• Tidak ada hasil yang ditemukan

Institutional Repository | Satya Wacana Christian University: Analysis of Output Dose of The Photon Beam LINAC Using TRS 398 Protocol in R.S. Ken Saras

N/A
N/A
Protected

Academic year: 2018

Membagikan "Institutional Repository | Satya Wacana Christian University: Analysis of Output Dose of The Photon Beam LINAC Using TRS 398 Protocol in R.S. Ken Saras"

Copied!
17
0
0

Teks penuh

(1)

Analysis of Output Dose of The Photon Beam LINAC Using TRS 398

Protocol in R.S. Ken Saras

Oleh : Wandi Wantoro NIM : 642012003

TUGAS AKHIR

Diajukan kepada Program Studi Fisika, Fakultas Sains dan Matematika guna memenuhi sebagian dari persyaratan untuk memperoleh gelar Sarjana Sains

Program Studi Fisika

FAKULTAS SAINS DAN MATEMATIKA UNIVERSITAS KRISTEN SATYA WACANA

(2)
(3)
(4)
(5)

KATA PENGANTAR

Puji syukur kehadirat Tuhan Yang Maha Esa atas berkat dan karunia-Nya, penulis dapat

menyelesaikan tugas akhir dengan judul “Analysis of Output Dose of The Photon Beam LINAC

Using TRS 398 Protocol in R.S. Ken. Penyusunan laporan penelitian ini berguna untuk

memenuhi salah satu syarat tugas akhir dalam menyelesaikan studi fisika dan mendapatkan

gelar Sarjana Sains di Universitas Kristen Satya Wacana.

Adapun berbagai pihak yang telah membantu penulis dalam menyelesaikan tugas akhir

ini, baik secara langsung dan tidak langsung. Maka, penulis menyampaikan ucapan terima kasih

kepada semua pihak yang turut membantu yaitu :

1. Tuhan Yang Esa yang telah memberikan ridho-Nya sehingga saya diberikan kelancaran

dalam menyelesaikan tugas akhir ini dengan baik.

2. Kedua orang tua yang senantiasa mendukung baik secara moral, materiil, serta

mendoakan dan membimbing saya.

3. Kakak yang senantiasa mendukung baik secara moral, materiil, serta mendoakan dan

membimbing saya.

4. Dian Juniarti yang memberi motivasi dan dukungan.

5. Dosen-dosen yang memberi pengetahuan dan bimbingan selama perkuliahan.

6. Pembimbing lapangan yang memberi pengetahuan dan bimbingan selama pelaksanaan

tugas akhir.

7. Teman-teman angkatan 2012.

Harapannya, laporan penelitian tugas akhir ini dapat bermanfaat di masa mendatang bagi

pembaca. Penulis menyadari bahwa penyusunan tugas akhir ini memiliki banyak kekurangan.

Sebab itu, penulis membutuhkan masukan berupa saran dan kritik yang bersifat membangun

dari berbagai pihak ke arah yang lebih baik.

Salatiga, 8 September 2017

Penulis,

(6)

DAFTAR ISI

LEMBAR PENGESAHAN i

LEMBAR PERNYATAAN TIDAK PLAGIAT ii

LEMBAR PERSETUJUAN AKSES iii

KATA PENGANTAR iv

DAFTAR ISI v

JURNAL 1

LAMPIRAN

SERTIFIKAT SEMINAR SEBAGAI PEMAKALAH 11

(7)

Analysis of Output Dose of The Photon Beam LINAC Using

TRS 398 Protocol in R.S. Ken Saras

Wandi Wantoro1, Giner Maslebu1*, Suryasatriya Trihandaru1 and Muhamad Hidayatullah2

1Physic Department of Universitas Kristen Satya Wacana, Salatiga, Indonesia

2Radiotherapy Unit of Rumah Sakit Ken Saras, Ungaran, Indonesia

Abstract. Analysis of output dose of the photon beam LINAC in Radiotherapy unit of R.S. Ken Saras using TRS 398 protocol has done. This analysis was done to determine whether the output dose from photon beam LINAC in Radiotherapy unit of R.S. Ken Saras has an output dose deviation smaller than 2% or not. The measurement using Scdx-Wellhöfer FC65-G/IC70 ionization chamber in the solid water phantom with 100 cm SSD and 10 cm × 10 cm field size. From the calculation, it was found that the average output dose of the photon beam at the reference depth dose (DW,Q(zref)) was 0.668 cGy/MU and the average output dose of the photon beam at maximum depth dose (DW,Q(zmax)) was 1.003 cGy/MU. The output dose has 0.7% output dose deviation so it is concluded that the LINAC at Radiotherapy unit of R.S. Ken Saras is still properly for radiotherapy activities. Keywords: Output Dose, TRS 398, Output Dose Deviation.

(8)

2

1. Introduction

Radiotherapy is a therapy method by using ionizing radiation that is effective to treat cancer

patients.[1] In radiotherapy, there are many instruments that one of them is Linear Accelerator

(LINAC). Today there are many hospitals which use LINAC as their radiotherapy instrument.[2]

LINAC is a radiotherapy instrument which can produce an output of photon beam in MV energy

and electron beam in MeV energy.[3]

LINAC can produce photon beam by hitting accelerated electrons into heavy metal to

generated x-rays were used for cancer treatment in radiotherapy.[4] Photon beam will have

interacted with the cells of the body result of ionization and excitation on the atomic composer of

the cell then followed by the change of molecular structure of the cell so that the cell damage

occurs.[5]

Like the other radiotherapy instruments, output dose of LINAC also has output instability

because LINAC was made by interconnected electronic circuits.[6] This output instability occurs in

the output dose of the electron beam and photon beam. To overcome such instability, Quality

constancy.[9] To maintain the photon beam output constancy, analysis of output dose from photon

beam LINAC is necessary to determine whether the output dose of the photon beam is required of

calibration or still appropriate with the standards.[10] In the execution of analysis output dose of the

photon beam is known by the protocol to determining output dose Technical Report Series no. 398

(TRS 398).

TRS 398 is an international protocol which made by the International Atomic Energy

Agency (IAEA) as a code of practice for determining the absorbed dose of an external radiation

based on water absorbed dose.[11] TRS 398 is made to reduced the uncertainty by fixing an earlier

TRS based on the primary standard of air kerma for determining the absorbed dose.[12] Based on

the problems already described, it is important to analyze the output dose of the photon beam

(9)

2. Methods

2.1 Measurement The Output Dose of The Photon Beam

The measurement of output dose of the photon beam was performed on a Siemens Primus

LINAC that used in the radiotherapy unit at Ken Saras Hospital. The measurement of output dose

of the photon beam is done every 07.00 WIB except for the holidays on 2 January 2017 until 25

March 2017 according to daily QC procedure while Percentage Depth Dose (PDD) measurement is

done once in a month according to monthly QC procedure. The measurements were made with 100

cm Source to Skin Distance (SSD) and 10 cm × 10 cm field size area in the solid water phantom

using Scdx-Wellhöfer FC65-G/IC70 Farmer detector as shown in Fig 1. The irradiation was done 3

times at 300 Volt, - 300 Volt and 100 Volt with a depth of zref.

FIGURE 1. Set Up of The Output Dose Measurement

The zref or depth of the reference dose (in g/cm2) is obtained from TRS 398 and depends on

the value of Tissue Phantom Ratio (TPR20,10). The value of zref is 10 g/cm2 or 5 g/cm2 (for Co-60

photon beam) if the value of TPR20,10 is smaller than 0.7 and The value of zref is 10 g/cm2 if the

value of TPR20,10 is greater than or equal to 0.7. TPR20,10 is the ratio of Percentage Depth Dose

(PDD) at depth of 20 g/cm2 and 10 g/cm2 in water phantom which measured at 100 cm SSD and 10

cm × 10 cm field size area or can be written as,[11]

TPR20,10 =1,2661 PDD20PDD10- 0,0595 (1)

2.2 Analysis of Output Dose of The Photon Beam

To calculate the absorbed dose, it is necessary to know the value of factor correction such as

(10)

4

chamber for the effect of difference temperature and air pressure on the radiotherapy unit to the

standard reference conditions, define as,[11]

kTP = 273,15 + T273,15 + T 0

P0

P (2)

Where T is the temperature and P is the air pressure at the measurement of the photon beam,

T0 and P0 are the standard reference conditions at 20oC and 101.3 kPa air pressure. kelec is an

electrometer calibration factor whose the value is obtained from the calibration certificate of the

electrometer. ks is the correction factor of the ionization chamber response to the incomplete

collection of charge due to ion recombination, which can be written as,[11]

ks= a0 + a1 (MM1

charges at the polarizing voltages 300 Volt and M2 is measured values of collecting charges at the

polarizing voltages 100 Volt. kpol is a factor to correct the response of an ionization chamber for the

effect of a change in polarity of the polarizing voltage applied to the chamber, which can be written

as,[11]

kpol = |M+|2M + |M−| (4)

Where M+is the dosimeter readings at the polarizing voltage 300 Volt and M˗ is a dosimeter

reading at the polarizing voltage - 300 Volt. kQ,Qo is a correction factor of the difference between

the response of the ionization chamber in the quality of the used photon beam as the chamber

calibration in the reference beam quality. The value of kQ,Qo are obtained from TRS 398 which

depend on the type of used chamber and the value of the TPR20,10. ND,W,Qo is calibration factor in

terms of absorbed dose to water for a dosimeter at a reference beam quality and the value of

ND,W,Qo is 0.047 Gy/nC.

The output dose of the photon beam at reference depth dose (zref) can be expressed,[11]

DW,Q(zref) = MQ . ND,W,Q0 . kQ,Q0 (5)

Where MQ is the reading of the dosimeter with the reference conditions and corrected with

(11)

The deviation of the output dose of the photon beam can be expressed,

%deviation = |DW,Q(zmax) - DW,Qstd|

DW,Qstd ×100% (8)

Where DW,Qstd (in cGy/MU) is the value set for the output dose of photon beam per monitor units (MU) in LINAC. DW,Qstd of the LINAC in radiotherapy unit of R.S. Ken Saras is set to 1 cGy/MU.

3. Results

3.1 PDD Measurement

The measurement of the PDD of the photon beam use an ionization chamber in a water

phantom with 100 cm SSD and the results are shown in Fig 2. From the measurement it is found

that the maximum depth dose (zmax) is at the depth of 1.5 cm

temperature and air pressure on January of 19.74° C and 95.3 kPa, on February of 21.3° C and 95.6

kPa, and on March of 20.8° C and 95.5 kPa. That values are then used to calculate the correction

factor kTP using Eq. 2 whose the value is seen in Table 1. The average dosimeter reading charge of

the photon beam at operating voltages 300 V, -300 V and 100 V on January is 26.18 nC, 26.74 nC

and 26.09 nC, on February is 26.26 nC, 26.30 nC and 26.17 nC, and on March is 26.30 nC, 26.80

(12)

6

200. From the dosimeter reading charge is calculated the value of kpol using Eq. 3 and the value of

ks using Eq. 4 which each value can be seen in Table 1. The value of calibration factor of

electrometer which written in certificate of Calibration performed by National Nuclear Energy

Agency of Indonesia (BATAN) is 1.

TABLE 1. The Value of Correction Factors

Month

The PDD of the photon beam is increase from the depth of 0 cm to the maximum depth dose

at 1.5 cm which then called as the build up region because when photon beam have interacted with

the phantom it takes a certain thickness of tissue to reach the maximum dose or called the skin

sparing effect.[8] After reach the maximum depth dose, the PDD of the photon beam will decrease

to 0 which is called the attenuation region. From the data in Fig. 2 it is found the value of PDD at

10 cm is 66.4% and at 20 cm is 37.81% which is used to calculate the value of TPR20,10 with Eq. 1,

the calculated value of TPR20,10 is 0.66. Due to the value of TPR20,10 is smaller than 0.7 and the

photon beam analyzed is not sourced from Co-60 then the zref is 10 g/cm2. The value of TPR20,10 is

also used to determine the value of correction factor kQ,Qo which can be seen in Table 1.

4.2 Analysis of Output Dose of The Photon Beam

The value of correction factor kTP, kelec, kpol, and ks is used to calculate the MQ using Eq. 6 so

obtained that the value of MQ which can be seen in Fig. 3. It is obtained that the average value of

MQ is 0.139 nC/MU. The values of MQ, kQ,Qo, and ND,W,Qo are used to calculate DW,Q(zref) using Eq.

(13)

FIGURE 3. The Value of MQ

( ) on January, ( ) on February, ( ) on March and ( ) the average value of MQ

From Fig. 4a is found that the average value of DW,Q(zref) is 0.671 cGy/MU and the average

value of DW,Q(zmax) is 1.007 cGy/MU. From Fig. 4b is found that the average value of DW,Q(zref) is

0.669 cGy/MU and the average value of DW,Q(zmax) is 1.005 cGy/MU. From Fig. 4c is found that

(14)

8

Using the Eq 8, obtained that the output dose deviation of the photon beam LINAC at the

radiotherapy unit of R.S. Ken Saras which can be seen in Fig. 5. It is found that the average output

dose deviation of the photon beam on 2 January 2017 to 25 March 2017 is 0.7%. Based on the

IAEA recommendations on his book entitled Accuracy Requirements And Uncertainties In

Radiotherapy which published in 2016 that the output dose deviation of photon beam for clinical

purposes should be smaller than 2%[13] then the photon beam of the LINAC at the radiotherapy unit

of R.S. Ken Saras are still properly for radiotherapy activities.

FIGURE 5. Output Dose Deviation of The Photon Beam ( ) on January, ( ) on February, ( ) on March and ( ) tolerance limit

5. Conclusions

From the measurements on 2 January 2017 to 25 March 2017, it is found that the LINAC at

Radiotherapy unit of R.S. Ken Saras has the average output dose of the photon beam at the

reference depth dose (DW,Q(zref)) is 0.667 cGy/MU and the average output dose of the photon beam

at the maximum depth dose (DW,Q(zmax)) is 1.002 cGy/MU. The photon beam of LINAC at

Radiotherapy Unit of R.S. Ken Saras has the average output dose deviation is 0.7% which is still

smaller than the tolerance limit set by the IAEA that is 2% so it is concluded that the LINAC at

Radiotherapy unit of R.S. Ken Saras still properly for radiotherapy activities.

6. References

[1] Nordström, Fredrik. 2012. Quality Assurance in Radiotherapy : Development and evaluation

of new tools for improved patient safety in external beam therapy. Media-Tryck. Lund

University. Lund.

[2] Sahoo, S.K..2012. Commissioning of a Modern LINAC for Clinical Treatment and Material

Research. International Journal of Trends in Interdisciplinary Studies. ISSN: 0976 – 9719

[3] Sung-woo Kim et al. 2015. Measurement of Electron Beam Output for the Prototype Compact

(15)

[4] Anam, Choirul. 2011. Kajian Spektrum Sinar-X 6 MV Menggunakan Simulasi Monte Carlo.

Universitas Diponegoro Semarang. ISSN: 1410 – 9662.

[5] Suharni et al. 2010. Tinjauan Teknologi Akselerator Linear (LINAC) Elekta Precise di RSUP

Dr. Sardjito. Prosiding Pertemuan dan Presentasi Ilmiah Teknologi Akselerator dan

Aplikasinya. ISSN 0216 – 3128

[6] Khifiyah, Mariatul et al. 2014. Analisa Kurva Percentage Depth Dose (PDD) dan Profile Dose

Untuk Lapangan Radiasi Simetri dan Asimetri Pada Linear Accelerator (LINAC) 6 dan 10

MV. Youngster Physics Journal. ISSN : 2302 – 7371.

[7] Hossain, Murshed. 2015. Output Trends, Characteristics, And Measurements Of Three

Mega-Voltage Radiotherapy Linear Accelerators. J Appl Clin Med Phys. ; 15(4): 4783

[8] IAEA. 2005. Radiation Oncology Physics: A Handbook For Teachers And Students. IAEA,

Vienna,

[9] Bissonnette, Jean-Pierre et al. 2012. Quality assurance for image-guided radiation therapy

utilizing CT-based technologies: A report of the AAPM TG-179. AAPM. pp 0094-2405.

[10] Suharni et al. 2013. Analisis Hasil Pengukuran Percentage Depth Dose (PDD) Berkas

Elektron LINAC Elekta RSUP Dr. Sardjito. Prosiding Pertemuan dan Presentasi Ilmiah

Teknologi Akselerator dan Aplikasinya. ISSN 1411-1349.

[11] IAEA. 2000. Technical Report Series no.398: Absorbed Dose Determination in External

Beam Radiotherapy. IAEA, Vienna.

[12] Sang Koo Kang et al. 2014. Determination of TRS-398 Quality Factors for Cs-137 Gamma

Rays in Reference Dosimetry. PROGRESS in MEDICAL PHYSICS.

10.14316/pmp.2014.25.3.123.

(16)

10

(17)

Gambar

FIGURE 1. Set Up of The Output Dose Measurement
FIGURE 2. PDD of The Photon Beam
TABLE 1. The Value of Correction Factors
FIGURE 3. The Value of MQ
+2

Referensi

Dokumen terkait

Mekanisme pasar sendiri secara ekonomi berarti tergantung permintaan pasar yang pada ujungnya berkaitan dengan keuntungan dan kerugian, yang akhirnya akan memecah belah

Kepada para peserta yang merasa keberatan atas penetapan tersebut diatas, diberikan hak untuk menyampaikan sanggahan baik secara sendiri maupun bersama-sama, mulai tanggal 20

• Dasar fiscal - kerajaan mengurangkan perbelanjaan kerajaan atau meningkatkan kadar cukai. • Dasar kawalan langsung - dengan cara

Untuk mendapatkan data keefektifan navigasi multiagen meng- gunakan RVO pada simulasi kerumunan yang memiliki relasi leader & follower , maka perlu didesain skenario simulasi

Produk lain yang merupakan hasil olahan rumput laut antara lain : nuget rumput laut, kerupuk rumput laut, nori (pembungkus. sushi), permen rumput laut, dan jenis-jenis

Surat Izin Jasa Konstruksi (IUJK) sesuai dengan yang diminta dalam dokumen pengadaan, yang masih berlaku.. Sertifikat Badan Usaha (SBU) sesuai dengan yang diminta

 Menjelaskan faktor-faktor permintaan untuk uang  Menentukan keseimbangan tingkat bunga dan riil GDP  Menurunkan kurva penawaran aggregata. 3 Keseimbangan IS-LM

Kata alkohol segera mengingatkan kita pada etanol, yaitu senyawa memabukkan yang terdapat dalam anggur dan bir. Etanol adalah salah satu dari keluarga senyawa organik yang disebut alkohol yang terdapat di alam.