• Tidak ada hasil yang ditemukan

BAB VI PENYELESAIAN DERET UNTUK PERSAMAAN DIFERENSIAL

N/A
N/A
Protected

Academic year: 2022

Membagikan "BAB VI PENYELESAIAN DERET UNTUK PERSAMAAN DIFERENSIAL"

Copied!
10
0
0

Teks penuh

(1)

54

BAB VI

PENYELESAIAN DERET UNTUK PERSAMAAN DIFERENSIAL

Bila persamaan diferensial linear homogen memiliki koefisien constant, maka persamaan tersebut dapat diselesaikan dengan metoda aljabar (seperti yang telah dijelaskan sebelumnya. Namun, bila persamaan tersebut harus diselesaikan dengan metoda yang lain.

1. METODA DERET POWER (Power Series Method) / PANGKAT

Metode deret power merupakan metoda dasar standar untuk menyelesaikan persamaan diferensial linear dengan koefisien yang berubah (variable coefficient).

DERET POWER/PANGKAT

Bentuk persamaan deret power adalah :

( − ) =( − ( − +

= disebut koefisien deret.

) konstant, pusat deret ) suatu variabel

Bila ) dinamakan deret power dalam power (Power Series Method of )

( ) =

Contoh yang terkenal dalam hal ini adalah deret Maclaurin, yaitu :

=

= − ) ) = + (

) ) = +

(2)

55

⋯~ ) (−=

( ) = − − +

) (−= =

( = ) −

,

, − + IDE dari Metode deret pangkat

Bila diberikan persamaan diferensial berikut :

…( ( )

Pertama, nyatakan …( dan ( dengan deret pangkat . Kemudian kita asumsikan suatu penyelesaian dalam bentuk deret pangkat dengan koefisien yang tidak diketahui.

) ) =

Substitusi deret tersebut dan diferensialnya,

) = ) = +

=

) ( − = ) +

Contoh :

− )

Solusi : Memasukkan persamaan diatas

( = + − ( = )

( =− ( − = ( − + )

Samakan koefisien diatas sama dengan nol

=− ) − =) − )

Selesaikan persamaan tersebut dalam bentuk

=) ) =) ) )

(3)

56

) +

) = + )

Contoh : selesaikan )

= + ) ( =

= , , , +

) = , +

=) ) ) = ) , , )

Maka ) , )

) ) ) ) )

) = + )

Contoh : )

( → → + ( =

) ( ( → = ( → + )

) coef. of

= ) coef. of =

→ ) coef. of

) − ) − = ) −

) dan = adalah sembarang.

Maka :

) = − − = =

,

, +

) = − − + =( −

,

, − +

(4)

57 Dari persamaan Maclaurin didapat :

) ⋯~ =

2. REDUKSI TINGKAT (Reduction of order)

Terkadang solusi ) =( diketahui untuk suatu persamaan linear tingkat dua homogen.

( =( ( )

Contoh : bila =) adalah solusi persamaan homogen.

− ) . Maka kita mungkin dapat membuat solusi ( . Prosedur ini disebut penurunan tingkat (Reduction of order).

Contoh : bila =) adalah solusi − ) , ( untuk Solusi : ) (

) )

Substitusi ke persamaan diatas ( − )

)

Bila dimisalkan ) ) .

Maka persamaan terakhir ini menjadi persamaan tingkat (orde) satu dalam variabel yang baru dan

)

)

Dengan menggunakan pemisahan variabel dan integral diperoleh :

) − )

) ) ) −=

Substitusi ke dalam bentuk :

) ) −= =

(5)

58 Maka solusi umumnya adalah

) = =

) = =

angka −= telah diserap dalam nilai konstan .

KASUS UMUM

Tahapan pengerjaan solusi kedua dari solusi yang telah diketahui Langkah 1 : Diberikan bahwa =( diketahui dari :

( =( ( ) (=

=( dan ( tulis solusi dari ( ) ( =( (

Langkah 2 : Substitusi dan turunannya ke pers (7)

Langkah 3 : Substitusi ) dan ) ke persamaan yang di dapat dari langkah 2.

Selesaikan persamaan dengan pemisahan variabel.

Langkah 4 : Integrasikan fungsi

( ) ( →(

Langkah 5 : Substitusi fungsi ( dari persamaan (3) ke pers (8) dan tulis solusi umum.

( ) = =( (

Contoh :

Fungsi =) merupakan solusi dari

− ( = ) pada interval . Tentukan solusi umum Solusi :

) ) (

) (

(6)

59 Substitusi ke persamaan PD orde (2)

( − ( = ( )

− ( = )

Substitusi ) dan ) ; menghasilkan = −= ) Karena dan . Solusi persamaan diatas menjadi

)

Dengan penerapan eksponensial pada kedua sisi menghasilkan : ) Integralkan :

)

) ) −( =

Substitusi fungsi (

) ) =) −( = ) −( =

Maka solusi umum :

) = ( =

3. Persamaan Euler

Tipe yang paling sederhana dari persamaan diff. orde 2 linear dengan koefisien yang berubah adalah persamaan Euler (disebut juga dengan Euler-Cauchy atau persamaan equidimensional).

Bentuk persamaan ini adalah :

) (=

a,b, constant. Pangkat dari sesuai dengan tingkat/orde turunan.

A. Penyelesaian Untuk positif

Persamaan (1) menyatakan bahwa beberapa fungsi dan turunannya, bila dikalikan dengan pangkat tertentu dari akan menghasilkan nol.

(7)

60 Bila kita asumsikan bahwa fungsi penyelesaian adalah pangkat dari ; maka :

) (

Dan diturunan

) =

) ( − =

Substitusi dan turunannya ke pers (1)

( − = = )

( − = )

( − = ) (

Maka fungsi pangkat ) menyelesaikan persamaan Euler (1) jika dan hanya jika adalah akar kuadrat dari pers (3).

Kasus 1 : Akar riil dan tertentu.

Dalam kasus ini = dan ( = adalah akar pers (3) dan menghasilkan =) =

dan )

= dan adalah bebas linear ; dari Wronskian test.

= ) =

= = = =

) ( − = = =

Maka solusi umum dari persamaan Euler dalam kasus ini adalah : ) = = Contoh :

Tentukan solusi umum untuk

− − )

Solusi :

Substitusi ) ke persamaan diferensial ( − = − − )

− − ) =) −= dan =)

(8)

61 Maka solusi umum adalah :

) = =

Kasus 2 :

Akarnya adalah gabungan riil dan kompleks =) dan ) − Penyelesaiannya adalah

) dan ) (,

Karena ) dan ) ⋯~ (dari Euler’s identity) Dengan substitusi ke pers (5); kita dapatkan ) ( ) ⋯~ (

(

Maka solusi pers (5) adalah

=) ⋯~ ( dan ) (

Sehingga penyelesaian umum dalam kasus ini :

) =⋯~ ( (

Contoh : Tentukan solusi umum dari

− , )

Solusi : substitusi ) ke persamaan diff.

( − = − , ) atau − , )

Akar-akarnya adalah : ) maka solusi umum :

) =⋯~ ( (

Kasus 3 : Akar-akar berulang/sama

Dengan asumsi adalah akar kuadrat yang sama dari pers (3)

( − = )

) − − =

) = (

(9)

62 Pada kasus ini akar yang berulang memberikan solusi

=)

Dengan menggunakan metoda reduksi tingkat (orde) kita dapatkan

) ( (

) = ) = ( − =

Substitusi dan turunannya ke persamaan Euler (1)

Karena adalah akar kuadratik persamaan (3), maka bagian ( − = )

Selanjutnya ( ) →→(

Substitusi persamaan (7) ke (9) menghasilkan

) (=

Substitusi ) dan ) ; diperoleh

) −= ) − atau ) =

Kemudian ) ) →(==

Setelah substitusi (11) ke (8) diperoleh

) )

Maka solusi umum dalam kasus ini adalah ) ( =

Contoh : Tentukan solusi umum dari

= )

Solusi : substitusi ) ke persamaan differensial

( − = = )

= ) ( )

)

( = ( − = )

(10)

63 Menghasilkan akar yang sama

) − − maka solusi umum :

) ( =

B. PENYELESAIAN untuk Negatif.

Asumsikan ) −

) ) −

) − | ) − | →

) − (−= )

(− (− − | )

)

Set ) ) Maka solusi akhir

Bila akar riil dan tertentu

) = =

Bila akar kompleks )

) =⋯~ ( (

Bila akar berulang

) ( =

Referensi

Dokumen terkait

Adanya kontradiksi antara teori mengenai tanggungjawab sosial dengan berbagai penelitian mengenai faktor yang mempengaruhi pengungkapan tanggung jawab sosial perusahaan

Lingkungan Keluarga terhadap Minat Berwirausaha pada Mahasiswa Prodi Manajemen Fakultas Ekonomi dan Bisnis USU tahun 2011”. 1.2

Telah kita ketahui bersama bahwa tembakau atau yang sudah dalam bentuk rokok merupakan salah satu penyumbang devisa terbanyak bagi Negara. Namun dari waktu ke waktu,

dalam hal hasil verifikasi sebagaimana dimaksud pada huruf e dinyatakan memenuhi syarat, DPRD DIY menetapkan Sultan Hamengku Buwono yang bertakhta sebagai Gubernur atau Adipati

Kondisi tersebut menunjukkan bahwa partisipan penelitian ini adalah individu dengan karakteristik kepribadian tidak pencemas, senang sendiri, cenderung konvensional dalam

Kebiasaan dan tradisi yang dilakukan orang-orang tanpa melalui penalaran apakah yang dilakukan baik atau buruk. Dengan demikian seseorang akan bertambah

Dari data prestasi belajar Bahasa Indonesia materi kemampuan menulis teks recount kelas IX A, nilai rata-rata prestasi belajar siswa adalah 70, di bawah nilai

Untuk ketentuan disiplin, pemberhitan dengan hormat tidak dengan hormat, BKD menyarankan agar mengajukan banding administrasi kepada BAPEK.Untuk keputusan yang memutuskan