• Tidak ada hasil yang ditemukan

Galih Winawang D

N/A
N/A
Protected

Academic year: 2021

Membagikan "Galih Winawang D"

Copied!
14
0
0

Teks penuh

(1)

NASKAH PUBLIKASI

PEMANFAATAN GELOMBANG LAUT DI SELATAN JAWA SEBAGAI SUMBER PEMBANGKIT ENERGI LISTRIK

DENGAN SISTEM BANDUL

Diajukan oleh:

Galih Winawang

D400100043

JURUSAN TEKNIK ELEKTRO FAKULTAS TEKNIK

UNIVERSITAS MUHAMMADIYAH SURAKARTA 2014

(2)

ii

LEMBAR PENGESAHAN

Karya ilmiah dengan judul “PEMANFAATAN GELOMBANG LAUT DI SELATAN JAWA SEBAGAI SUMBER PEMBANGKIT ENERGI LISTRIK DENGAN SISTEM BANDUL” ini diajukan oleh :

Nama : Galih Winawang NIM : D400 100 043

Guna memenuhi salah satu syarat untuk menyelesaikan program Sarjana Strata-Satu (S1) pada Fakultas Teknik Program Studi Teknik Elektro Universitas Muhammadiyah Surakarta, telah diperiksa dan disetujui pada :

Hari : Tanggal : Mengetahui Dosen Pembimbing I (Ir. Jatmiko, MT) Dosen Pembimbing II (Agus Ulinuha, ST .MT, Ph.d)

(3)

iii

SURAT PERNYATAAN PUBLIKASI KARYA ILMIAH

Bismillahirrahmanirrohim,

Yang bertanda tangan dibawah ini: Nama : Galih Winawang NIM : D 400 100 043

Fakultas/Jurusan : Teknik/Teknik Elektro Jenis : Skripsi

Judul : PEMANFAATAN GELOMBANG LAUT DI SELATAN JAWA SEBAGAI SUMBER PEMBANGKIT ENERGI LISTRIK DENGAN SISTEM BANDUL

Dengan ini menyatakan bahwa saya menyetujui untuk :

1. Memberikan hak bebas royalti kepada Perpustakaan UMS atas penulisan karya ilmiah saya, demi pengembangan ilmu pengetahuan.

2. Memberikan hak menyimpan, mengalih mediakan/mengalih formatkan, mengelola dalam bentuk pangkalan data (database), mendistribusikan, serta menampilkan dalam bentuk softcopy untuk kepentingan akademis kepada Perpustakaan UMS, tanpa perlu meminta ijin dari saya selama tetap mencantumkan nama saya sebagai penulis/pencipta.

3. Bersedia dan menjamin untuk menanggung secara pribadi tanpa melibatkan pihak Perpustakaan UMS, dari semua bentuk tuntutan hokum yang timbul atas pelanggaran hak cipta dalam karya ilmiah ini.

Demikian pernyataan ini saya buat dengan sesungguhnya dan semoga dapat digunakan sebagaimana mestinya.

Surakarta, 8 Maret 2014 Yang Menyatakan

(4)

1

PEMANFAATAN GELOMBANG LAUT DI SELATAN JAWA

SEBAGAI SUMBER PEMBANGKIT ENERGI LISTRIK

DENGAN SISTEM BANDUL

Galih Winawang

Jurusan Teknik Elektro, Fakultas Teknik Universitas Muhammadiyah Surakarta

Jl. A. Yani Tromol Pos I Pabelan Kartasura, Sukoharjo 57102 Telp.+62-271-717417 Faks.+62-271-715448

g.winawang@gmail.com

ABSTRAKSI

Berdasarkan survei yang dilakukan Badan Pengkajian dan Penerapan Teknologi (BPPT) dan Pemerintah Norwegia sejak tahun 1987, Kondisi ombak di pantai selatan jawa sekitar 1,5 hingga 2 meter berpotensi untuk membangkitkan energi listrik. Tujuan penelitian ini untuk melihat karakteristik pembangkit listrik tenaga gelombang laut sistem bandul serta mendapat data daya listrik yang dapat dihasilkan oleh pembangkit tersebut.

Metode yang digunakan dalam penelitian adalah studi literatur, pembuat desain PLTGL sistem bandul, dan perhitungan data yang didapatkan dari BMKG. Penilitian ini di mulai dari mendesain PLTGL,melakukan perhitungan data untuk mendapatkan data daya listrik yang dapat dibangkitkan.

Hasil penelitian PLTGL sistem bandul didapatkan daya yang tertinggi adalah 135.33 watt, pada ketinggian gelombang 4 m. Sedangkan daya yang terendah adalah 87. 83 watt pada ketinggian gelombang 3 m. Serta memiliki efisiensi sebesar 42.29%. Kata kunci : PLTGL, Sistem Bandul, Gelombang Laut

1. Pendahuluan

Menurut pendapat Dirjen Energi Baru Terbarukan dan Konservasi Energi (EBTKE) Kementerian ESDM Kardaya Warnika, Senin 11 Juni 2012, "Data menunjukkan cadangan minyak bumi Indonesia akan habis dalam waktu 10 tahun lagi, berdasar cadangan terbukti yang ada saat ini. Adapun penggunaan energi baru dan terbarukan baru berkisar 4% dari total konsumsi energi. Situasi ini mengkhawatirkan

terkait penipisan sumber daya energi, beban anggaran negara untuk subsidi, dan keamanan terhadap perubahan iklim,". Menurut isi dari undang-undang dasar 1945 pasal 33 ayat 3 yang berbunyi “Bumi dan air dan kekayaan yang terkandung di dalamnya dikuasai oleh negara dan dipergunakan untuk sebesar-besar kemakmuran rakyat”. Oleh karena itu kita harus memanfaatkan sumber energi lain

(5)

2 seperti gelombang laut yang dapat di

perbaruhi dan murah, yang berguna untuk kemakmuran rakyat.

Berdasarkan survei yang dilakukan Badan Pengkajian dan Penerapan Teknologi (BPPT) dan Pemerintah Norwegia sejak tahun 1987, terlihat bahwa banyak daerah-daerah pantai yang berpotensi sebagai pembangkit listrik bertenaga ombak. Ombak di sepanjang Pantai Selatan Pulau Jawa, di atas Kepala Burung Irian Jaya, dan sebelah barat Pulau Sumatera sangat sesuai untuk menyuplai energi listrik. Kondisi ombak seperti itu tentu sangat menguntungkan, sebab tinggi ombak yang bisa dianggap potensial untuk membangkitkan energi listrik adalah sekitar 1,5 hingga 2 meter, dan gelombang ini tidak pecah hingga sampai di pantai.

Potensi tingkat teknologi saat ini diperkirakan bisa mengonversi per-meter panjang pantai menjadi daya listrik sebesar 20-35 kW (panjang pantai Indonesia sekitar 80.000 km, yang terdiri dari sekitar 17.000 pulau, dan sekitar 9.000 pulau-pulau kecil yang tidak terjangkau arus listrik nasional, dan penduduknya hidup dari hasil laut). Dengan perkiraan potensi semacam itu, seluruh pantai di Indonesia dapat menghasilkan lebih dari 2~3 Terra Watt Ekuivalensi listrik, bahkan tidak lebih dari 1% panjang pantai Indonesia (~800 km) dapat memasok minimal ~16 GW atau sama dengan pasokan seluruh listrik di Indonesia tahun 2010.

Tujuan penelitian ini untuk melihat karakteristik pembangkit listrik tenaga gelombang laut dengan system bandul serta mendapatkan data daya listrik

yang dapat dihasilkan oleh pembangkit tersebut.

2. Landasan Teori

2.1Pergerakan Gelombang

Untuk menghitung gelombang dua dimensi yang memiliki permukaan bebas dan bergantung pada gravitasi. periode t dan kecepatan gelombang c bergantung pada panjang gelombang dan kedalaman air. Menurut Kim Nielsen, hubungan antara panjang gelombang dan periode dapat didekati dengan sebuah nilai, yaitu :

λ = 5.12

dimana :

λ : Panjang Gelombang (m) : Periode (dt)

Gambar 1. Gelombang dua dimensi (atas), amplitudo pada waktu 0 (tengah)

dan waktu θ (bawah)

2.2Momentum

Momentum adalah besaran vektor yang arahnya sama dengan arah

(6)

3 kecepatan. Satuan momentum dalam

Satuan Internasional adalah kg.m/det. Momentum linier (p) suatu benda adalah perkalian antara massa (m) dengan kecepatan (v).

. + . = . + .

2.3 Bandul

Bandul merupakan komponen utama yang digunakan untuk mengubah energi dari ayunan yang disebabkan gelombang laut menjadi energi mekanis yang diteruskan pada gear box, yang digunakan untuk menggerakkan alternator.

Gambar 2. Ayunan bandul

2.4 Daya listrik

Daya listrik (P) adalah perkalian antara tegangan (V) dengan arus listrik (I).

= . Serta,

P = . . .

Dimana,

P : Daya Listrik (watt)

V : Tegangan Listrik (volt) I : Arus Listrik (A)

:

Torsi Alternator (Nm)

∶ Kecepatan Putaran Rotor (Rpm) 2.5 Alternator

Alternator adalah alat pembangkit listrik yang berfungsi untuk pengisian accu. Alternator terdiri dari dari beberapa komponen antara lain :

1. Stator 2. Rotor

3. Brush/sikat arang 4. Diode

5. Ic regulator

Gambar 3. Instalasi pengisian aki dengan alternator

2.6 Freewhell

Freewhell adalah sistem gir belakang yang membuat roda belakang dan roda belakang bebas berputar. Ketika pedal diputar maka rantai dan roda belakang ikut berputar, sedangkan jika pedal berhenti berputar maka rantai akan berhenti tetapi roda belakang tetap berputar sesuai momentum. Dapat dibilang cara kerja freewhell hanya berputar searah saja.

(7)

4 Gambar 4. Freewhell

2.7 Flywhell

Flywhell (roda gila) adalah sebuah massa yang berputar,dan dipergunakan sebagai penyimpan tenaga di dalam mesin. Tenaga yang disimpan dalam roda gila berupa tenaga knetik yang besarnya :

=1

2 Dimana,

I adalah momen inersia roda gila terhadap sumbu putar

2.8 Gearbox

Gearbox adalah suatu alat yang dapat mengubah daya motor yang berputar menjadi tenaga lebih besar.

Gambar 5. Gearbox

2.9 Accu

Accu adalah suatu alat yang digunakan untuk menyimpan energi listrik. Accu termasuk sel sekunder, karena accu selain dapat menghasilkan arus listrik, accu juga dapat diisi arus listrik. Accu terdiri dari elektroda Pb sebagai anoda dan PbO2 sebagai katoda dengan elektrolit H2SO4.

Gambar 6. Accu/aki 3. Metode Penelitian

3.1 Persiapan yang dilakukan

Persiapan yang dilakukan penulis dalam penelitiaan ini meliputi :

1. Mempelajari dan memahami karateristik dari pembangkit listrik tenaga gelombang laut sistem bandul.

2. Studi literatur.

3. Mempersiapankan alat dan bahan yang akan digunakan dalam penelitian.

3.2Alat

Alat yang digunakan dalam penilitian ini adalah :

1. Volt meter

Alat ini digunakan untuk mendapatkan data tegangan listrik yang dihasilkan oleh alternator.

(8)

5 Alat ini digunakan untuk

mendapatkan data arus listrik yang dihasilkan oleh alternator. 3. Kamera

Alat ini digunakan untuk pengambilan gambar ayunan bandul, yang nantinya akan didapatkan sudut bandul .

3.3 Bahan

Bahan yang digunakan dalam penelitian ini adalah :

1. 1 buah alternator

Tabel 1. Spesifikasi alternator ALTERNATOR Tegangan 12 V Arus 30 A RPM 700-2000 RPM Heat 40° 2. Accu 12 V, 5 AH

3. 2 buah gear ukuran diameter 20 cm dan 15 cm serta jumlah gigi 36 dan 24.

4. 2 buah freewheel dengan jumlah gigi 16.

5. 1 buah flywheel dengan diameter 30 cm dan berat 30 kg. 6. Rantai sepeda.

7. 1 buah lampu indikator 12 Vdc. 8. 1 buah saklar on/off.

9. Kabel pengisian.

3.4 Waktu Dan Tempat Penelitian Rencana waktu pelaksanaan dan pembuatan laporan pemanfaatan gelombang laut di selatan jawa sebagai sumber pembangkit energy listrik sistem bandul diharapkan dapat selasai dalam jangka waktu 3 bulan yaitu mulai dari studi literature, pembuatan

proposal, pengambilan data, hingga pembuatan laporan.

3.5 Pengambilan Data

Dalam penelitian Pemanfaatan Gelombang Laut Di Selatan Jawa Sebagai Sumber Pembangkt Energi Listrik Sistem Bandul dilakukan di Pantai Baru Dusun Ngentak, Pandansimo, Kecamatan Sradakan, Kabupaten Bantul, Yogyakarta. Data harus dicatat antara lain :

1. Sudut ayunan bandul.

2. Tegangan dan arus listrik yang dihasilkan alternator.

3. Daya yang dihasilkan. 3.6 Flowcahart Penelitian

(9)

6 4. Hasil Dan Pembahasan

4.1 Kecepatan gelombang

a. Data ketinggiana gelombang Laut di Selatan Jawa.

Tabel 2. Data ketinggian Gelombang laut No Ketinggian Gelombang (m) 1. 3.00 2. 3.25 3. 3.50 4. 3.75 5. 4.00 b. Periode Gelombang Laut

Panjang dan kecepatan gelombang laut dipengaruhi oleh periode datangnya gelombang. Nilai periode dapat dicari menggunakan rumus dari Kim Nielsen :

= 3.55 √

Dimana, T adalah periode datangnya gelombang (s). H adalah tinggi

gelombang (m).

Tabel 3. Hasil perrhitungan Periode gelombang laut No Ketinggian Gelombang (m) Periode Gelombang (s) 1. 3.00 6.15 2. 3.25 6.40 3. 3.50 6.64 4. 3.75 6.87 5. 4.00 7.10 c. Panjang Gelombang

Dengan menggunakan persamaan dari David Ross dapat dicari panjang gelombang, sebagai berikut :

λ = 5.12

Dimana, λ adalah panjang

gelombang (m)

Tabel 4. Hasil perhitungan panjang gelombang laut No Ketinggian Gelombang (m) Panjang Gelombang (m) 1. 3.00 193.65 2. 3.25 209.72 3. 3.50 225.74 4. 3.75 241.65 5. 4.00 258.10 d. Kecepatan Gelombang

Kecepatan datangnya gelombang dapat dicari dengan persamaan :

V =

Tabel 5. Hasil perhitungan kecepatan gelombang laut No Ketinggian Gelombang (m) Kecepatan Gelombang (s) 1. 3.00 31.49 2. 3.25 32..77 3. 3.50 33.99 4. 3.75 35.17 5. 4.00 36.35 4.2 Kecepatan Bandul a. Massa gelombang

Dengan penampang PLTGL sebesar 1 m. Maka massa gelombang dapat dicari dari persamaan :

=

Dimana, = berat jenis air laut (1030 kg/ ). m = massa gelombang (kg).

volume = (λ . 1. 2H)

Tabel 6. Hasil perhitungan massa gelombang

(10)

7 No Ketinggian Gelombang (m) Massa gelombang (kg) 1. 3.00 1196757 2. 3.25 1404075.40 3. 3.50 1627585.40 4. 3.75 1866746.25 5. 4.00 2126744 b. Kecepatan bandul

Kecepatan bandul dapat dihitung. Dengan massa bandul sebesar 2 kg dengan persamaan :

m.V = (m+M).V’

Dimana, m adalah massa gelombang (kg). V’ adalah kecepatan bandul (m/s).

Tabel 7. Hasil perhitungan kecepatan gelombang No

Gelombang Laut Bandul

Massa (kg) Kecepatan (m/s) Massa (kg) Kecepatan (m/s) 1. 1196757 31.49 2 31.49 2. 1404075.40 32..77 2 32.77 3. 1627585.40 33.99 2 33.99 4. 1866746.25 35.17 2 35.17 5. 2126744 36.35 2 36.35

4.3 Daya Yang Dihasilkan

Daya yang dibangkitkan generator dapat dihitung dengan dipengaruhi beberapa aspek yang menentukan besarnya daya. Aspek yang mempengaruhi meliputi kecepatang putar gear 1, kecepatan freewheel 1, kecepatan putar freewheel 2/rotor alternator, torsi alternator, serta gaya yang dimiliki alternator. Berikut adalah data gearbox yang digunakan :

1. Gear 1 : 36 gigi, d : 20 cm. 2. Gear 2/Freewhell 1 : 16 gigi. 3. Gear 3 : 20 gigi

4. Gear 4/Freewhell 2 : 16 gigi a. Kecepatan putaran Gear 1

Karena bandul terhubung langsung dengan gear 1 yang memiliki jumlah gigi 36 buah dan berdiameter 20 cm, maka kecepatan bandul sama dengan kecepatan gear 1. Kecepatan putaran gear dapat dihitung dengan persamaan

=1000.

.

Dimana, D = diameter gear (mm) Tabel 8. Hasil perhitungan kecepatan

putaran gear 1 No. Kecepatan Bandul (V) Kecepatan Putaran Gear ( ) 1 31.49 50.14 2 32.77 52.18 3 33.99 54.12 4 35.17 56.00 5 36.35 57.88

b. Kecepatan putaran freewhell 1 Setelah kecepatan putaran gear 1 diketahuai, selanjutnya mencari kecepatan putaran freewheel 1 yang terhubung dengan rantai. Kecepatan putaran freewheel 1 yang memiliki jumlah gigi 16 buah, maka dapat dihitung dengan persamaan.

(11)

8

=

Dimana, Z = jumlah gigi. N = kecepatan putar (RPM)

Tabel 9. Hasil perhitungan kecepatan putaran freewheel 1 No. Kecepatan Putaran Gear 1 (RPM) Kecepatan Putaran Gear 2 ( ) 1. 50.14 106.55 2. 52.18 110.88 3. 54.12 115.01 4. 56.00 119 5. 57.88 122.99

c. Kecepatan rotor alternator

Karena freewheel 1 dengan gear 2 dihubungkan dalam 1 tuas maka kecepatan putarannya sama. Gear 2 tersebut memiliki jumlah gigi sebanyak 20 buah. Maka kecepatan putaran alternator dapat dihitung dengan persamaan :

=

Tabel 10. Hasil kecepatan putaran freewheel 1 dan kecepatan rotor

alternator No. Kecepatan Putaran Gear 2 ( ) Kecepatan Putaran Freewheel 2(RPM) Kecepatan Rotor Alternator (m/s) 1. 106.55 133.19 2.51 2. 110.88 138.60 2.61 3. 115.01 143.76 2.71 4. 119 148.75 2.80 5. 122.99 153.74 2.90 d. Torsi alternator

Setelah kecepatan putaran rotor diketahui, selanjutnya mencari nilai Torsi Alternator. Torsi alternator adalah perkalian antara gaya (F) dengan jari-jari (r). Torsi alternator dapat dianalisa dengan persamaan.

= .

Dimana gaya sebanding dengan kuadrat kecepatan benda dan berbanding terbalik dengan jari-jari. Dapat dianalisa dengan persamaan

= .

Dimana,

V adalah kecepatan benda (m/s). M adalah massa benda (1kg). r adalah jari-jari rotor (0.05 m). Tabel 11. Hasil perhitungan gaya dan

torsi alternator No. Kecepatan rotor alternator (m/s) Gaya alternator (N) Torsi alternator (Nm) 1 2.51 126.0 6.3 2 2.61 136.24 6.81 3 2.71 146.88 7.34 4 2.80 156.8 7.84 5 2.90 168.2 8.41 e. Daya listrik yang di hasilkan

alternator

daya listrik yang dihasilkan oleh alternator dapat dicari dengan persamaan.

P = . . .

Dimana, P adalah daya listrik yang dibangkitkan alternator (watt).

(12)

9 Tabel 12. Hasil perhitungan daya listrik yang dapat dibangkitkan generator

No. Ketinggian Gelombang (m) Torsi alternator (Nm) Kecepatan Freewheel 2 (RPM) Power (watt) 1. 3.00 6.3 133.19 87.83 2. 3.25 6.81 138.60 98.79 3. 3.50 7.34 143.76 110.44 4. 3.75 7.84 148.75 122.06 5. 4.00 8.41 153.74 135.33

Gambar 8. Diagram garis hubungan antara daya listrik dan kecepatan rotor terhadap ketinggingan gelombang

f. Efisiensi daya

Sehingga PLTGL sistem bandul memiliki efisiensi pembangkitan daya sebesar 42.29%. Dimana efisiensi dihitung dari perbandingan daya maksimum yang dibangkitkan dengan daya maksimum sesuai nameplate alternaotor. Sesuai dengan persamaan berikut :

Efisiensi =

100%

4.4 Pembahasan

Dari hasil analisa diatas, ketingggian gelombang laut berbanding lurus dengan daya yang dihasilkan. Apabila ketinggian gelombang laut terendah 3 m maka daya yang dihasilkan adalah 87.83 watt. Sedangakan jika ketingian gelmbang laut 4 m, daya yang dihasilkan sebesar 135.33 watt. Dari hasil tersebut efisiensi PLTGL sistem bandul memilik efisiensi sebesar 42.29%. 0 20 40 60 80 100 120 140 160 180 3 3.25 3.5 3.75 4 daya listrik(watt) kecepatan rotor (rpm)

(13)

10 Apabila setiap 100 meter garis pantai

dipasang PLTGL sistem bandul, sebagai contoh di sepanjang Pantai Baru dengan panjang garis pantai 4 km. maka daya maksimal yang dapat dihasilkan PLTGL sistem bandul adalah 5413.2 watt dana daya minimum yang dapat dihasilkan adalah 3513.2 Watt.

Jika setiap warung pantai di pantai baru memiliki beban lampu 40 watt 2 buah,magicom 150 watt, blender 80 watt, pompa air 200 watt. Maka jumlah beban setiap warung sebesar 510 watt. Sehingga PLTGL sistem bandul dapat mengaliri listrik pada 10 warung pantai.

5. Kesimpulan

Berdasarkan hasil anilisis dan perhitungan dapat disimpulkan: 1. PLTGL sistem bandul dapat

diterapkan di wilayah perairan selatan Jawa.

2. PLTGL sistem bandul dapat menghasilkan daya maksimum sebesar 135.33 watt dan daya minimum sebesar 87.83 watt. 3. PLTGL sistem bandul dapat

mengaliri 10 warung pantai dengan beban maksimum 550 watt.

4. Efisiensi pembangkitan daya listrik sebesar 42.29%.

5. PLTGL sistem bandul dapat dikembangkan dengan mengganti jenis alternator yang dipasang serta perbandingan jumlah gigi yang ada. 6. Semakin tinggi gelombang yang daatang maka berbanding lurus terhadap kecepatan datangnya gelombang, kecepatan bandul, serta daya yang dapat dibangkitkan alternator.

DAFTAR PUSTAKA

Arta Wijaya, I Wayan. ”Pembangkit Listrik Energi Gelombang Laut Menggunakan Teknologi Gelombang Laut Menggunakan Teknologi Oscilating Water Column Di Perairan Bali”. Fakultas Teknik, Universitas Udayana Bali

Badan Meteorologi Klimatologi dan Geofisika, “Prakiraan Gelombang Laut Maksimum di Wilayah Indonesia Pada Tanggal 22 Januari 2014”

Bambang Musriyadi, Tony. Ir. PGD, Irfan Syarief Arief. ST. MT , dan Bramas Firmandi. ”Studi Penerapan Salter Duck Di Laut Jawa Sebagai Alternatif Pembangkit Listrik”. FTK-ITS

Budi, Ermas. DR. 2013.”Gelombang”. Bandung : PT. Remaja Rosdakarya J.Bueche, Frederick, Ph.D dan Eugene

Hecht, Ph.D. ”Schaum’s Outline Of Teori Dan Soal-Soal Fisika Universitas Edisi Kesepuluh”. Jakarta: Erlanga

Nugroho, Armunanto. Drs. 1997. ”Pengetahuan Dan Perbaian Kelistrikan Mobil”. Semarang: Dahara Prize

Nielsen, Kim.”On the performance of

a wave power converter”.

International Symposium Utilisation of Ocean Waves, June 16 - 17 1986

(14)

Gambar

Gambar 1. Gelombang dua dimensi  (atas), amplitudo pada waktu 0 (tengah)
Gambar 3. Instalasi pengisian aki  dengan alternator
Tabel 1. Spesifikasi alternator  ALTERNATOR  Tegangan  12 V  Arus  30 A  RPM  700-2000 RPM  Heat  40 °     2
Tabel 3. Hasil perrhitungan Periode  gelombang laut  No  Ketinggian  Gelombang  (m)  Periode  Gelombang (s)  1
+3

Referensi

Dokumen terkait

Pembelajaran kooperatif dikelompokkan menjadi beberapa bagian penting dalam proses pembelajaran yang pada intinya menekankan kerja gotong royong dalam kelompok-kelompok

Pengaruh Likuiditas, Leverage, Porsi kepemilikan saham publik, ukuran perusahaan dan umur perusahaan terhadap kelengkapan pengungkapan laporan keuangan pada perusahaan

dengan masalah-masalah dalam persidangan, seperti halnya jawaban, replik, duplik, pembuktian dalil gugatan dan bantahannya. Kesemuanya itu harus didukung oleh dasar hukum yang

Chen, Roll, dan Ross (1986) melakukan pengujian terhadap berbagai variabel ekonomi yaitu: inflasi, term structure of interest rates , risk premia , dan produksi industri

Do you have a drivers license and are you willing to drive and be paid

Paradigma ekologi yang mendasari keharmonisan hubungan antara manusia dan alam adalah sebagai berikut: (1) keberadaan lingkungan alam mendahului keberadaan manusia

Alur pemikiran di atas dapat ditarik suatu perumusan masalah yaitu : “Apakah ada hubun- gan antara kecerdasan emosional dan stres kerja dengan kinerja karyawan?”. Berdasarkan

BeIl’s palsy adalah kelumpuhan atau paralisis wajah unilateral karena gangguan nervus fasialis perifer yang bersifat akut dengan penyebab yang tidak teridentifikasi