−A−(1−λ)(1−A)γ)|z|n−1

(n−1+β(nα−A−(1−λ)(1−A)γ))

≤1−ρ (10)

Hence (10) holds true if

X

n=2

(n−1)β(α−A−(1−λ) (1−A)γ)|z|n−1

(n−1 +β(nα−A−(1−λ) (1−A)γ))

≤(1−ρ) 1−

X

n=2

β(α−A−(1−λ) (1−A)γ)|z|n−1

(n−1 +β(nα−A−(1−λ) (1−A)γ)) !

and it follows that

|z|n−1 ≤ (1−ρ) [(n−1) +β(nα−A−(1−λ) (1−A)γ)]

(n−ρ)β(α−A−(1−λ) (1−A)γ) , (n ≥2). as required.

Theorem 5. If the function f defined by (2) is in the class M∗(α, β, γ, A, λ), thenf is convex of orderρ(0≤ρ <1), in the disk |z|< r2(α, β, γ, A, ρ), where

r2(α, β, γ, A, λ, ρ), is the largest value for which

r2 =r2(α, β, γ, A, ρ) = inf

n≥2

(1−ρ) [(n−1) +β(nα−A−(1−λ) (1−A)γ)] n(n−ρ)β(α−A−(1−λ) (1−A)γ)

! 1

n−1

.

The result is sharp for function fn(z) given by (6).

Proof. By using the same techniques as in the proof of the Theorem 4, we can show that

zf′′(z) f′(z)

< ρ−1 f or |z| ≤r2,

(8)

5.Convex Linear Combinations

Our next result involves a linear combination of function of the type (6). Theorem 5.1. Let

f1 =z (11)

and

fn(z) =z− β(α−A−(1−λ) (1−A)γ)z

n

(n−1 +β(nα−A−(1−λ) (1−A)γ)), (n ≥2). (12)

Then f ∈M∗(α, β, γ, A, λ) if and only if it can be expressed in the form

f(z) =

X

n=1

δnfn(z) (13)

Where δn ≥0 and P∞

n=1δn = 1.

Proof. From (11), (12) and (13), it is easy to see that f(z) =

X

n=1

δnfn(z) = z−

X

n=2

β(α−A−(1−λ) (1−A)γ)δnzn

(n−1 +β(nα−A−(1−λ) (1−A)γ)). (14) Since

X

n=2

(n−1 +β(nα−A−(1−λ) (1−A)γ)) β(α−A−(1−λ) (1−A)γ)

· β(α−A−(1−λ) (1−A)γ)δn

(n−1 +β(nα−A−(1−λ) (1−A)γ))

=

X

n=1

δn= 1−δ1 ≤1.

It follows from Theorem 1 that the function f ∈M∗(α, β, γ, A, λ). Since an≤ β(α−A−(1−λ) (1−A)γ)

(9)

Setting

δn = (n−1 +β(nα−A−(1−λ) (1−A)γ))

β(α−A−(1−λ) (1−A)γ) an, (n≥2) and

δ1 = 1− ∞

X

n=2

δn

it follows that f(z) = P∞

n=2δnfn(z). This completes the proof of the theorem.

Finally we prove the following:

Theorem 5.2.The class M∗(α, β, γ, A, λ) is closed under convex linear com-binations.

Proof. Suppose that the functions f1(z) and f2(z) defined by

fj(z) = z−

X

n=2

an,jzn, (j = 1,2 ; z ∈D) (15) are in the class M∗(α, β, γ, A, λ) . Setting

f(z) =µf1(z) + (1−µ)f2(z), 0≤µ≤1. (16)

we find from (15) that f(z) =z−

X

n=1

{µan,1+ (1−µ)an,2}zn, ( 0≤µ≤1 ; z ∈D). (17)

In view of Theorem 1, we have

X

n=2

[n−1 +β(nα−A−(1−λ) (1−A)γ){µan,1+ (1−µ)an,2}]

X

n=2

[n−1 +β(nα−A−(1−λ) (1−A)γ)]an,1

+ (1−µ)

X

n=2

(10)

≤µβ(α−A−(1−λ) (1−A)γ) + (1−µ)β(α−A−(1−λ) (1−A)γ) =β(α−A−(1−λ) (1−A)γ).

which shows that f ∈M∗(α, β, γ, A, λ). Hence the theorem.

ACKNOWLEDGEMENT: The work presented here was partially sup-ported by eScienceFund: 04-01-02-SF0425, MOSTI, MALAYSIA.

References

[1] B. A. Uralegaddi and S. M. Sarangi,The radius of convexity and starlike-ness for certain classes of analytic functions with negative coefficients, Rend. Acad. Naz. Lincei., 65 (1978), 38-42.

[2] H.S. Al-Amiri, On a subclass of close-to-convex functions with negative coefficients, Mathematica (Cluj)., 31 (54)no.1 (1989), 1-7.

[3] H. Silverman, Univalent functions with negative coefficient, Proc. Amer. Math. Soc., 51 ,(1975), 109-116.

[4] H.S. Kim and S. K. Lee, Some classes or univalent functions, Math. Japon, 32(5) (1987), 781-796.

[5] M. Darus, Some subclasses of analytic functions, Jour. Inst. Math. Comp. Sci., 16, No.3 (2003), 121-126.

Authors:

Firas Ghanim

School of Mathematical Sciences Faculty of Science and Technology Universiti Kebangsaan Malaysia

Bangi 43600 Selangor D. Ehsan, Malaysia email:[email protected]

Maslina Darus

School of Mathematical Sciences Faculty of Science and Technology Universiti Kebangsaan Malaysia

Referensi

Dokumen terkait

Pokja lll ULP pada Pemerintah Kabupaten Hulu Sungai Selatan akan melaksanakan Pemilihan Langsung dengan pascakualifikasi paket pekerjaan konstruksi sebagai berikut:..

Seringkali perusahaan dihadapkan pada permasalahan karyawan yang beragam, misalnya karyawan sering kali tidak memberikan hasil yang sesuai dengan kewajiban yang ada

Pokja lll ULP pada Pemerintah Kabupaten Hulu Sungai Selatan akan melaksanakan Pemilihan Langsung dengan pascakualifikasi paket pekerjaan konstruksi sebagai

Dari hasil penelitian yang telah dilakukan pada perusahaan ini terkait dengan proses penerapan prinsip good corporate governance, dapat disimpulkan bahwa

Upaya yang dilakukan perusahaan untuk meningkatkan kinerja karyawan melalui pemberian kompensasi yang finansial maupun non finansial masih belum mendapatkan hasil

Para karyawan di P.T. Graha Cendana Abadi Mitra yang akan mengikuti pelatihan, telah memiliki ketrampilan dasar sebelumnya, yang meliputi dapat membaca, menulis,

Berdasarkan Berita Acara Hasil Pelelangan (BAHP) Pekerjaan Rehabilitasi Jembatan Kayu Desa Tamunih Kec.. Pemenang Tiga Ratus Tiga Puluh Lima Juta Lima Ratus Lima

Ini berarti perusahaan harus lebih memperhatikan insentif yang diberikan kepada karyawan.Perusahaan harus memberikan dorongan pada karyawan agar mau bekerja dengan