• Tidak ada hasil yang ditemukan

Paper-1-Acta23.2010. 147KB Jun 04 2011 12:03:09 AM

N/A
N/A
Protected

Academic year: 2017

Membagikan "Paper-1-Acta23.2010. 147KB Jun 04 2011 12:03:09 AM"

Copied!
14
0
0

Teks penuh

(1)

SUBORDINATION AND SUPERORDINATION PROPERTIES OF MULTIVALENT FUNCTIONS DEFINED BY EXTENDED

MULTIPLIER TRANSFORMATION

M. K. Aouf, A. Shamandy, R. M. El-Ashwah and E. E. Ali

Abstract. In this paper, we study different applications of the theory of dif-ferential subordination and superordination results for certain normalized analytic functions in the open unit disc, which are acted upon by a class of extended multi-plier transformation.

2000Mathematics Subject Classification: 30C45. 1. Introduction

LetH(U) denotes the class of analytic functions in the open unit discU ={z∈

C :|z|<1} and let H[a, p] denotes the subclass of the functions f ∈ H(U) of the form

f(z) =a+apzp+ap+1zp+1+. . . (a∈C, p∈N={1,2, . . .}). (1.1) Also, let A(p) be the subclass of the functionsf ∈H(U) of the form

f(z) =zp+ ∞

X

k=p+1

akzk (p∈N), (1.2)

and set A≡A(1).

Forf, g ∈H(U), we say that the function f (z)is subordinate to g(z), written symbolically as follows:

f ≺g or f(z)≺g(z) ,

if there exists a Schwarz function w(z), which (by definition) is analytic in U with

(2)

f(z)≺g(z) ⇔f(0)≺g(0) and f(U)⊂g(U).

Supposing thatp and h are two analytic functions inU, let

ϕ(r, s, t;z) :C3×U C.

If p andϕ(p(z), zp′(z), z2p′′(z);z) are univalent functions in U and if p satisfies the second-order superordination

h(z)≺ϕ(p(z), zp′(z), z2p′′(z);z), (1.3) then p is called to be a solution of the differential superordination (1.3). (If f is subordinate to F, thenF is superordination tof). An analytic function q is called a subordinant of (1.3), if q(z) ≺ p(z) for all the functions p satisfying (1.3). A univalent subordinant eq that satisfies q ≺qefor all of the subordinants q of (1.3), is called the best subordinant (cf., e.g.,[11], see also [12]).

Recently, Miller and Mocanu [13] obtained sufficient conditions on the functions

h,q and ϕfor which the following implication holds:

k(z)≺ϕ(p(z), zp′(z), z2p′′(z);z)⇒q(z)≺p(z). (1.4) Using the results Miller and Mocanu [13], Bulboaca [5] considered certain classes of first-order differential superordinations as well as superordination preserving inte-gral operators [4]. Ali et al. [1], have used the results of Bulboaca [5] and obtained sufficient conditions for certain normalized analytic functions f(z)to satisfy

q1(z)≺

zf′ (z)

f(z) ≺q2(z), (1.5)

whereq1 andq2are given univalent functions inU withq1(0) = 1.Shanmugam et al. [17] obtained sufficient conditions for normalized analytic functions f(z) to satisfy

q1(z)≺

f(z)

zf′

(z) ≺q2(z), and

q1(z)≺ z

2f′ (z)

{f(z)}2 ≺q2(z),

(3)

Definition 1[6]. Let the function f(z) ∈ A(p). For m ∈ N0 = N ∪ {0}, λ ≥ 0, ℓ≥0.The extended multiplier transformationIpm(λ, ℓ) on A(p) is defined by the following infinite series:

Ipm(λ, ℓ)f(z) =zp+ ∞

X

k=p+1

p+λ(k−p) +ℓ p+ℓ

m

akzk. (1.6) (λ≥0;ℓ≥0;p∈N;m∈N0;z∈U).

We can write (1.6) as follows:

Ipm(λ, ℓ)f(z) = (Φp,mλ,ℓ ∗f)(z),

where

Φp,mλ,ℓ (z) =zp+ ∞

X

k=p+1

p+λ(k−p) +ℓ p+ℓ

m

zk. (1.7)

It is easily verified from (1.6), that

λz(Ipm(λ, ℓ)f(z))′ = (p+ℓ)Ipm+1(λ, ℓ)f(z)−[p(1−λ) +ℓ]Ipm(λ, ℓ)f(z) (λ >0). (1.8) We note that:

Ip0(λ, ℓ)f(z) =f(z) , Ip1(1,0)f(z) = zf ′

(z)

p and I

2

p(1,0)f(z) =

z(zf′(z))′

p2 .

Also by specilizing the parameters λ, ℓ, m and p, we obtain the following operators studied by various authors:

(i) Ipm(1, ℓ) =Ip(m, ℓ)f(z) (see Kumar et al. [10] and Srivastava et al. [18]); (ii)Ipm(1,0)f(z) =Dpmf(z) (see [3], [9] and [15]);

(iii) Im

1 (1, ℓ)f(z) =Iℓmf(z) (see Cho and Kim [7] and Cho and Srivastava [8]); (iv)I1m(1,0) =Dmf(z) (m∈N0) (see Salagean [16]);

(v) I1m(λ,0) =Dλm (see Al-Aboudi [2]); (vi)Im

1 (1,1) =Imf(z) (see Uralegaddi and Somanatha [19]); (vii) Ipm(λ,0) =Dλ,pm f(z), where Dλ,pm f(z) is defined by

Dmλ,pf(z) =zp+ ∞

X

k=p+1

p+λ(k−p)

p

m

(4)

2.Preliminaries

In order to prove our subordination and superordination results, we make use of the following known definition and lemmas.

Definition 2[13]. Denote by Q the set of all functions f (z)that are analytic and injective on U \E(f), where

E(f) ={ζ :ζ ∈∂U and lim

z→ζf(z) =∞}, (2.1) and are such that f′

(ζ)6= 0 forζ ∈∂U\E(f).

Lemma 1 [12]. Let the function q(z) be univalent in the unit disc U, and let θ

and ϕ be analytic in a domain D containing q(U), with ϕ(w)6= 0 when w∈q(U). SetQ(z) =zq′

(z)ϕ(q(z)), h(z) =θ(q(z)) +Q(z) and suppose that (i) Qis a starlike function in U,

(ii) Re

zh′

(z)

Q(z)

>0f or z∈U.

If pis analytic in U withp(0) =q(0), p(U)⊆D and

θ(p(z)) +zp′

(z)ϕ(p(z))≺θ(q(z)) +zq′

(z)ϕ(q(z)), (2.2) then p(z)≺q(z), and q is the best dominant .

Lemma 2 [17]. Let q be a convex function in U and let ψ ∈C with δ ∈ C∗ =

C\{0} with

Re 1 +zq ′′

(z)

q′(z)

!

>max

0;−Reψ

δ

, z∈U.

If p(z) is analytic inU, and

ψp(z) +δzp′

(z)≺ψq(z) +δzq′

(z), (2.3)

then p(z)≺q(z), and q is the best dominant .

Lemma 3 [4]. Let q(z) be a convex univalent function in the unit disc U and let θ

and ϕbe analytic in a domain D containing q(U). Suppose that (i) Re

θ′

(q(z))

ϕ(q(z))

>0 forz∈U; (ii)zq′

(z)ϕ(q(z)) is starlike inU.

If p∈H[q(0),1]∩Q withp(U)⊆D, andθ(p(z)) +zp′

(z)ϕ(p(z)) is univalent inU, and

θ(q(z)) +zq′

(z)ϕ(q(z))≺θ(p(z)) +zp′

(5)

then q(z)≺p(z), andq is the best subordinant.

Lemma 4[13]. Let q be convex univalent in U and let δ ∈C, with Re (δ) >0. If

p∈H[q(0),1]∩Q and p(z) +δzp′

(z) is univalent in U, then

q(z) +δzq′

(z)≺p(z) +δzp′

(z), (2.4)

implies

q(z)≺p(z) (z∈U) and q is the best subordinant .

3.Subordination results for analytic functions

Unless otherwise mentioned we shall assume throught this paper that λ > o, ℓ≥0, p∈N and m∈N0.

Theorem 1. Let q be univalent in U, with q(0) = 1,β ∈C∗

. Suppose q satisfies

Re 1 +zq ′′

(z)

q′(z)

!

>max

0;−Re 1

β

. (3.1)

If f ∈A(p), Ipm+1(λ, ℓ)f(z)6= 0 (z∈U∗

=U − {0}) and satisfies the subordination Φ(f, β, p, m, λ, ℓ)≺q(z) +βzq′

(z), (3.2)

where

Φ(f, β, p, m, λ, ℓ) = I m

p (λ, ℓ)f(z)

Ipm+1(λ, ℓ)f(z) +β

p+ℓ

λ (

1−I

m+2

p (λ, ℓ)f(z)Ipm(λ, ℓ)f(z)

Ipm+1(λ, ℓ)f(z)2

) ,

(3.3) then

Im

p (λ, ℓ)f(z)

Ipm+1(λ, ℓ)f(z)

≺q(z), (3.4)

and q is the best dominant of (3.2). Proof Define the functionp(z) by

p(z) = I m

p (λ, ℓ)f(z)

Ipm+1(λ, ℓ)f(z)

(z∈U). (3.5)

Then the function p is analytic in U andp(0) = 1.Therefore, differentiating (3.5) logarithmically with respect to z, and using the identity (1.8) in the resulting equa-tion, we have

zp′ (z)

p(z) =β

p+ℓ

λ (

1

p(z) −

Ipm+2(λ, ℓ)f(z)

Ipm+1(λ, ℓ)f(z)

)

(6)

and

p(z) +βzp′ (z) =

Ipm(λ, ℓ)f(z)

Ipm+1(λ, ℓ)f(z) +β

p+ℓ

λ (

1−I

m+2

p (λ, ℓ)f(z)Ipm(λ, ℓ)f(z)

Ipm+1(λ, ℓ)f(z)

2

)

. (3.7)

The subordination (3.1) from hypothesis becomes

p(z) +βzp′

(z)≺q(z) +βzq′

(z). (3.8)

The assertion(3.4) of Theorem 1 now follows by an application of Lemma 2. Puttingm=ℓ= 0 in Theorem 1, we obtain the following corollary. Corollary 1. Assume that (3.1) holds. If f ∈A(p), β∈C∗

, and

Ψ(f, β, p, λ)≺q(z) +βzq′

(z), (3.9)

where

Ψ(f, β, p, λ) =

1−β

λ(2−λ)p

f(z)

h

(1−λ)f(z) +λpzf′ (z)i

+

βp λ

  

1−

λ p

2

z2f′′(z)f(z)−(1−λp)f2(z)

h

(1−λ)f(z) + λpzf′ (z)i2

  

 (3.10)

then

f(z)

h

(1−λ)f(z) +λpzf′ (z)i

≺q(z), (3.11)

and q is the best dominant .

Remark 1. Putting p= 1 in Corollary 1, we obtain the result obtained by Nechita [14, Corollary 6].

Putting λ= 1 andℓ= 0 in Theorem 1 we obtain the following corollary. Corollary 2. Assume that (3.1) holds. If f ∈A(p), β∈C∗

, and

Dpmf(z)

Dmp +1f(z) +βp

(

1−D

m+2

p f(z).Dmp f(z)

Dpm+1f(z)

2

)

≺q(z) +βzq′

(7)

then

Dm p f(z)

Dpm+1f(z)

≺q(z), (3.15)

and q is the best dominant .

Remark 2. Putting p= 1 in Corollary 2, we obtain the result obtained by Nechita [14, Corollary 7] and correct the result obtained by Shanmugam et al. [17, Theorem 5.1].

Putting m=ℓ= 0 and λ= 1 in Theorem 1, we obtain the following corollary. Corollary 3. Assume that (3.1) holds. If f ∈A(p), β∈C∗

,and

(1−βp)pf(z)

zf′(z) +βp

(

1− z

2f′′

(z)f(z)−p(p−1)f2(z) [zf′(z)]2

)

≺q(z) +βzq′

(z), (3.16)

then

pf(z)

zf′(z) ≺q(z) (3.17)

and q is the best dominant .

Remark 3. Putting p = 1 in Corollary 3, we obtain the result obtained by Shan-mugam et al. [17, Theorem 3.2].

Puttingq(z) = 1 +Az

1 +Bz (−1≤B < A≤1) in Theorem 1, we obtain the following

corollary.

Corollary 4. Let −1≤B < A≤1, β∈C∗

,and suppose that

Re

1−Bz

1 +Bz

>max

0,−Re 1

β

. (3.18)

If f ∈A(p),and

Φ(f, β, p, m, λ, ℓ)≺ 1 +Az

1 +Bz +β

(A−B)z

(1 +Bz)2, where Φ(f, β, p, m, λ, ℓ) is given by (3.3), then

Im

p (λ, ℓ)f(z)

Ipm+1(λ, ℓ)f(z)

≺ 1 +Az

(8)

and q(z) = 1 +Az

1 +Bz is the best dominant.

Putting A= 1 and B=−1 in Corollary 4, we obtain the following corollary. Corollary 5. If f ∈A(p) and β ∈C∗

satisfy Φ(f, β, p, m, λ, ℓ)≺ 1 +z

1−z +

2βz

(1−z)2, where Φ(f, β, p, m, λ, ℓ) is given by (3.3), then

Ipm(λ, ℓ)f(z)

Ipm+1(λ, ℓ)f(z)

≺ 1 +z

1−z

and q(z) = 1 +z

1−z is the best dominant.

4.Superordination and sandwich results

Theorem 2. Let q be convex univalent in U, β ∈C.Suppose

Reβ >0. (4.1)

If f ∈A(p), Ipm(λ,ℓ)f(z)

Ipm+1(λ,ℓ)f(z) ∈

H[q(0),1]∩Q, Φ(f, β, p, m, λ, ℓ) is univalent in the unit disc U, where Φ(f, β, p, m, λ, ℓ) is defined by (3.3). and

q(z) +βzq′

(z)≺Φ(f, β, p, m, λ, ℓ), (4.2) then

q(z)≺ I

m

p (λ, ℓ)f(z)

Ipm+1(λ, ℓ)f(z) and q is the best subordinant of (4.1).

Proof. Define the functionp(z) by (3.5). Differentiating (3.5) logarithmically with respect toz, and using the identity (1.8) in the resulting equation, we have

p(z) +βzp′

(z)≺Φ(f, β, p, m, λ, ℓ). (4.3) Theorem 2 follows by an applying of Lemma 4.

Putting m=ℓ= 0 in Theorem 2, we obtain the following corollary.

Corollary 6. Let q be convex in U with q(0) = 1, and β ∈C, Reβ > 0. If f ∈ A(p), h f(z)

(1−λ)f(z)+λ pzf

(z)i ∈ H[q(0),1]∩Q, Ψ(f, β, p, λ) is univalent in the unit disc

U, where Ψ(f, β, p, λ) is defined by (3.10), and

q(z) +βzq′

(9)

then

q(z)≺ h f(z)

(1−λ)f(z) +λpzf′ (z)i

(4.5)

and q is the best subordinant.

Putting λ= 1 andℓ= 0 in Theorem 2, we obtain the following corollary. Corollary 7. Let qbe convex in U with q(0) = 1, and β∈C,Reβ >0.If f ∈A(p)

Dm pf(z)

Dm+1p f(z) ∈ H[q(0),1]∩Q,

Dm pf(z)

Dpm+1f(z) +βp

1− D

m+2

p f(z).Dpmf(z)

[Dm+1p f(z)] 2

is univalent in the unit disc U, and

q(z) +βzq′

(z)≺ D

m p f(z)

Dmp +1f(z) +βp

(

1−D

m+2

p f(z).Dpmf(z)

Dmp +1f(z)

2

)

, (4.6)

then

q(z)≺ D

m p f(z)

Dpm+1f(z)

,

and q is the best subordinant .

Remark 4. Putting p= 1 in Corollary 7, we obtain the result obtained by Nechita [14, Corollary 12] and correct the result obtained by Shanmugam et al. [17, Theorem 5.3].

Combining Theorem 1 and Theorem 2, we get the following sandawich theorem. Theorem 3. Let q1, q2 be convex in U with q1(0) =q2(0) = 1,β ∈C, Reβ >0and

q2(z)satisfies (3.1). If f ∈A(p), Ipm(λ,ℓ)f(z)

Ipm+1(λ,ℓ)f(z) ∈

H[q(0),1]∩Q, Φ(f, β, p, m, λ, ℓ) is univalent in the unit disc U, where Φ(f, β, p, m, λ, ℓ) is defined by (3.3) and

q1(z) +βzq1′(z)≺Φ(f, β, m, λ, ℓ)≺q2(z) +βzq′2(z), (4.7) then

q1(z)≺ I

m

p (λ, ℓ)f(z)

Ipm+1(λ, ℓ)f(z)

≺q2(z)

and the functionsq1, q2 are respectively the best subordinant and the best dominant. Theorem 4. Let q(z) be univalent inU with q(0) = 1, β∈C∗

. Assume that (3.1) holds. If f ∈A(p),

ζ(f, β, m, p, λ, ℓ)≺q(z) +βzq′

(z) (4.8)

where

(10)

1 +β

p+ℓ λ

zpI

m+1

p (λ, ℓ)f(z)

Im

p (λ, ℓ)f(z)

2 +β

p+ℓ

λ

(4.9)

zpIpm+2(λ, ℓ)f(z)

Im

p (λ, ℓ)f(z)

2 −2β

p+ℓ

λ

zp

Ipm+1(λ, ℓ)f(z)2

Im

p (λ, ℓ)f(z)

3 ,

then

zpI

m+1

p (λ, ℓ)f(z)

Im

p (λ, ℓ)f(z)

2 ≺q(z) (4.10)

and q is the best dominant .

Proof. Define the functionp(z) by

p(z) =zpI

m+1

p (λ, ℓ)f(z)

Im

p (λ, ℓ)f(z)

2 (z∈U). (4.11)

Then, simple computations show that

zp′ (z)

p(z) =p+

zIm+1

p (λ, ℓ)f(z)

Ipm+1(λ, ℓ)f(z)

−2z

Im

p (λ, ℓ)f(z)

Im

p (λ, ℓ)f(z)

. (4.12)

We use the identity (1.8) in (4.12) we obtain

zp′ (z)

p(z) =

p+ℓ λ

(

1 +I m+2

p (λ, ℓ)f(z)

Im

p (λ, ℓ)f(z)

−2I m+1

p (λ, ℓ)f(z)

Im

p (λ, ℓ)f(z)

)

and

p(z) +βzp′ (z) =

1 +β

p+ℓ λ

zpI

m+1

p (λ, ℓ)f(z)

Im

p (λ, ℓ)f(z)

2 +β

p+ℓ

λ

.

.z

pIm+2

p (λ, ℓ)f(z)

Im

p (λ, ℓ)f(z)

2 −2β

p+ℓ

λ

zp

Ipm+1(λ, ℓ)f(z)2

Im

p (λ, ℓ)f(z)

3 .

The subordination (4.9) becomes

p(z) +βzp′

(z)≺q(z) +βzq′ (z).

Theorem 4 follows by an applying of Lemma 2.

(11)

Corollary 8. Letq(z) be univalent in U withq(0) = 1, β∈C∗

. Assume that (3.1) holds. If f ∈A(p),

(1 +βp)(1−λ)z p

f(z) +

λ

p + (2λ−1)β

zp+1f′ (z) [f(z)]2 +

βλ p

zp+2f′′(z) [f(z)]2 −2β

λ p

zp+2hf′(z)i2

[f(z)]3 ≺q(z) +βzq ′

(z) (4.13) then

(1−λ) z p

f(z)+

λ p

zp+1f′(z)

[f(z)]2 ≺q(z), (4.14) and q is the best dominant .

Remark 5. Putting p= 1 in Corollary 8, we obtain the result obtained by Nechita [14, Corollary 15].

Putting λ= 1 andℓ= 0 in Theorem 4, we obtain the following corollary. Corollary 9. Let q(z) be univalent in U with q(0) = 1, β∈C∗

. Assume that (3.1) holds. If f ∈A(p),

(1 +βp)z pDm+1

p f(z)

Dm

p f(z)

2 +βp

zpDm+2 p f(z)

Dm

p f(z)

2 −2βp

zpDm+1 p f(z)

2

Dm

p f(z)

3 ≺q(z) +βzq

′ (z) (4.15) then

zpDpm+1f(z)

Dm

p f(z)

2 ≺q(z), and q is the best dominant .

Remark 6. Putting p= 1 in Corollary 9, we obtain the result obtained by Shan-mugam et al. [17, Theorem 5.4].

Puttingm=ℓ= 0 andλ= 1 in Theorem 4, we obtain the following corollary. Corollary 10. Let q(z) be univalent in U with q(0) = 1, β ∈ C∗

. Assume that (3.1) holds. If f ∈A(p),

zp+1f′(z)

p[f(z)]2 −β

zp+1 p

zp f(z)

′′

≺q(z) +βzq′

(12)

zp+1f′ (z)

p[f(z)]2 ≺q(z) and q is the best dominant.

Remark 7. Putting p = 1 in Corollary 10, we obtain the result obtained by Shanmugam et al. [17, Theorem 3.4].

Puttingq(z) = 1 +Az

1 +Bz (−1≤B < A≤1) in Theorem 4, we obtain the following

corollary.

Corollary 11. Letq(z) be univalent inU withq(0) = 1, β∈C∗

. Assume that (3.1) holds. If f ∈A(p),

ζ(f, β, p, m, λ, ℓ)≺ 1 +Az

1 +Bz +β

(A−B)z

(1 +Bz)2, (4.17)

where ζ(f, β, p, m, λ, ℓ) is given by (4.9), then

zpIpm+1(λ, ℓ)f(z)

Im

p (λ, ℓ)f(z)

2 ≺

1 +Az

1 +Bz (4.18)

and q(z) = 1 +Az

1 +Bz is the best dominant .

Next, applying Lemma 4, we have the following theorem.

Theorem 5. Let q be convex in U with q(0) = 1, and β ∈ C, Reβ >0. If f ∈ A(p), zpIpm+1(λ,ℓ)f(z)

[Im

p (λ,ℓ)f(z)]

2 ∈ H[q(0),1]∩ Q, ζ(f, β, p, m, λ, ℓ) is univalent in U, where

ζ(f, β, p, m, λ, ℓ) is defined by (4.9), and

q(z) +βzq′

(z)≺ζ(f, β, p, m, λ, ℓ), (4.19) then

q(z)≺ z

pIm+1

p (λ, ℓ)f(z)

Im

p (λ, ℓ)f(z)

2

and q is the best subordinant .

Puttingm=ℓ= 0 in Theorem 5, we obtain the following corollary.

Corollary 12. Let q be convex in U with q(0) = 1, and β ∈ C, Reβ > 0. If f ∈A(p) , (1−λ)fz(pz)pzp+1f

′ (z)

[f(z)]2 ∈H[q(0),1]∩Q. ζ(f, β, p, λ) is univalent in

U, where ζ(f, β, p, λ) is defined by (4.9), and

q(z) +βzq′

(13)

then

q(z)≺(1−λ) z p

f(z) +

λ p

zp+1f′ (z) [f(z)]2 and q is the best subordinant .

Remark 8. Putting p= 1 in Corollary 12, we obtain the result obtained by Nechita [14, Corollary 20].

Combining Theorem 4 and Theorem 5, we get the following sandawich theorem. Theorem 6. Let q1, q2 be convex in U with q1(0) =q2(0) = 1,β ∈C, Reβ >0and

q2(z)satisfies (3.1). Iff ∈A(p), z

pIm+1

p (λ,ℓ)f(z)

[Im

p (λ,ℓ)f(z)]

2 ∈H[q(0),1]∩Q,ζ(f, β, p, m, λ, ℓ) is

univalent in disc U, where ζ(f, β, p, m, λ, ℓ) is defined by (4.9) and

q1(z) +βzq′1(z)≺ζ(f, β, m, λ, ℓ)≺q2(z) +βzq′2(z), (4.21) then

q1(z)≺

zpIm+1

p (λ, ℓ)f(z)

Im

p (λ, ℓ)f(z)

2 ≺q2(z)

and the functions q1, q2 are, respectively, the best subordinant and the best domi-nant.

References

[1] R. M. Ali, V. Ravichandran, M. H. Khan and K. G. Subramaniam,Differential sandwich theorems for certain analytic functions, Far East J. Math. Sci., 15 (2004), no. 1, 87–94.

[2] F. M. Al-Oboudi, On univalent function defined by a generalized Salagean operator, Internat. J. Math. Math. Sci., 27(2004),1429-1436.

[3] M. K. Aouf and A.O. Mostaafa,On a subclass of p- valent functions prestar-like functions, Comput. Math. Appl., (2008), no. 55, 851-861.

[4] T. Bulboac˘a,A class of superordination preserving integral operators, Indag. Math. (New Series), 13 (2002), no. 3, 301–311.

[5] T. Bulboac˘a, Classes of first-order differential subordinations, Demonstratio Math., 35(2002), no. 2, 287–392.

(14)

[7] N. E. Cho and T. H. Kim, Multiplier transformations and strongly close-to-convex functions, Bull. Korean Math. Soc., 40(2003), no. 3, 399-410.

[8] N. E. Cho and H. M. Srivastava,Argument estimates of certain anaytic func-tions defined by a class of multipier transformafunc-tions, Math. Comput. Modelling, 37(2003), no. 1-2, 39-49.

[9] M. Kamali and H. Orhan, On a subclass of certian starlike functions with negative coefficients, Bull. Korean Math. Soc. 41 (2004), no. 1, 53-71.

[10] S. S. Kumar, H. C. Taneja and V. Ravichandran, Classes multivalent func-tions defined by Dziok-Srivastava linear operator and multiplier transformafunc-tions, Kyungpook Math. J. (2006), no. 46, 97-109.

[11] S. S. Miller and P. T. Mocanu, Differential subordinations and univalent functions, Michigan Math. J. 28(1981), 157-171.

[12] S. S. Miller and P. T. Mocanu,Differential Subordinations Theory and Ap-plications, Series on Monographs and Textbooks in Pure and Applied Math., No. 225, Marcel Dekker Inc. New York, Basel, 2000.

[13] S. S. Miller and P. T. Mocanu,Subordinatinations of differential superordi-nations, Complex Variables 48(2003), no.10, 815–826.

[14] V. O. Nechita, Differential subordinations and superordinations for analytic functions defined by the generalized Salagean derivative, Acta Universitatis Apulen-sis, no.16(2008), 143-156.

[15] H. Orhan and H. Kiziltunc,A generalization on subfamily of p-valent func-tions with negative coefficients, Appl. Math. Comput., 155 (2004), 521-530.

[16] G. S. Salagean,Subclasses of univalent functions, Lecture Notes in Math. ( Springer-Verlag ) 1013(1983), 362-372.

[17] T. N. Shanmugam, V. Ravichandran and S. Sivasubramanian, Differential sandwich theorems for some subclasses of analyitc functions, Austral. J. Math. Anal. Appl., 3(2006), no.1, Art. 8, 1-11.

[18] H. M. Srivastava, K. Suchithra, B. Adolf Stephen and S. Sivasubramanian, Inclusion and neighborhood properties of certian subclsaaes of multivalent functions of complex order, J. Ineq. Pure Appl. Math. 7(2006), no. 5, Art. 191, 1-8.

[19] B. A. Uralegaddi and C. Somanatha,Certain classes of univalent functions, In Current Topics in Analytic Function Theory, (Edited by H. M. Srivastava and S. Owa), World Scientfic Publishing Company, Singapore, 1992, 371-374.

M. K. Aouf, A. Shamandy, R. M. EL-Ashwah and E. E. Ali Department of Mathematics

Faculty of Science Mansoura University Mansoura 35516, Egypt.

Referensi

Dokumen terkait

Modal sosial pemilik UMK sektor informal di wilayah Jawa Timur yang menjadi responden dalam penelitian ini memiliki hubungan dengan kinerja bisnisnya pada beberapa

Berdasarkan pada hasil analisis SWOT dan melakukan formulasi strategi pengembangan bisnis terhadap usaha Artharaga fitness center, maka pengembangan bisnis yang

Bagi peserta yang keberatan atas pengumuman pemenang lelang tersebut di atas dapat mengajukan sanggahan secara tertulis kepada Pokja Pengadaan Jasa Konstruksi

Penelitian ini adalah penelitian kualitatif deskriptif dengan tema desain organisasi Star Model, dari Star Model, yang akan menjelaskan antara Strategy, Structure, People, Process,

Dari hasil analisis dan pembahasan yang telah dijelaskan pada bab sebelumnya, dapat ditarik kesimpulan bahwa Pengelolaan Sumber Daya Manusia yang dilakukan oleh pemilik

Dan metode pelatihan terkahir yang digunakan oleh pabrik kecap Wie Sin adalah sesuai dengan metode yang dikemukakan oleh (Dessler, 2003, p.222) yaitu on the job

Pokja Pemilihan Penyedia Barang/Jasa Pekerjaan pada Satker Peningkatan Keselamatan Lalu Lintas Angkutan Laut Pusat akan melaksanakan Pelelangan Umum dengan

[r]