• Tidak ada hasil yang ditemukan

SIMULASI ANTENA MIKROSTRIP BIDANG SEGIEMPAT TUNGGAL DENGAN SOFTWARE MATLAB

N/A
N/A
Protected

Academic year: 2021

Membagikan "SIMULASI ANTENA MIKROSTRIP BIDANG SEGIEMPAT TUNGGAL DENGAN SOFTWARE MATLAB"

Copied!
7
0
0

Teks penuh

(1)

SIMULASI ANTENA MIKROSTRIP BIDANG SEGIEMPAT TUNGGAL DENGAN SOFTWARE MATLAB

M. Fuad Hasan1), Darjat2), Ajub Ajulian Zahra2)

Jurusan Teknik Elektro, Fakultas Teknik, Universitas Diponegoro, Jln. Prof. Sudharto, Tembalang, Semarang, Indonesia

E-mail : ad_fu06@yahoo.co.id Abstrak

Antena mikrostrip cukup pesat perkembangannya terutama dalam hal desain. Antena mikrostrip memiliki banyak kelebihan antara lain desain antena yang ringkas, praktis, ringan terutama pada komunikasi nirkabel, tetapi antena ini juga memiliki beberapa kekurangan, seperti gain yang rendah dan bandwidth yang sempit. Penelitian tentang bidang (patch) antena mikrostrip telah mengalami kemajuan pesat pada saat ini. Kebutuhan akan fungsi yang berbeda mengharuskan antena mikrostrip mempunyai karakteristik yang berda dalam hal frekuensi kerja, ukuran atau dimensi, efisiensi, gain,dan impedansi karakteristik. Tugas akhir ini merancang suatu program simulasi yang akan digunakan untuk menganalisis pengaruh frekuensi kerja, bahan substrat, dan ketebalan substrat terhadap dimensi atau ukuran dan karakteristik antena mikrostrip bentuk segiempat tunggal dengan beberapa varian yaitu varian 5 bahan substrat (Bakelite, FR4 Glass Epoxy, RO4003, Taconic TLC dan RT Duroid), varian level frekuensi (2,25 GHz, 2,3 GHz, 2,4GHz, dan 3,35 GHz), serta varian ketebalan substrat (3 mm, 1,575 mm, 0,787 mm, dan 0,508 mm) untuk jenis bahan substrat RT duroid. Program dirancang dengan menggunakan software matlab. Berdasarkan hasil pengujian yang dilakukan, bahan RT duroid antena mikrostrip bentuk segiempat tunggal memiliki kinerja paling bagus karena menunjukkan efisiensi sebesar 0.93326 % dan gain sebesar 14.3904 dBi.

Kata kunci : Antena Mikrostrip bidang segiempat, Frekuensi, Substrat.

Abstract

Microstrip antena dependence rapid development, especially in terms of design. Microstrip antena has many advantages, such as compact antena design, practical, lightweight, especially in wireless communication, but it also has some shortcomings, such as low gain and narrow bandwidth. Research on patch microstrip antena has boomed this time. The different functions require specific microstrip antena characteristics in terms of operating frequency, size or dimensions, efficiency, gain, and impedance characteristics. This final project is aimed to design a simulation program that will be used to analyze the influence of the working frequency, substrate material, and substrate thickness to the dimensions and characteristics of a single rectangular shape microstrip antena with multiple variants, 5 different substrate materials (Bakelite, FR4 Epoxy Glass, RO4003, Taconic TLC and RT Duroid), various frequencies (2.25 GHz, 2.3GHz, 2,4GHz, and 3.35GHz), as well as variants of the substrate thicknesses (3 mm, 1.575mm, 0.787mm, and 0.508mm) to RT Duroid types of substrate materials. Based on the results of tests RT Duroid based single rectangular shape microstrip antena has the best performance because it indicates an efficiency of 0.93326% and a gain of 14.3904 dBi.

Keywords: Microstrip Patch Antenas, Frequency, Substrat.

1.

PENDAHULUAN

1.1 Latar Belakang

Antena merupakan salah satu bagian yang sangat penting dalam sebuah sistem telekomunikasi, baik dari segi pengiriman data dan atau informasi maupun dari segi penerimaan. Antena berfungsi sebagai transformator antara gelombang terbimbing dengan gelombang bebas, maupun sebaliknya. Dalam perancangannya, antena memiliki bentuk yang berbeda berdasarkan frekuensi kerja dan ukurannya masing-masing sesuai dengan fungsinya.

Ilmu pengetahuan mengenai antena masih perlu dikembangkan untuk aplikasi-aplikasi komunikasi, khususnya di Indonesia. Salah satu contoh antena yang perlu dikembangkan adalah antena mikrostrip. Pada saat sekarang

ini, industri antena terus menerus berkembang. Berbagai macam antena dikembangkan untuk memenuhi tuntutan teknologi komunikasi yang semakin maju. Salah satu jenis antena tersebut adalah antena mikrostrip. Antena mikrostrip ini merupakan antena yang memiliki masa ringan, ukuranya kecil, biaya produksinya lebih murah dan mampu memberikan unjuk kerja yang cukup baik. Hal tersebut merupakan alasan pemilihan antena mikrostrip digunakan

dalam berbagai macam aplikasi, GPS, WLAN, WiMAX dan

yang lainya.

Secara umum antena mikrostrip terdiri atas 3 bagian, yaitu patch, substrat, dan ground plane. Patch terletak di atas substrat, sementara ground plane terletak pada bagian paling bawah. Substrat sendiri merupakan material antara patch dan

ground plane. Terdapat banyak substrat dengan nilai konstanta dielektrik yang berbeda, dan perbedaan konstanta dielektrik

(2)

tersebut akan mempengaruhi kinerja dari suatu antena mikrostrip yang dibuat.

Dengan dasar pemikiran di atas maka penulis bermaksud membuat suatu program simulasi yang dapatmembantu menganalisis karakteristik antena mikrostrip bidang segiempat tunggal dengan varian bahan subtract, frekuensi kerja dan

ketebalan substrat menggunakan bantuan bahasa

pemrograman Matlab.

1.2 Tujuan

Tujuan dari pembuatan Tugas Akhir ini adalah membuat simulasi antena meliputi variabel frekuensi, jenis substrat, dan tebal substrat dan pengaruhnya terhadap ukuran/dimensi dan karakteristik antena mikrostrip bidang segiempat tunggal.

1.3 Batasan Masalah

Dalam pembuatan tugas akhir ini akan diberikan batasan-batasan permasalahan antara lain sebagai berikut:

1. Bentuk antena mikrostrip yang dianalisis adalah antena mikrostrip bidang segiempat tunggal.

2. Bahan substrat yang digunakan Bakelite, FR4 Glass

Epoxy, RO4003, Taconic TLC, dan RTDuroid.

3. Parameter keluaran yang dibahas adalah dimensi, efisiensi, perolehan (gain) direktivitas dan impedansi karakteristik.

4. Tidak membahas tentang teknik pencatuan dan rugi-rugi pada saluran mikrostrip.

5. Tidak membahas tentang penurunan rumus.

6. Simulasi antena dibuat dengan bahasa pemrograman

Matlab R2011a.

2.

LANDASAN TEORI

2.1 Konsep Dasar Antena

Menurut “The IEEE Standard Definitions of Terms for Antenas” (IEEE Std 145-1983), definisi antena adalah suatu

bagian dari sistem telekomunikasi nirkabel yang digunakan untuk memancarkan atau menerima gelombang radio. Berdasarkan definisi tersebut dapat disimpulkan bahwa antena dapat berfungsi sebagai penerima maupun pemancar yang merupakan medium perantara antara gelombang terpandu dengan gelombang bebas. Gelombang terpandu adalah gelombang dengan sedikit rugi-rugi dalam saluran transmisi, sedangkan gelombang ruang hampa adalah gelombang yang dipancarkan ke ruang bebas sehingga membentuk lapisan-lapisan. Gelombang terpandu yang mengalir sepanjang saluran transmisi, diradiasikan menjadi gelombang ruang hampa. Daerah transisi antara gelombang terpandu dan gelombang ruang hampa dapat disebut antena.

Gambar 1. Konsep dasar antena

Constantine A. Balanis, dalam buku Antena TheoryAnalisis

Design menjelaskan ada beberapa jenis antena, yaitu : 1. Antena Kabel (Wire Antena); seperti monopole, dipole,

loop dan lain – lainnya.

2. Antena Celah (Aperture Antena); seperti Sectoral Horn, Piramidal Horn, Slot dan lainnya.

3. Antena Pantul (Reflector Antena); Parabolic dish, corner reflector dan lain-lainnya.

4. Antena Lensa.

5. Antena Mikrostrip.

6. Antena Susun (array).

2.2 Antena Mikrostrip

Berdasarkan asal katanya, mikrostrip terdiri atas dua kata, yaitu mikro (sangat tipis/kecil) dan strip (bilah/potongan). Antena mikrostrip dapat didefenisikan sebagai salah satu jenis antena yang mempunyai bentuk seperti bilah/potongan yang mempunyai ukuran sangat tipis/kecil. Dalam bentuknya yang paling dasar, sebuah antena mikrostrip terdiri dari sebuah bidang (patch) memancar di salah satu sisi lapisan (substrat) dielektrik yang memiliki bidang dasar (ground plane) di sisi lain seperti yang ditunjukkan pada gambar 2.

(3)

2.3 Keuntungan dan Kekurangan

Beberapa keuntungan dari antena mikrostrip adalah:

1. Mempunyai masa yang ringan dan ukurannya yang kecil

2. Bentuknya yang low profile sehingga dapat disesuaikan dengan perangkat utamanya.

3. Biaya fabrikasi yang murah sehingga dapat dibuat dalam jumlah yang besar.

4. Dapat dengan mudah diintegrasikan dengan microwave

integrated circuits (MICs)

5. Mekanik kuat ketika dipasang pada permukaan kaku

Beberapa kekurangan antena mikrostrip yaitu:

1. Lebar pita yang sempit

2. Efisiensi yang rendah

3. Penguatan yang rendah

4. Memiliki rugi-rugi hambatan (ohmic loss) pada pencatuan

antena array

5. Memiliki daya (power) yang rendah

2.4 Bahan Substrat

Bahan substrat adalah bahan yang berada antara dua konduktor dalam saluran mikrostrip. Terdapat banyak bahan substrat dengan karakteristik masing-masing yang berbeda. Dalam hal ini diberikan 5 jenis bahan substrat yaitu Bakelite, FR4 Glass Epoxy, RO4003, Taconic TLC, dan RT Duroid.

Setiap bahan substrat memiliki nilai konstanta dielektrik yang berbeda dengan yang lain. Nilai konstanta dielektrik (Ԑr) dari

ke-5 bahan substrat tersebut ditunjukan pada tabel 1.

Tabel 1 Nilai konstanta dielektrik (Ԑr) bahan substrat

Bahan Substrat Konstanta Dielektrik

Bakelite 4.78

FR4 Glass Epoxy 4.36

RO4003 3.4

Taconic TLC 3.2

RT Duroid 2.2

2.5 Antena Mikrostrip

Patch

Rectangular

Model antena mikrostrip ini terdiri oleh dua celah lebar W dan tinggi h, dipisahkan oleh saluran transmisi dengan panjang L

Gambar 3. Bidang antena mikrostrip segiempat

Dalam merancang bidang antena mikrostrip ini ada beberapa perhitungan yang perlu diketahui yaitu panjang (L) dan lebar (W). Adapun langkah-langkah perhitungannya yaitu:

a. Menghitung lebar bidang mikrostrip segiempat (W)

W =

2 1 2 0  r f c  (1)

b. Menghitung konstanta dielektrik efektif (εeff) εreff = 2 / 1 12 1 2 1 2 1          W h r r   (2)

c. Menghitung panjang efektif (Leff) Leff= reff f c  0 2 (3)

d. Menghitung perluasan panjang (ΔL)

ΔL = 0,412h

              8 , 0 258 , 0 264 , 0 3 , 0 h W reff h W reff   (4)

e. Menghitung panjang bidang mikrostrip rectangular (L)

L = Leff - 2 ΔL

(5)

Impedansi karakteristik pada saluran mikrostrip untuk w/h

2, dinyatakan dengan Persamaan 2.29[6]

) ( 2416 , 0 4516 , 0 ) 1 ( 2 1 2 4 4 ln ) 1 ( 2 9 , 119 2 0                                   r r r w h w h r Z     (6)

Impedeansi karakteristik pada saluran mikrostrip untuk w/h

2, dinyatakan dengan Persamaan 2.30[6]

) ( 94 , 0 2 ln 4516 , 1 1 1 1645 , 0 8825 , 0 7 , 376 1 2 0                                   h w r r r r h w r Z     

(

7)

(4)

3.

Perancangan Program Simulasi

Tugas akhir ini bertujuan membuat simulasi antena mikrostrip bentuk segi empat menggunakan bahasa

pemrograman MATLAB R2011a.

Diagram proses untuk perancangan simulasi

menggunakan MATLAB secara menyeluruh dapat dilihat pada gambar 5. Mulai Lanjutkan? Program Simulasi Y T Frekuensi, Masukan Tinggi Substrat, pilih Substrat

Menghitung Dimensi Antena (L &W), Efisiensi, Gain, Impednasi Karakteristik, Hambatan Radiasi,

dan Pola Radiasi

Selesai

Tampilkan Hasil? T

Y

Menampilkan Dimensi Antena (L &W), Efisiensi, Gain, Impednasi Karakteristik, Hambatan Radiasi, dan

Pola Radiasi

Gambar 5 Diagram alir program

3.1 Program Utama

Pada tahap awal pembuatan simulasi yaitu dengan menentukan tampilan program utama. Tampilan program utama ini dapat dilihat pada gambar 6 sebagai berikut:

Gambar 6 Tampilan awal program utama sebelum dijalankan

3.2 Program Simulasi

Tahap selanjutnya yaitu merancang program utama

simulasi menggunakan pemrograman MATLAB. Tampilan

untuk program simulsai ditunjukkan pada gambar 7.

Gambar 7 Tampilan program simulasi sebelum dijalankan

4.

Pengujian dan Analisis

4.1 Hasil Pengujian

4.1.1

Variasi Bahan Substrat

Jenis substrat mengacu pada bahan yang digunakan dalam pemilihan substrat, dimana bahan tersebut mempunyai konstanta dielektrik tertentu. Hubungan antara jenis substrat antena dengan dimensi antena, hambatan radiasi, efisiensi, gain, dan impedansi karakteristik mikrostrip dapat dilihat pada tabel 2

Tabel 2 Hasil pengujian variasi bahan substrat

Jenis Substrat L (mm) W (mm) Hambatan Radiasi (Ohm) Efisiens i (%) Gain (dBi) Impedansi Karakteristi k (Ohm) RT Duroid (εr=2,2) 20.7975 51.5589 1734.245 8 0.93326 14.3904 102.0868 Taconic TLC (εr=3,2) 16.7311 45.0043 1734.245 8 0.97431 13.861 98.7828 RO4003 (εr=3,4) 16.0792 43.9696 1734.2458 0.63501 13.6001 98.2214 FR4 Glass Epoxy (εr=4,36) 13.4665 39.8379 1734.245 8 0.59727 10.1535 93.9356 Bakelite (εr=4,78) 12.5326 38.3632 1734.2458 0.88268 11.5466 95.124 4.1.2 Variasi Frekuensi Kerja

Hubungan antara Frekuensi kerja mikrostrip dengan dimensi mikrostrip, hambatan radiasi, efisiensi, gain, dan impedansi karakteristik mikrostrip dapat dilihat pada tabel 3.

Tabel 3 Hasil pengujian variasi frekuensi kerja

Aplikasi Mikrostrip L (mm) W (mm) Hambatan Radiasi (Ohm) Efisiensi (%) Gain (dBi) Impedansi Karakteristik (Ohm) GPS (2,25 GHz) 51.7421 52.7046 1764.5895 0.92474 14.3602 102.0301 Wimax (2,3 GHz) 20.7975 51.5589 1734.2458 0.93326 14.3904 102.0868 WLAN (2,4GHz) 19.0336 49.4106 1676.0862 0.95207 14.4564 102.1959 Sistem Komunikasi Wireless (3,35 GHz) 7.84 35.3986 1354.7445 1.3384 15.8055 103.0089

(5)

4.1.3 Variasi Ketebalan Susbtrat

Hubungan antara Ketebalan substratmikrostrip dengan dimensi mikrostrip, hambatan radiasi, efisiensi, gain, dan impedansi karakteristik mikrostrip dapat dilihat pada tabel 4. Tabel 4 Hasil pengujian variasi ketebalan substrat

Ketebalan substrat L (mm) W (mm) Hambatan Radiasi (Ohm) Efisiensi (%) Gain (dBi) Impedansi Karakteristik (Ohm) 3.175 mm 20.7975 51.5589 1734.2458 0.93326 14.3904 102.0868 1,575 mm 32.4399 51.5589 1603.6802 0.81113 13.8973 100.1486 0,787 mm 38.6377 51.5589 1574.647 0.85644 14.0831 98.1116 0,508 mm 40.7932 51.5589 1569.1325 0.89359 14.2175 96.8912

4.

Analisis Hasil Pengujian

4.1

Hubungan antara Jenis Substrat Antena Mikrostrip dengan Mikrostrip dengan Dimensi Mikrostrip, Hambatan Radiasi, Efisiensi, Gain, dan Impedansi Karakteristik Mikrostrip

Tabel 5 Pengaruh jenis substrat terhadap dimensi mikrostrip, hambatan radiasi, efisiensi, gain, dan impedansi karakteristik

Jenis Substrat L (mm) W (mm) Hambatan Radiasi (Ohm) Efisiensi (%) Gain (dBi) Impedansi Karakteristik (Ohm) RT Duroid (εr=2,2) 20.7975 51.5589 1734.2458 0.93326 14.3904 102.0868 Taconic TLC (εr=3,2) 16.7311 45.0043 1734.2458 0.97431 13.861 98.7828 RO4003 (εr=3,4) 16.0792 43.9696 1734.2458 0.63501 13.6001 98.2214 FR4 Glass Epoxy (εr=4,36) 13.4665 39.8379 1734.2458 0.59727 10.1535 93.9356 Bakelite (εr=4,78) 12.5326 38.3632 1734.2458 0.88268 11.5466 95.124

Berdasarkan tabel 5

,

dapat diketahui bahwa jenis substrat yang dipilih akan mempengaruhi panjang dan lebar mikrostrip, dimana semakin besar kontanta dielekrik, maka ukuran mikrostrip akan semakin kecil.

Jenis substrat yang dipilih berpengaruh terhadap besar kecilnya gain mikrostrip, dimana semakin besar konstanta dielektrik yang dimiliki bhan substrat, maka gain mikrostrip akan semakin kecil.

Jenis substrat yang dipilih juga berpengaruh terhadap impedansi karakteristik mikrostrip, dimana semakin besar kontanta dilektrik yang dimiliki bahan substrat, maka nilai impedansi karakteristiknya akan semakin kecil.

Pengujian pada variasi bahan substrat dengan tingkat frekuensi kerja dan ketebalan substrat yang sama menunjukkan ketika terjadi kenaikan nilai konstanta dielektrik bahan substrat sebesar 53,9749%, maka terjadi penurunan ukuran panjang sebesar 39,7399% dan penurunan ukuran lebar sebesar 26,7572%.

4.2.

Hubungan antara Frekuensi Kerja Mikrostrip

dengan Dimensi Mikrostrip, Hambatan Radiasi, Efisiensi, Gain, dan Impedansi Karakteristik Mikrostrip

Tabel 6 Pengaruh frekuensi kerja terhadap dimensi mikrostrip, hambatan radiasi, efisiensi, gain, dan impedansi karakteristik

Aplikasi Mikrostrip L (mm) W (mm) Hambatan Radiasi (Ohm) Efisiensi (%) Gain (dBi) Impedansi Karakteristik (Ohm) GPS (2,25 GHz) 51.7421 52.7046 1764.5895 0.92474 14.3602 102.0301 Wimax (2,3 GHz) 20.7975 51.5589 1734.2458 0.93326 14.3904 102.0868 WLAN (2,4GHz) 19.0336 49.4106 1676.0862 0.95207 14.4564 102.1959 Sistem Komunikasi Wireless (3,35 GHz) 7.84 35.3986 1354.7445 1.3384 15.8055 103.0089

Berdasarkan tabel 6, dapat diketahui bahwa frekuensi kerja yang digunakan akan mempengaruhi panjang dan lebar bidang mikrostrip, dimana semakin tinggi level frekuensi yang dipakai, maka ukuran bidang mikrostrip akan semakin kecil.

Pemilihan level frekuensi kerja berpengaruh terhadap hambatan radiasi mikrostrip, dimana semakin tinggi level frekuensi yang digunakan, maka nilai hambatan radiasinya akan semakin kecil

Pemilihan level frekuensi kerja berpengaruh terhadap impedansi karakteristik mikrostrip, dimana semakin besar level frekuensi yang dipakai, maka nilai impedansi karakteristiknya akan semakin besar.

Pengujian pada variasi bahan substrat dengan tingkat frekuensi kerja dan ketebalan substrat yang sama menunjukkan ketika terjadi kenaikan nilai konstanta dielektrik bahan substrat sebesar 53,9749%, maka terjadi penurunan ukuran panjang sebesar 39,7399% dan penurunan ukuran lebar sebesar 26,7572%.

4.3

Hubungan antara Ketebalan Substrat Mikrostrip

dengan Dimensi Mikrostrip, Hambatan Radiasi, Efisiensi, Gain, dan Impedansi Karakteristik Mikrostrip

Tabel 7 Pengaruh frekuensi kerja terhadap dimensi mikrostrip, hambatan radiasi, efisiensi, gain, dan impedansi karakteristik

Ketebalan substrat L (mm) W (mm) Hambatan Radiasi (Ohm) Efisiensi (%) Gain (dBi) Impedansi Karakteristik (Ohm) 3.175 mm 20.7975 51.5589 1734.2458 0.93326 14.3904 102.0868 1,575 mm 32.4399 51.5589 1603.6802 0.81113 13.8973 100.1486 0,787 mm 38.6377 51.5589 1574.647 0.85644 14.0831 98.1116 0,508 mm 40.7932 51.5589 1569.1325 0.89359 14.2175 96.8912

Berdasarkan tabel 7, dapat diketahui bahwa ketebalan substrat yang dipilh akan mempengaruhi panjang bidang mikrostrip, tetapi tidak berpengaruh pada lebar bidang mikrostrip, dimana semakin tinggi level frekuensi yang dipakai, maka ukuran mikrostrip akan semakin kecil.

(6)

Pemilihan ketebalan substrat berpengaruh terhadap hambatan radiasi mikrostrip, dimana semakin tebal substrat yang dipilih, maka nilai hambatan radiasinya akan semakin besar.

Pemilihan ketebalan substrat berpengaruh terhadap efisiensi dan gain mikrostrip, dimana semakin tebal substrat yang dipilih, maka nilai efisiensi dan gain mikrostrip akan semakin besar.

Pemilihan ketebalan substrat juga berpengaruh terhadap impedansi karakteristik mikrostrip, dimana semakin semakin

tebal substrat yang dipilih, maka nilai impedansi

karakteristiknya akan semakin besar.

Pengujian pada variasi bahan substrat dengan tingkat frekuensi kerja dan ketebalan substrat yang sama menunjukkan ketika terjadi kenaikan nilai konstanta dielektrik bahan substrat sebesar 53,9749%, maka terjadi penurunan ukuran panjang sebesar 39,7399% dan penurunan ukuran lebar sebesar 26,7572%.

4.4 Perbandingan Hasil Program simulasi Dengan Software IE3D

Hasil perbandingan antara simulasi program MATLAB

dengan software IE3D akan ditampilkan pada tabel 8. Tabel 8 Perbandingan Efisiensi dan Gain antara simulasi

menggunakan MATLAB dengan simulasi menggunakan software

IE3D

Variasi Simulasi MATLAB Simulasi IE3D

Efisiensi (%) Gain (dBi) Efisiensi (%) Gain (dBi) Je n is S u b st rat RT Duroid (εr=2,2) 0.93326 14.3904 1.83898 -11.437 Taconic TLC (εr=3,2) 0.97431 13.861 1.04279 -13.425 RO4003 (εr=3,4) 0.63501 13.6001 0.97391 -13.668 FR4 Glass Epoxy (εr=4,36) 0.59727 10.1535 0.66839 -15.089 Bakelite (εr=4,78) 0.86268 11.5466 0.43928 -16.461 F re k u en si Ker ja GPS (2,25 GHz) 0.92474 14.3602 1.79308 -11.559 Wimax (2,3 GHz) 0.93326 14.3904 1.86941 -11.359 WLAN (2,4 GHz) 0.95207 14.4564 1.96198 -11.127 Sistem Komunikasi Wireless (3,35 GHz) 1.3384 15.8055 3.25035 -8.7753 Ket eb alan S u b st rat 3.175 mm 0.93326 14.3904 1.83898 -11.4368 1.575 mm 0.81113 13.8973 0.588564 -16.8005 0.787 mm 0.85644 14.0831 0.168234 -22.4822 0.508 mm 0.89359 14.2175 0.012504 -33.8278

Mengacu pada tabel 8, terlihat adanya sedikit perbedaan antara

hasil simulasi menggunakan program MATLAB dengan

simulasi menggunakan software IE3D. Hal ini disebabkan oleh beberapa parameter pada karakteristik bahan substrat

seperti factor disipasi, yang dimasukkan dalam simulasi

menggunakan software IE3D tidak dimasukkan dalam

simulasi menggunakan MATLAB, sehingga hal ini

mempengaruhi hasil simulasi.

Perbedaan ini juga dikarenakan pada saat simulasi

menggunakan MATLAB teknik pencatuan yang digunakan

diabaikan, sedangkan dalam simulasi menggunakan software

IE3D teknik pencatuan yang digunakan harus dimasukkan.

5

PENUTUP

5.1 Kesimpulan

Dari hasil pengujian dan analisis program simulasi antena mikrostrip segiempat dapat diambil beberapa kesimpulan yaitu sebagai berikut:

1. Pengujian pada variasi frekuensi dengan bahan substrat dan ketebalan substrat yang sama menunjukkan ketika terjadi kenaikan frekuensi kerja 32,8385%, maka terjadi penurunan ukuran panjang sebesar 84,8479% dan penurunan ukuran lebar sebesar 32,8358%.

2. Pengujian pada variasi bahan substrat dengan tingkat frekuensi kerja dan ketebalan substrat yang sama menunjukkan ketika terjadi kenaikan nilai konstanta dielektrik bahan substrat sebesar 53,9749%, maka terjadi penurunan ukuran panjang sebesar 39,7399% dan penurunan ukuran lebar sebesar 26,7572%.

3. Pengujian pada variasi ketebalan substrat dengan bahan substrat yang sama dan tingkat frekuensi kerja yang sama menunjukkan ketika terjadi penurunan nilai ketebalan substrat sebsar 84%, maka terjadi kenaukan ukuran panjang sebesar 49,0172%, tetapi ukuran lebarnya tetap.

4. Kenaikan frekuensi sebesar 32,8385% mempengaruhi

kenaikan efisiensi sebesar 0,41366% dan gain sebesar 10,0646%

5. Kenaikan nilai konstanta dielektrik sebesar 53,9749%

mempengaruhi penurunan efisiensi sebesar 0,07058% dan penurunan gain sebesar 29,4425%.

6. Kenaikan nilai ketebalan substrat sebesar 84%

mempengaruhi penurunan efisiensi sebesar 0,03967% dan penurunan gain sebesar 1,2015%.

7. Bahan RT duroid memberikan hasil yang paling bagus, hali ini terlihat dari hasil efisiensi yang didapatkan sebesar 0.93326% dan gain sebesar 14,3904 dBi.

5.2 Saran

Adapun saran yang dapat diberikan untuk menjadi masukan pada penelitian selanjutnya adalah:

1. Program simulasi dapat dikembangkan dengan

menambah parameter keluaran dari antena mikrostrip seperti seperti VSWR, direktivitas.

2. Bentuk bidang antena dapat diganti dengan bentuk yang

(7)

DAFTAR PUSTAKA

[1] Aditia, Rian,” Antena Dipole Fractalkurva Koch tipe planar yang dapat bekerjapada pitafrekuensi UHF televise”, Laporan Tugas Akhir Tekink Elektro UNDIP, Juni 2011.

[2] Amritesh and singh, K. M., “Design of Square Patch Microstrip Antena for Circular Polarization UsingIE3D Software”,National Institute of Technology, Roulkela, 2008.

[3] Balanis, Constantine A, “Antena Theory”, John Wiley

& Sons Inc., Kanada, 1997.

[4] Balanis, Constantine A., “Antena Theory Analysis and Design (3rd Edition)”, John Wiley and Sons

Incorporation, 2005.

[5] Christyono, Yuli, “Materi kuliah Antena dan Propagasi”, Teknik Elektro Undip.

[6] Garg, R., Bhartia, P., Bahl, P. and Ittipiboon, A. “Microstrip Antena Design Handbook”, Artech

House, Boston, London, 2001.

[7] James, J. R. and Hall, P. S.,”Handbook of Microstrip

Antenas”, 2nd ed., Peter Peregrinus Ltd., United

Kingdom, London, 1989.

[8] Khan, Anzar dan Rajesh Nema, “Analysis of Five

Different Dielectric Substrates on Microstrip Patch Antena”, International Journal of Computer Applications (0975-8887) Volume 55-No.18, Oktober 2012.

[9] “Microstrip Patch Antena”, pdf, Chapter 3.

[10] “Microstrip Patch Antena Design And Results”, pdf,

Chapter 4. .

BIODATA

M. Fuad Hasan lahir di Kebumen, 30

Desember 1987. Mengawali

pendidikan di TK Dharma Wanita

Karang Tanjung, kemudian

melanjutkan ke SD N 1 Karang Tanjung lulus tahun 2000, kemudian melanjutkan ke SMP N 1 Kebumen

lulus tahun 2003, kemudian

melanjutkan ke SMA N 1 Kebumen lulus pada tahun 2006. Dari tahun 2006 sampai saat ini masih menyelesaikan studi Strata-1 di Jurusan Teknik Elektro Universitas Diponegoro Semarang dengan mengambil konsentrasi Telekomunikasi. Semarang, 23 Agustus 2013 Menyetujui, Dosen Pembimbing I Darjat, S.T., M.T. NIP. 197206061999031001 Dosen Pembimbing II

Ajub Ajulian Zahra, S.T., M.T. NIP. 197107191998022001

Gambar

Gambar 2 Struktur bidang antena mikrostrip
Gambar 3. Bidang antena mikrostrip segiempat
Gambar 6 Tampilan awal program utama sebelum dijalankan
Tabel 6  Pengaruh  frekuensi  kerja  terhadap  dimensi  mikrostrip,  hambatan radiasi, efisiensi, gain, dan impedansi karakteristik
+2

Referensi

Dokumen terkait

36 Rabu 15-Apr-15 14.00 AULA STERDAM III JL.ACEH Undangan rapat koordinasi dalam rangka akrya bakti kesiapan KAA 37 Rabu 15-Apr-15 15.00 Kantor Kecamatan Bandung Wetan

Лекар је обавезан да: - утврди да ли осигурано лице испуњава критеријуме за поступак БМПО; - упути осигурано лице да уради напред наведене потребне

dikatakan bahwa semakin bertambahnya tahun masyarakat Karangsari sudah memiliki kesadaran untuk bersekolah sehingga kebanyakan dari orang tua menyekolahkan anaknya

Strategi blue ocean menyediakan pendekatan yang sistematis dalam memecahkan masalah kompetisi berdarah pada red ocean dan membuat kompetisi menjadi tidak relevan dengan

Pengujian pada variasi bahan substrat dengan tingkat frekuensi kerja dan ketebalan substrat yang sama menunjukkan ketika terjadi kenaikan nilai konstanta

Kelebihan alkalis bebas dalam sabun tidak boleh lebih dari 0,1% untuk sabun Na, dan 0,14% untuk sabun KOH karena alkali mempunyai sifat yang keras dan menyebabkan iritasi pada

Setelah itu ditambahkan antiserum sesuai pengenceran yaitu 1/100 dan 1/500, dibiarkan selama 4 sampai 5 me- nit (antiserum yang digunakan adalah antiserum dari enam kali

Dengan adanya informasi dalam prospektus tersebut diharapkan akan dapat mempengaruhi keputusan investor dalam menanamkan modalnya pada perusahaan yang akan go