• Tidak ada hasil yang ditemukan

2008 Small Area Estimation Using Natural Exponential Families With Quadratic Variance Function (NEF-QVF) For Binary Data (2008)

N/A
N/A
Protected

Academic year: 2017

Membagikan "2008 Small Area Estimation Using Natural Exponential Families With Quadratic Variance Function (NEF-QVF) For Binary Data (2008)"

Copied!
5
0
0

Teks penuh

(1)

FAMILIES WITH QUADRATIC VARIANCE FUNCTION

(NEF-QVF) FOR BINARY DATA

1

Kismiantini

Department of Mathematics Education,,Yogyakarta State University Karangmalang, Yogyakarta 55281, Indonesia

e-mail : kismi_uny@yahoo.com

Abstract. Small area estimation is a technique for handling a sample size not large enough to yield direct estimator of adequate precision. Small area typically refers to a small geographic area or a demographic group, such as county, municipality and age-sex-race group. Empirical Best Linear Unbiased Prediction (EBLUP), Empirical Bayes (EB) and Hierarchical Bayes (HB) are commonly used for small area estimation. EB and HB methods are applicable more generally to binary and count data. But EB is more difficult for binary data with covariates. Most of the existing small area estimation methods do not make use of survey weights. However, direct estimates are often survey weighted. This paper describes an application of natural exponential families with quadratic variance function (NEF-QVF) for binary data with covariates and weight to get EBLUP and EB estimators.

Keywords: small area estimation, NEF-QVF, EBLUP and EB estimators.

1. Introduction

When an analysis is targeted towards specific subpopulation such as county, municipality, sub municipality and other small domains where the sample size is not high, we run into the usual small area problems. There are many methods to get an estimator for small area estimation (SAE) i.e. Empirical Best Linear Unbiased Prediction (EBLUP), Empirical Bayes (EB) and Hierarchical Bayes (HB) (Rao, 2003). EB and HB methods are applicable more generally in the sense of handling models for binary and count data.

The study of Fay and Herriot (1979) was one of the first to apply linear empirical Bayes models to small area estimation. Others have studied the estimation of small area rates and binomial parameters using empirical and hierarchical Bayes approach. MacGibbon & Tomberlin (1989) proposed small area estimates of proportion via empirical Bayes technique for estimating census undercount for local areas which was based on a logistic regression model containing fixed and random effects. Malec, Sedransk, Moriarity and Le Clere (1997) used fully Bayes approaches to estimate proportions using data from the National Health Interview Survey. Farrel (2000) used a hierarchical Bayes methodology for estimating small area proportions, the idea consists of incorporating into a logistic regression model containing predictor variables, random effects which reflect the structure of the sample design. Unfortunately empirical Bayes technique for the logistic regression model containing fixed and random effects is quite cumbersome computationally (Rao, 2003). So HB method is more regular used to estimate proportion.

Most of the existing small area estimation methods do not make use of survey weights. However, direct estimates are often survey weighted. Ghosh & Maiti (2004) was develop a general methodology for finding empirical best linear unbiased predictors of small area means based on direct survey weighted estimators and natural exponential family quadratic variance function (NEF-QVF). They estimate also the proportion of poor children in the 5-7 years age-group for the different counties in one of the states in the United States. Sinha (2004) was proposed EB estimators of the small area means using general NEF-QVF to estimate the proportion of uninsured persons in a minority subpopulation.

This paper describe an application natural exponential families with quadratic variance function (NEF-QVF) for EBLUP and EB estimators to estimate the proportion the status of the ownership healthy card in 14 sub municipalities at Yogyakarta city.

1
(2)

.

2. Natural Exponential Families with Quadratic Variance Function (NEF-QVF)

Let

y

ij is the response of the jth unit in the ith small area (

j

=

1

,

,

n

i

;

i

=

1

,

,

k

), and let assumed that

y

ij has probability function (or probability density function) belonging to the natural exponential family, i.e.

(

y

ij ij

)

[

ij

{

ij

y

ij

( )

ij

} (

c

y

ij ij

)

]

f

θ

=

exp

ξ

θ

ψ

θ

+

,

ξ

(1)

where the

ξ

ij are assumed to be 1,

V

(

y

ij

θ

ij

)

=

υ

+

υ

µ

ij

+

υ

µ

ij2

=

Q

( )

µ

ij

2 1

0 , and

υ

0

,

υ

1

,

υ

2 are not simultaneously zero. The variance is at most a quadratic function of the mean, and then this family of distribution is usually referred to as natural exponential family quadratic variance function (NEF-QVF) (Morris, 1982 & 1983).

There are six basic NEF-QVF distributions: normal, Poisson, gamma, binomial, negative binomial, and generalized hyperbolic secant (GHS) distributions (Morris, 1983). For the binomial distribution,

0

0

=

υ

,

υ

1

=

1

and

υ

2

=

1

. For the Poisson distribution,

υ

0

=

υ

2

=

0

and

υ

1

=

1

. For the normal

distribution with known variance

σ

2,

ξ

ij

=

σ

−2,

υ

0

=

0

and

υ

1

=

υ

2

=

0

.

3. Empirical Best Linear Unbiased Predictor Estimator for Binary Data

Let

y

ij is the response of the jth unit in the ith small area (

j

=

1

,

,

n

i

;

i

=

1

,

,

k

), and let

=

=

i n j ij ij iw

w

y

y

1

is variable of interest, where

w

ij be the weighted attached to

y

ij. It is assumed that

the weights

w

ij are independent of the

y

ij. Suppose that the

y

ij are independent and

y

ij have probability function belonging to the natural exponential family at equation (1), with the quadratic

variance function structure,

V

( )

µ

i

=

µ

i

µ

i2, because

y

ij follows binomial distribution. Then, consider the conjugate prior with probability density function for

θ

i is

( )

θ

i

exp

[

λ

{

m

i

θ

i

ψ

( )

θ

i

} (

c

λ

,

m

i

)

]

π

=

+

(2)

where

( )

x

T

b

i i

g

m

=

,

i

=

1

,

,

k

. Here

x

i is the design vector for the ith small area, b is the regression coefficient and g is the link function. Then Morris (1983),

( )

i

m

i

E

µ

=

;

V

( )

µ

i

=

V

( ) (

m

i

λ

υ

2

)

,

λ

>

max

(

0

,

υ

2

)

(3) and then an empirical best linear unbiased predictor of

µ

i based on

y

iw (Ghosh & Maiti, 2004) is

(

iw

)

i iw

w i

i

r

ˆ

y

1

r

ˆ

m

ˆ

ˆ

=

+

µ

(4)

where

(

)

1

ˆ

1

ˆ

iw

=

+

i

r

λ

δ

,

λ

is usually 0.5 and 1,

ˆ

exp

( )

x

b

ˆ

[

1

exp

( )

x

T

b

ˆ

]

i T

i i

m

=

+

,

=

=

i n j ij ij iw

w

y

y

1 .

Morris (1983) proposed that

w

ij

=

δ

i

=

n

i−1.

4. Empirical Bayes Estimator for Binary Data

Let

y

ij is the response of the jth unit in the ith small area (

j

=

1

,

,

n

i

;

i

=

1

,

,

k

),

y

ij have probability function belonging to the natural exponential family at equation (1), with the quadratic

variance function structure,

V

(

y

ij

θ

ij

)

=

µ

ij

µ

ij2

=

Q

( )

µ

ij

, because

y

ij follows binomial
(3)

the weighted small area means =

=

j ij ij iw

w

1

µ

µ

. The direct unbiased estimator of

µ

iw is given by

=

=

i n j ij ij iw

w

y

y

1

.

The first step to get EB estimators of the small area means is began with the general NEF-QVF family of distributions along with a conjugate prior for the canonical parameter of the exponential model, i.e.

( )

θ

ij

exp

[

λ

{

m

i

θ

ij

ψ

( )

θ

ij

} (

c

λ

,

m

ij

)

]

π

=

+

(5)

where

m

ij

=

g

( )

x

Tij

b

,

j

=

1

,

,

n

i

;

i

=

1

,

,

k

, and

x

i is the design vector for the jth unit in the

ith small area, and g is the link function. Then Morris (1983),

( )

ij

m

ij

E

µ

=

;

V

( )

µ

ij

=

Q

( )

m

ij

(

λ

υ

2

)

,

λ

>

max

(

0

,

υ

2

)

(6) Further, with logistic representation,

m

i

=

exp

( )

x

Ti

b

[

1

+

exp

( )

x

Ti

b

]

, after resulting estimator by

b

ˆ

, an EB estimator of

p

ij (Sinha, 2004) is given by

( )

b

ˆ

1

1

1

ˆ

EB ij ij

ij

y

m

p

+

+

+

=

λ

λ

λ

(7)

and then an EB estimator of

=

=

i n j ij ij iw

w

p

1

µ

is =

=

i n j EB ij ij B

iw

w

p

1

ˆ

ˆ

µ

(8)

where

λ

is usually 0.5 and 1. In this paper weight

w

ij is assumed be

n

ij−1.

5. Data Analysis

Binary data is used to illustrate the EBLUP and EB methods to estimate the proportion of the status of the ownership healthy card. The data is obtained from “Survei Sosial Ekonomi Nasional (SUSENAS) 2003” with information based on household and “PODES 2003” as sources of covariates data. The data is taken from 14 sub municipalities at Yogyakarta city. A variable of interest is proportion of the status of the ownership healthy card, response variable

y

i is sum of household which has the status of the ownership healthy card in the ith sub municipality, ni is sum of household in the ith sub municipality. As covariates are proportion of pre-welfare and welfare 1 household, proportion of PLN electrics costumer household, and proportion of telephone customer household. [image:3.612.102.512.573.710.2]

Analysis of the data using SAS 9.1 i.e. PROC GENMOD to get

b

ˆ

, and PROC IML to get estimator of the proportion of the status of the ownership healthy card.

Table 1 Estimation of the proportion of the status of the ownership healthy card

No. Sub Municipalities

Sample Size yi

Direct Estimator EBLUP Estimator EB Estimator

1 Mantrijeron 32 1 0.0085 0.0087 0.0058

2 Kraton 32 4 0.0364 0.0364 0.0244

3 Mergangsan 64 7 0.0389 0.0389 0.0260

4 Umbulharjo 128 4 0.0130 0.0130 0.0087

5 Kotagede 32 8 0.0625 0.0624 0.0418

6 Gondokusuman 112 9 0.0333 0.0333 0.0223

7 Danurejan 32 7 0.0543 0.0542 0.0363

(4)

10 Ngampilan 16 0 0.0000 0.0005 0.0003

11 Wirobrajan 48 2 0.0167 0.0168 0.0112

12 Gedong tengen 32 4 0.0412 0.0412 0.0276

13 Jetis 48 6 0.0373 0.0373 0.0249

14 Tegalrejo 64 13 0.0644 0.0643 0.0430

Table 1 show that each sub municipality has a small number of proportions. It means most household does not have the healthy card. In Pakualaman and Ngampilan sub municipalities have zero data for sum of household which has the status of the ownership healthy card, so direct estimators is zero, but EBLUP and EB methods can perform the estimator values.

Figure 1. Proportion of the ownership of healthy card based on direct, EBLUP and EB estimators

Figure 1 shows proportion estimates form a variety method, EBLUP estimators is more closed to the direct estimators than EB estimators.

6. Conclusions

There are a number of problems with NEF-QVF for estimates the proportion using EBLUP and EB describe here. The weight determination is necessary to find out for EB estimators. A comparison for direct, EBLUP and EB estimators can be done by calculated mean square error from each method.

7. Acknowledgements

I would like to thank small area estimation group at IPB for science recognition and discussion.

8. References

Farrel PJ. 2000. Bayesian inference for small area proportions. Sankhy : The Indian Journal of Statistics

62: 402–416.

Fay RE, Herriot RA. 1979. Estimates of income for small places: an application of James-Stein procedures to census data. Journal of the American Statistical Association 74: 269-277.

[image:4.612.99.512.79.145.2] [image:4.612.142.471.212.426.2]
(5)

National Health Interview survey. Journal of the American Statistical Association 92: 815-826.

MacGibbon, B. and Tomberlin, T.J. (1989). Small area estimates of proportions via empirical Bayes techniques. Survey Methodology 15: 237–252.

Morris CN. 1982. Natural exponential families with quadratic variance functions. The Annals of Statistics

10: 65-80.

Morris CN. 1983. Natural exponential families with quadratic variance functions: statistical theory. The Annals of Statistics 11: 515-529.

Rao JNK. 2003. Small Area Estimation. New Jersey: John Wiley & Sons.

Gambar

Table 1 Estimation of the proportion of the status of the ownership healthy card
Table 1 show that each sub municipality has a small number of proportions. It means most household does not have the healthy card

Referensi

Dokumen terkait

Dari nilai tersebut dapat di artikan bahwa H1 diterima dan Ho ditolak yang berarti ada hubungan pengetahuan ibu tentang stimulasi motorik kasar dengan

Pada penelitian tindakan ini, motivasi belajar matematika siswa dapat meningkat dengan diterapkannya langkah-langkah yang terdapat pada model pembelajaran kooperatif

=varium diseut juga indung telur, terdiri atas korteks dan medulla" Pada  agian !ermukaan dili!uti la!isan e!itel germinativum eru!a e!itel sela!is kuis"

Penambahan ketan hitam dalam pembuatan kopi bubuk memberikan pengaruh nyata terhadap kadar air, kadar abu, kadar kafein, antioksidan dan penilaian sensori secara

Bahan utama yang digunakan dalam pembuatan kue basah adalah tepung, bak berupa tepung terigu, tepung beras, tepung jagung, tepung tapioka, maupun sagu tergantung dari jenis kue

penulisan skripsi ini yang berjudul “Pertanggungjawaban Direksi Dalam Penyampaian Laporan Keuangan Yang Menyesatkan / Misleadingstatement ; Suatu Analisis Terhadap UU

❖ Sekolah tidak dapat mengetahui keberhasilan proses pembelajaran terhadap kompetensi lulusannya dalam memanfaatkan kompetensi pengetahuan dan keterampilan siswa untuk

Penelitian serupa yang pernah dilakukan Ionescu, Badescu dan Acaluschi (2015) juga mendukung penelitian ini karena dalam penelitian tersebut didapatkan hasil