• Tidak ada hasil yang ditemukan

Directory UMM :Journals:Journal_of_mathematics:OTHER:

N/A
N/A
Protected

Academic year: 2017

Membagikan "Directory UMM :Journals:Journal_of_mathematics:OTHER:"

Copied!
6
0
0

Teks penuh

(1)

PRACTICE OF OPERATOR RELATIONSHIPS IN SYMBOLICAL CALCULUS

Liepa Bikulˇcien ˙e, Zenonas Navickas

Abstract.The new operator relationships and special operators are pre-sented in this paper. The use of this theory in symbolical calculus appears to be a successful extension of numerical and approximation methods for solv-ing of differential equations. In applysolv-ing an operator method, the sought-for solutions are represented as operator series. Practical applicability of the operator relationships and some examples are described.

2000 Mathematics Subject Classification: 34A25, 42A10. 1. Introduction

Perturbation methods theory is widely developed. The investigation of approximate solutions can be done using special mathematical software. Standard perturbation methods were realized in Maple software; see Naifeh and Chin [1]. Recent technological progress makes it possible to develop and to employ new powerful computational algorithms, associated with symbol-ical calculus. The special operator relationships allow to use this calculus in special approximate methods for solving of differential equations. In this paper one version of operator relationships suitable for symbolical calculus is presented. It is applied for approximate solving of ordinary differential equations.

2.Operator relationships

Letx,s,tbe real variables. Then linear differential and integral operators

Dx,Ds,. . . ,Ls, Lt for following variables can be defined in this way:

Dxx n

:=nxn−1

, Lxx n

:= x n+1

(2)

The examples of analytical interpretation can be written as

Dx(sin(s+tx)) =tcos(s+tx),

Lx(tsin(s+tx)) =

Z t

0

tsin(s+tu)du= coss−cos(s+tx),

etc.

Various special operators can be composed by using of these elementary operators. For expression of solution of nonlinear differential equations in operator form the special operatorA=Lxt

r

Ds can be formed. Then

Aαxmtksl =α(Lxx r

)(trtk)(Dss l

) = αl

m+ 1x m+1

tk+rsl−1

,

if α∈R is fixed and constants r, m, k, l = 0,1,2, . . .. With this operator

A the special operator

g(A) = +∞ X

k=0

Ak

was formed (see Navickas, [3]). The effect of this operator can be illustrated by following example:

g(LxtDs)s n

=sn+ n 1!xts

n−1

+n(n−1) 2! x

2

t2sn−2

+· · ·+ n!

n!x n

tn= (s+tx)n Let fk(s, t), k = 0,1,2, . . . be the functions of variables s,t and can be expressed by Maclaurin series. Then

g(LxtDs)fk(s, t) = fk(s+tx, t), besides,

g(LxtDs) +∞ X

k=0

fk(s, t)

xk

k! = +∞ X

k=0

g(LxtDs)L k

xfk(s, t) = +∞ X

k=0

Lkxfk(s+tx, t).

(3)

(g(A))−1

= 1−A,

g(A+B) =g(g(A)B)g(A),

if AB =BA, then

(A−B)g(A)g(B) =g(A)−g(B),

etc. In practical calculations the identity

Lx(α−β)Dsg(LxαDs)g(LxβDs) = g(LxαDs)−g(LxβDs) is often used.

3.Operator algorithms in symbolical calculus

It is possible to write a solution of differential equation

y′′

=P(y, y′

), y(0, s, t) = s, y′

(x, s, t)|x=v =t

using the special operator g(A), if the function P(s, t) can be expressed by Maclaurin series, see [4]. Then solution y(x, s, t) is described by using symbolical relationship

y=g(LxtDs+LxP(s, t)Dt)s

The case of n-th order nonlinear differential equation was described in [5]. Using this method the solutions can be represented as operator series; where approximate solutions from polynomials of various degrees are obtained. Of-ten in investigation of differential equations it is enough to find approximate expression of solution. Then a parameter of perturbationεcan be introduced and the solution of differential equationz′′

=εP(z, z′

) can be written in this way:

z(x, s, t, ε) = +∞ X

k=0

zk(x, s, t)ε k

(4)

y≈z0+z1+· · ·+zn.

Using introduced operators and its properties the following solution might be obtained

z =g(LxtDs+εLxP(s, t)Dt)s=

=g(g(LxtDs)εLxP(s, t)Dt)g(LxtDs)s=

= +∞ X

k=0

(Lkx((g(LxtDs)P(s, t)Dt) k

(s+tx)))εk.

If

q0(x, s, t) =s+tx,

qk+1(x, s, t) = (g(LxtDs)P(s, t)Dt)qk(x, s, t), k= 0,1,2, . . . , then the expression of solution is

z = +∞ X

k=0

(Lkxqk(x, s, t))ε k

4.Application

The solution of differential equation

y′′

=−siny, y(0, s, t) = s, y′

(0, s, t) = t

in operator form is

y = +∞ X

k=0

(LxtDs−LxsinsDt) k

s,

because P(s, t) = −sins.

Then the solution of equation z′′

=−εsiny can be written in this way:

z = +∞ X

k=0

(Lx(g(LxtDs)(−sins)Dt) k

(5)

From this relationship the coefficients

q1 =−Lxsin(s+tx),

q2 =L 2

x(2 sin(2s+ 2tx)− 3

2sin(2s+tx)−

tx

2 cos(2s+tx))−Lx(

x

2sintx). The expression of further coefficients q3, q4, . . . can be found much easier by using symbolical calculus of special mathematical software. For this cal-culation the mathematical software Maple was used. The large descriptions of used functions diff, sum,collect etc see in book [2].

5.Conclusions

The presented methodology can be developed for investigation of sym-bolical expressions new operators and practical application for approximate solutions of differential equation. The presented method can be a new version of well known perturbation method.

References

[1] A.H.Nayfeh, C. Chin , Perturbation Methods with Maple, Dynamics Press, Inc,1999.

[2] F.Garvan, The Maple Book, Chapman and Hill, 2002.

[3] Z.Navickas, Adapted formal algorithms for the solution of differential equations, International Journal of differential equations and applications, Volume 1A No. 4, Plovdiv, Bulgaria,(2000), p. 415-424.

[4] L.Bikulciene, R.Marcinkevicius, Z.Navickas,Algorithm of operator method for solving differential equations, Algorithmic Information Theory: Confer-ence proceedings, 16-18th May 2005, University of Vaasa, Finland, (2005), p. 31-40.

(6)

Authors:

Liepa Bikulciene

Department of Applied Mathematics Kaunas University of Technology

Studentu 50-323, LT-51368, Kaunas, Lithuania email:[email protected]

Zenonas Navickas

Department of Applied Mathematics Kaunas University of Technology

Referensi

Dokumen terkait

Paket pengadaan ini terbuka untuk penyedia barang/jasa yang teregistrasi pada Layanan Pengadaan Secara Elektronik (LPSE) dan memiliki Surat Izin Usaha Jasa Konstruksi

Dampak dari pembangunan dan instalasi website ini nantinya terhadap proses dan kegiatan administrasi lembaga dapat dilakukan secara otomatis dan terintegrasi

Berdasarkan pembuktian kualifikasi dan hasil evaluasi dokumen prakualifikasi ditetapkan 50 (lima puluh) perusahaan konsultan yang lulus prakualifikasi sebagai

Selanjutnya bagi Calon Penyedia Jasa yang tidak Lulus dapat mengajukan Sanggahan secara online. melalui aplikasi SPSE, mulai tanggal 09 Juni

Ketika UUD 1945 tidak mengatur secara jelas tentang kebijakan titik berat otonomi pada satuan daerah tertentu, maka jika dilihat dalam praktek penyelenggaraan pemerintahan yang

Selain nilai ekonomis suatu Hak Cipta, menentukan siapa yang berhak sebagai Pemberi Fidusia juga tidak mudah. Meskipun perlindungan terhadap Hak Cipta menganut sistem deklaratif

Kelima aspek itu adalah (1) adanya pemberdayaan terhadap warga masyarakat tanpa adanya diskriminasi baik berdasarkan agama, etnis maupun kelompok tertentu, (2) terjadinya kerjasama

I (III/b); pernah menduduki jabatan struktural dan jabatan fung- sional, atau staf di Pemerintah Kabupaten Klaten; pendidikan diutamakan serendah- rendahnya SLTA atau yang