• Tidak ada hasil yang ditemukan

The Future of Product Design pdf pdf

N/A
N/A
Protected

Academic year: 2019

Membagikan "The Future of Product Design pdf pdf"

Copied!
49
0
0

Teks penuh

(1)
(2)
(3)

The Future of Product Design

(4)

The Future of Product Design

by Jonathan Follett

Copyright © 2015 O’Reilly Media, Inc.. All rights reserved. Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are also available for most titles (http://safaribooksonline.com). For more information, contact our corporate/institutional sales department: 800-998-9938 or

corporate@oreilly.com. Editor: Angela Rufino

Production Editor: Melanie Yarbrough

Copyeditor: Octal Publishing

Interior Designer: David Futato

Cover Designer: Randy Comer

Illustrator: Rebecca Demarest

(5)

Revision History for the First Edition

2015-05-15: First Release

2015-06-17: Second Release

See http://oreilly.com/catalog/errata.csp?isbn=9781491928172 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. The Future of Product Design, the cover image, and related trade dress are trademarks of O’Reilly Media, Inc. The cover image is “3-D printing,” by CuriosityII, via Wikimedia Commons.

While the publisher and the author(s) have used good faith efforts to ensure that the information and instructions contained in this work are accurate, the publisher and the author(s) disclaim all responsibility for errors or omissions, including without limitation responsibility for damages resulting from the use of or reliance on this work. Use of the information and instructions contained in this work is at your own risk. If any code samples or other technology this work contains or describes is subject to open source licenses or the

intellectual property rights of others, it is your responsibility to ensure that your use thereof complies with such licenses and/or rights.

(6)

Chapter 1. The Future of

Product Design

(7)

A Product Design Renaissance

The world is changing. The lines between software and hardware blur; fresh approaches to manufacturing reduce the time from idea to market; and new smart objects and systems herald our connected future.1

A product design renaissance might be on its way, but despite all this

potential and promise — or maybe because of it — the ride could well be a bumpy one. The human aspect of the equation remains the x-factor. And, how we work together as participants in this product revolution, both as people and as organizations, will play a key role in the outcome.

There’s never been a better time to be a product designer, although there’s also perhaps never been a more confusing time, either. Today, the

combination of emerging technologies and powerful new resources and methods — from open source reference designs to crowdfunding — are democratizing innovation, compressing the design cycle, and reshaping the relationship between consumer and product. If the amalgam of user

experience (UX), software, industrial, material, and engineering design had a name, it would probably be product design — although it’s likely that

product designers themselves wouldn’t agree on it.

In this report, we’ll examine from a product designer’s perspective the ways in which these changes are disrupting design and the product lifecycle as well as considerations for people and companies looking at new ways of

approaching product innovation and creation. This is not an all-encompassing overview; rather, it’s a snapshot of a rapid evolution, as seen from the

(8)

Is This the Third Industrial Revolution?

Twenty-first century product design is being disrupted by factors both cultural and technological. The confluence of crowdsourcing, new

manufacturing methods, and other emerging technologies has set the stage for what we might call a Third Industrial Revolution. In a prescient article2 on

the next wave manufacturing phenomenon, The Economist postulated the following:

...the cost of producing much smaller batches of a wider variety, with each product tailored precisely to each customer’s whims, is falling. The factory of the future will focus on mass customization and may look more like... weavers’ cottages than Ford’s assembly line.

In this new revolution, economies of scale and the mass production required to reach these are replaced by the efficiency and leverage of highly targeted, rapidly developed, and, hopefully, less wasteful products that retain an artisanal value for the consumer.

Manufacturing for the mass market will no doubt remain for the many products that have a universal appeal, but for those items that truly intersect with our unique needs — that seem to have our personal imprint in them — these individualized products will grow and flourish in a new period of craftsmanship at scale.

In this burgeoning new era, the designer’s understanding of the user will be paramount — an in-depth comprehension that goes beyond typical use cases, workflows, or trite personas and begins to resemble something more like a relationship that grows over time.

(9)

avid athlete, custom training gear that adheres to changing body measurements and adjusts over time.

The “return to craftsmanship” will be transformative economically, as well. Research from McKinsey Global Institute indicates that by 2025, additive fabrication alone could have an impact of $550 billion3 as it changes forever

the manufacturing industry. Add this to the trillions of dollars of market disruption for the Internet of Things (IoT), robotics, and so on, and we can begin to appreciate the scale of change that is coming.

Reshaping the world

If past is indeed prologue, we must come to terms with the fact that although the emerging technologies of the Second Industrial Revolution — from the automobile to electric power — reshaped the world, they did so in many ways that were negative as well as positive. From rampant pollution to the abuse of our planet’s natural resources, the environmental consequences that are the Second Industrial Revolution’s legacy remain critical areas with which we must contend.

Fast forward to the twenty-first century: If we consider the massive number of new objects that a product renaissance — propelled by the IoT and 3D printing — could bring, introducing millions of new things into our world, it’s clear we must also consider design not just for mass adoption, but also for mass decline and return to the stream of natural resources.

Everyone can sketch on a napkin

How are new products imagined, created, tested, and produced? Generally speaking, this was once the purview of specialized professionals, backed by large companies, who had the resources and knowledge to invest in time-consuming R&D cycles, complex manufacturing lines, long supply chains, and expensive marketing and distribution. And even though there were certainly plenty of upstart startups and disruptors, these were far from the norm.

(10)
(11)

The Evolution of Product Design

(12)

New Ways of Working

Sometimes, we forget that we are still, relatively speaking, in the first moments of the information age, saddled with the legacy structures of the industrial past. These structures continue to govern and guide our interactions — from societal to organizational to interpersonal — despite being relics of a bygone era. As such, we are still discovering how to organize our efforts together when it comes to knowledge work, whether that be scientific discovery, engineering, design, or otherwise. But we are making progress. As the creative class discovers and implements new forms of collaboration around ideas and information, it opens new opportunities for building objects in both the digital and physical worlds. And, if building on the work of others is crucial to innovation and human advancement, the speed at which this work is disseminated and re-used is also a critical factor. What the age of information has given us is the ability to stand on the shoulders of others, taking advantage of their efforts, to build new work, ideas, and even funding in real time.

Preparing for a new product lifecycle

A product typically moves from design, to prototype, then into the marketplace, through growth and maturity, and finally into decline. For

decades, this model has given business stakeholders, designers, and engineers alike a way to understand and contextualize the interactions between a

product and the marketplace, and ultimately between the product and the many people who use it. It is on this foundation that the practice of product lifecycle management (PLM) has optimized the financing, development, manufacturing, and marketing for companies.

Today, this familiar model is being upended by emerging technologies that are not only reinvigorating existing categories but creating entirely new ones, as well. We can already see that the lines between software and hardware products disappearing as the many variants of the IoT — from connected objects such as wearables and automated appliances to sensor laden

(13)

think, the lines between biological and mechanical products will follow suit. Not only must companies contend with the difficulties of introducing

(14)

Part 1. Hello, Market!

(15)

A Tale from the Trenches: Prototyping at iRobot

For a decade, Scott Miller was an engineering lead at iRobot where he

contributed to the creation of the seminal in-home service robot: the Roomba automated vacuum cleaner. He is currently the CEO at Dragon Innovation, a hardware innovation and manufacturing consultancy.

Scott reflects on his experiences with prototyping the original Roomba and contrasts that with the prototyping process of today:

“Mechanically, we wanted to get a working prototype to be able to understand how the robot behaved in unstructured environments. We would create the files... and build $25,000 models of stereolithography, or SLA, which was incredibly brittle. There are all sorts of examples of us turning off the cliff detectors and having the robot just drive off the end of the table and shatter itself to pieces.

Today, you could pick MakerBot for FDM [Fused Deposition Modeling] or Formlabs for SLA, for a much cheaper price. In fact, for a couple thousand bucks, you can actually buy your own machine and be able to create models that work even better than what we had 10 or 15 years ago, at a fraction of the price, and a much quicker iteration cycle. Rather than having to wait a week or two weeks to get your parts back, you can even have them back in the morning. And this lets you go much faster.

On the electrical side at iRobot, when we wanted to build the first circuit board to spin the wheel modules, we had to get down to the bare metal and design our own H-bridge with flyback diodes and transistors, figure out what components to pick, and actually do the hardcore engineering. It took probably a month between designing it, sending the board out, getting the board back, and writing the code just to get a simple motor to spin.

Whereas today, literally in 20 minutes, my 7-year-old son can grab an Arduino, copy and paste some sample code, adjust the key variables, and he’s spinning motors.

(16)

Software and the Speed of Sharing

The speed, agility, and open ethos of the software world have made inroads into product design and engineering, as well. In the past, software systems for design and engineering were entirely closed, which limited sharing across big teams; even more significant, it discouraged it across the industry. But that is beginning to change as the sharing of mechanical and electrical designs means that such elements are reusable.

In the realm of software development, services such as GitHub make it easy to keep track of and share code — creating a virtuous cycle in which

designers and engineers can build upon the foundations of open source

libraries and contribute back to the larger community. Electrical engineers are starting to take a similar approach using services such as Upverter, where they can share reference designs. Although still in its early stages, Upverter has made the leap from an initial user base of hobbyists and hackers to enterprise clients. Similarly, on the mechanical side, GrabCAD makes it possible for engineers to share models so that they don’t need to design a product from the ground up.

The move to cloud-based software is also helping to accelerate product

design. In the past, something as essential as CAD software could be a barrier to entry for a startup. CAD software can be expensive, especially if you’re an early-stage company with a great idea for a product and not much else. Enter the next generation of CAD in the cloud, with less-expensive alternatives to traditional seat licenses, like subscription pricing and even free versions. CAD software is being reinvented with the nimble startups, makers, and hackers in mind. In this realm, both established players like Autodesk, with its Fusion 360 offering, and newcomers like Onshape, a company started by the former founders of SolidWorks, are competing to become the product designer’s choice.

(17)

making it possible now for designers to get something in a customer’s hands quickly. Although the first prototype version might well be unrefined and buggy, designers and engineers are able to learn much from quick iteration cycles, as opposed to trying to make that perfect initial product — an ethos not all that much different from that practiced by their counterparts in software.

And, on the business and finance side, crowdfunding is wrapping test

marketing, promotion, and preliminary sales into a convenient package. Early adopters from Kickstarter or IndieGoGo become your core test audience, giving startups a critical initial market for their new product ideas.

(18)

Part 2. Growth and the Difficulties of

Production in Volume

When you’ve proven there’s a product/market fit for your prototype and validated the features and price point, the next great challenge for product companies comes with the shift to manufacturing in volume. Not only do larger product runs require an equally large financial investment, but quality control becomes increasingly difficult.

If all goes well on the market side, the adoption rate for your product will accelerate — represented by the so-called growth “hockey stick” on the graph — as the product’s audience moves from early adopters to more general

acceptance.

Unlike the initial design and prototyping phases of the product lifecycle, change in manufacturing processes has been slower in coming, and for good reason. Factories still use steel molds to create injection-molded parts, which is by far the fastest and most reliable process for manufacturing runs of

(19)

A Tale from the Trenches: Technical Machine and the

Prototype-to-Production Problem

Technical Machine is a hardware startup headquartered in Berkeley, California, that has found a niche selling boards that interactive product designers can use from prototype into production. Technical Machine’s Tessel 2, shown in Figure 1-1, appeals to those entrepreneurs who find

(20)

Figure 1-1. The Tessel 2 board (Photo courtesy Technical Machine)

The team at Technical Machine realized that because most existing prototyping products on the market today weren’t designed to scale for

production, it could help product designers and engineers take that next step. The popular Raspberry Pi board, for instance, was designed to be a learning tool; try to put it into your production product, though, and you’ll find that the sourcing costs at volume make it prohibitive to use. Tessel 2 fills that gap, serving not just as a development board, but also as a path from development into production.

“If you’re generating the first batches of a product for early adopters, the volumes needed can be in the low thousands. With these kinds of numbers, it’s very possible that using an off-the-shelf part makes more sense

financially than building your own custom hardware,” says Jon McKay, CEO of Technical Machine. With the Tessel 2, Technical Machine is taking

advantage of the economies of scale for off-the-shelf parts while still

(21)

needs. As Figure 1-2 illustrates, this gives product designers a professional-looking offering, at an acceptable volume. “If [customers] are not using the Ethernet, or USB ports, [or] some of the ten-pin module ports, let’s just take those ports off and save them money on their bill of materials. That’s

relatively easy to do. We’re trying to find these creative ways to make

(22)

Figure 1-2. Tessel 2 modules (Photo courtesy Technical Machine)

(23)

A Tale from the Trenches: Dragon Innovation and the

Challenge of Going from One to Many

Dragon Innovation is a manufacturing services firm that helps both startups and established companies negotiate the difficult terrain of outsourced production and the challenge of moving from prototype to volume. “You have to pick a great contract manufacturer or factory to work with you. If you get this right, you can build a really strong foundation and create a successful company. But, if you get it wrong, then it’s like death by a thousand cuts, and it’s very, very difficult to recover,” says Scott Miller, Dragon’s CEO.

Dragon is on the forefront of manufacturing service innovation, making the process as transparent as possible and helping companies select factories from a comprehensive network of service providers, such as the one shown in

(24)
(25)
(26)

The Request-for-Quote process

For the product designer, understanding the ins and outs of putting together a Request for Quote (RFQ) can be intimidating. As a part of an RFQ package, the team at Dragon recommends that you have three to five factories bid on your work so that you can have a strong basis for a line-by-line pricing comparison.

The first part of the RFQ consists of a document describing the product, company, and team, as well as the key areas in which they’re looking for assistance from the factory. If you’re a startup, this document can be crucial because reputable factories in the Far East work with substantially larger customers, making money when shipping products in volume, not in short runs. It’s critical in the RFQ, therefore, that a startup illustrate for potential manufacturing partners the opportunity that comes from working with them. The second part of the RFQ is the Bill of Materials (BOM), which specifies all the component parts and quantities needed to construct the end product. The BOM is critical for having insight into the cost of everything that’s going into a product, as well as being able to make comparisons between different factories.

(27)

Figure 1-4. The factory floor (Photo courtesy Dragon Innovation)

“At Dragon, we’re always agnostic on where our customers build. The only thing we care [about] is that they succeed. Because we build a lot of

consumer electronics, China often makes sense; but if you’re doing lower volume — say, under 5,000 units, as a rough guideline — the United States makes tremendous sense,” adds Scott.

(28)

As product designers, it’s important that we understand how manufacturing processes work, how they could change in the future, where there are risks, and where there’s room for greater efficiency. However, with outsource manufacturing this can be difficult to do because the industry lacks

(29)

David meets Goliath: Achieving Innovation Speed for

Enterprise Companies

With emerging technologies moving more quickly than ever, it can be hard to steer a large vessel, such as an enterprise organization, to take advantage of them.

For larger companies that already have an established product portfolio and are seeing innovation happening at the grassroots level, the ability to utilize crowd-sourcing or rapid prototyping might still be problematic. The question comes down to this: when is it appropriate to retool a product process when you’ve got standard operational procedures that make money for you today? The ambiguity that can come with experimentation is always scary and potentially costly. And, there are many aspects of innovation process that don’t match up with the large company production methods optimized to do one thing really well.

(30)

Risk Taking and the Enterprise

Enterprise companies don’t want to lose out on opportunities because they can’t take risks; they need new ways to evaluate innovative ideas and make good decisions about developing their products. To solve this dilemma, innovating in small bites, by acquiring startups or forming incubators — where employees can have greater freedom to experiment outside the regular organizational structure — is a reasonable strategy. For example, the Boston area is a hotbed of large-company innovation lab activity, from CVS,

(31)

Small Pilots

In the past, starting the manufacturing of a new product in significant volume always required an enormous leap of faith. Unsurprisingly, the result was that many projects never saw the light of day — a difficult outcome for product designers, indeed. For even the largest of companies it can be understandably difficult to justify occupying a manufacturing facility and initiating a

100,000-unit run when you lack all but the most basic of market validation. However, in contrast today, as large companies recognize the importance of rapid innovation, they’re finding ways to run smaller pilot programs — manufacturing 5,000 to 10,000 units in order to get a full understanding of the product/market fit. By testing products in the market at a small scale and gathering data quickly, companies can make informed decisions about

whether they should scale-up manufacturing. If a company gets the signal that there’s strength to a product line, they can ramp up to full-scale

(32)

Developing Infrastructure

The product landscape is changing as Fortune 500 companies begin placing their bets on emerging technologies. At the 2015 Consumer Electronics Show (CES), Samsung announced its focus on the IoT and the connected home. This might have seemed like a big bet for the tech giant. The bigger play, however, might not be in the way Samsung changes people’s interactions with their home appliances, entertainment, and living environments, but rather in how the company creates the infrastructure that binds it all together. The IoT itself still lacks a solid infrastructure, which might still be years from being developed. “While the Internet itself is accessible, there remains a huge gap between the devices that we create and getting to the Internet,” says Ben Salinas, a designer and engineer at emerging technology consultancy,

Involution Studios. “WiFi networks require a lot of power to connect to and are inconsistent. They’re not universal. We see a lot of devices tethering to a phone to use that Internet connection. That still has issues.”

Salinas continues, “If you’re one of these small companies that are building a product for less than a few million dollars, you probably are playing with the frameworks that larger companies, like Samsung, Apple, and Microsoft, have already created.”

When it comes to emerging technologies, for entrepreneurs and smaller companies, the opportunities lie in bringing products to market quickly, even if you’re playing on someone else’s network or using someone else’s

(33)

Part 3. Product as Dialogue

We are approaching a moment when product lifecycle maturity does not preclude further innovation; rather, it provides a platform for it. In the past, companies have dealt with mature product lines — those with wide adoption but minimal growth — by adding more features and attempting to find new uses and audiences to rejuvenate them. Of the many places in the product development and manufacturing lifecycle that can be disrupted, this could be one of the most significant. Emerging technologies, especially the bevy of connected machines promised by the IoT, offer an opportunity for companies to not only regularly update, but also analyze usage data returning from these connected machines — making mass customization on a user level possible. This data-driven interplay between company and consumer, between user and designer, might begin to alter the product lifecycle to resemble more of an ongoing flow.

If data flow goes both ways — a conversation between designer and user, rather than a speech — the product represents a living relationship and is never fully completed. Rather than think about a finished product, as

designers we should also incorporate into our thinking how a company can be hyper-responsive to users of its products.

Connected devices and the IoT offer great potential for creating ongoing dynamic interaction. For example, consider a product such as a washing machine that can respond to energy cycles; variables, such as the speed and pattern of agitation, and the amount and temperature of water can be

(34)

A Tale from the Trenches: Making

LEO, The Maker

Prince

LEO, The Maker Prince is a book by Carla Diana (a Smart Design fellow and New York Times contributor) that celebrates emerging technology, inspiring young designers with a creative message, made possible by 3D printing. LEO, a visitor from space who you can see in Figure 1-5, prints 3D models based on sketches that are created by the book’s narrator. The imaginative tale can truly become real for readers, as designs of the characters are

(35)

Figure 1-5. LEO, The Maker Prince (Photo courtesy Carla Diana)

But where the book really shines, at least from a design standpoint, is as an example of a product as dialogue. Readers share their works on the book’s website and Diana makes ongoing adjustments to the designs based on input from them. So, the book in some sense, is always being updated, and Diana is having a conversation with the book’s readers through the medium of a

physical product.

One reason Diana created a children’s book about 3D printing was to put virtual objects such as those in Figure 1-6 out in the world as an experiment to see who downloaded them, why they downloaded them, and what they did with them. “That was a fascinating moment for me,” says Diana, “because I felt like, ‘Wow, you could have never done this before.’”

(36)
(37)

Figure 1-6. All of the characters from the book can be 3D printed. (Photo courtesy Carla Diana)

“I did that because I am envisioning this future where it comes to

(38)

A Tale from the Trenches: Understanding Consumer

Decision Making

How does a company know when it’s time to place a bet on emerging technologies?

“I think disruption for disruption’s sake will never win,” says Ellen DiResta, a strategic design advisor for companies like Sanofi and Becton Dickinson, and former Managing Director for innovation consultancy Design

Continuum.

DiResta goes on to say, “Every single client I have, I always love the moment when I say to them: ‘Nobody wants your products. No one wants to buy an extra thing. Nobody wants to think about your stuff. The people who think the most about your products are you guys. That’s it. You have to give them something. You have to enable them to do something. If you don’t know what that is, and you’re busy just focused on your thing, you will miss the mark eventually.’”

The relationship between the designer and the user of products is becoming ever closer. Understanding the intrinsic motivations of the population

engaged with your company is paramount to facilitating those relationships going forward. In many instances, companies base their product portfolios and their future plans on emerging technologies and how they expect those technologies to evolve. But the product-based relationship you have with your customers can be deeper and potentially longer standing.

DiResta suggests that companies need to avoid being seduced by the

functionality of a potentially disruptive technology; instead, they need to ask, “How can these capabilities better enable our customers?” At the same time, the product designer needs to understand the full extent of a technology’s capabilities, because from this knowledge, she can help define the desired user experiences.

(39)
(40)

Decision Motivators

“When I worked with a housewares company, I was interviewing women at home who had kids in school. One lived in a very depressed area and another person lived in Wellesley, Massachusetts, which is very affluent,” DiResta elaborates.

“They had very similar values. Their choices were very different because their means and their circumstances were very different. The woman in Wellesley sent her kids to public school, because she grew up so privileged and isolated and segregated... She felt like she lived in a bubble. She wanted her kids to have a chance to be more normal. Wanted and picked Wellesley and had a very, very nice house — but by her background standards, very modest — because she wanted her kids to be normal.”

“The other woman home-schooled her kids, because she felt that the school in town was just bad. Her house was not that great, but she said, “I can’t send my kids to this school and expect them to ever get out of this town.”

DiResta continues, “So you would say they are very, very different. But the way they made decisions and how they chose, if you reversed the two people, they would be making the same choices as each other. The values that those products or services had to speak to had to be the same.”

(41)

Part 4. Design for End-of-Life

Sooner or later, a product will reach the end of its useful life. As overall usage declines, a company will gradually reduce support for it, and eventually “sunset,” or phase-out, that product.

If one of the natural outcomes of a Product Renaissance will be a great many new products imagined and brought into the world, designers will

increasingly need to be concerned about the entirety of the product lifecycle including its decline, and perhaps most important, with what happens to the product after people are no longer using it.

Although we as designers might not like to admit it, the fact is that design and pollution are inexorably connected. The design activities in which we engage at the beginning of the product lifecycle inevitably create positive or negative environmental outcomes at its end-of-life. To effect positive

outcomes, we can and should ask: “What are the considerations for sustainability and environmental impact?”

This is not a new idea in design; rather, it is one whose time has come. The

Design for Environment (DfE) program, put in place by the United States Environmental Protection Agency (EPA) as far back as 1992, includes as a part of its toolkit the lifecycle assessment (LCA), “a systems-based approach to quantifying the human health and environmental impacts associated with a product’s life from ‘cradle to grave’.”

Today, using software tools such as thinkstep’s GaBi, designers can complete a product lifecycle assessment to determine its carbon, water, and overall environmental footprint, along with resource and energy efficiency for its manufacturing and usage.

We can select materials that are environmentally friendly early in the

manufacturing process, because recently there has been great innovation in materials such as biodegradable plastics.

(42)

their core components — from circuit boards to metal and plastic parts — and sending each of these into their appropriate recycling streams. Perhaps one day, hopefully in the not-too-distant future, we will have printed circuit boards (PCBs) designed for easy component removal, minimizing the need for desoldering and exposure to heavy metals.

Design for Remanufacturing (DfR) is a similar strategy that strives to remove durable components of a product at the end of its lifecyle, reprocess them, and use them once again in a newly created item.

Even though this kind of design for a product’s end-of-life — whether it be for disassembly and recycling or remanufacturing — does take more effort, there is a tremendous opportunity here for product designers to take

responsibility for and control of the aspects of the product lifecycle that were overlooked during previous eras. For both startups and large companies alike, this systemic view of product design is worth remembering, when

(43)

On-Demand Production

In the future, we can also consider that there might be no need to phase out products if manufacturing can be generated on demand and the price for creating individual versions is low. Today the print-on-demand segment of the publishing industry ensures that books with an audience will never go out of print. The digital files for any book can be stored in the cloud until a

(44)

Conclusion

In this evolving world of emerging technology and product creation,

designers who can create objects that are both compelling to the consumer and within the bounds of manufacturing capabilities will be exceptionally valuable. Understanding your materials — what they can do and what they can tolerate — is key, be they plastics and metals or pixels and code. With such an understanding, product designers can offer their insight, not only to envision future products, but also to think about the process for getting there. How do we approach product design and the evolving product lifecycle? Here, inspired by Dieter Rams, the influential industrial designer known worldwide for his landmark product designs for Braun and Vitsoe, we’ll conclude with three principles for good product design in this brave new world of emerging technologies:

Good product design serves as an enabler for people.

To make a product useful and understandable, our understanding of the user must be of primary importance.

Good product design is innovative in process.

Drawing on new ideas for working together — from crowdsourcing to open source reference designs — we can stand on the shoulders of others to create better products.

Good product design is environmentally friendly.

(45)

Companies, Products, and Links

Throughout this report, we’ve discussed a variety of companies and products to illustrate important concepts in and approaches to product design for

emerging technologies. Table 1-1 lists these companies and products, ordered alphabetically, along with relevant links to further information.

Table 1-1. List of companies discussed

Product Company Link

For a fabulous overview and vision of this universe and the technical trends driving it, check out the report “Building a Solid World” by O’Reilly editors Mike Loukides and Jon Bruner.

http://www.economist.com/node/21553017 (accessed April 20, 2015)

Disruptive technologies: Advances that will transform life, business and the global economy.

1

(46)

About the Author

Jonathan Follett is a principal at Involution Studios where he is a designer, business lead, and internationally published author on the topics of user experience and information design.

His most recent book, Designing for Emerging Technologies: UX for

Genomics, Robotics, and the Internet of Things (O’Reilly) was published in December 2014. He is also a co-author of Beautiful Data: The Stories Behind Elegant Data Solutions (O’Reilly). Over the past decade, Jon has written for online and print publications including A List Apart and UX Matters.

(47)

Acknowledgements

The universe of possibilities presented by emerging technologies, from the IoT to robotics to additive fabrication, is vast and intimidating but also

inspiring. Product design is changing so quickly that there can be no shame in admitting that even those of us closest to it can only guess where it’s going. The designers, engineers, and product folks who were kind enough to talk with me and inform and refine my thinking for this report include Drew Carlton, Carla Diana, Jeff Champagne, Ellen DiResta, Craig Mauch, Jon McKay, Scott Miller, and Ben Salinas. I couldn’t have put this together without them.

As usual, the O’Reilly Media editorial team was fantastically supportive. Both Mary Treseler and Angela Rufino have pushed me to articulate the promise I see in the design field of the twenty-first century.

I should say, as well, that my wife Jen tolerates my late night writing binges, of which she has supported more than her fair share.

(48)

1. The Future of Product Design A Product Design Renaissance

Is This the Third Industrial Revolution?

The Evolution of Product Design New Ways of Working

Part 1. Hello, Market!

A Tale from the Trenches: Prototyping at iRobot

Software and the Speed of Sharing

Part 2. Growth and the Difficulties of Production in Volume A Tale from the Trenches: Technical Machine and the Prototype-to-Production Problem

A Tale from the Trenches: Dragon Innovation and the Challenge of Going from One to Many

The Request-for-Quote process

David meets Goliath: Achieving Innovation Speed for Enterprise Companies

Risk Taking and the Enterprise

Small Pilots

Developing Infrastructure

Part 3. Product as Dialogue

A Tale from the Trenches: Making LEO, The Maker Prince

(49)

Decision Motivators

Part 4. Design for End-of-Life On-Demand Production

Conclusion

Gambar

Figure 1-1. The Tessel 2 board (Photo courtesy Technical Machine)
Figure 1-2. Tessel 2 modules (Photo courtesy Technical Machine)
Figure 1-3. Factory workers in China assemble circuit boards. (Photo courtesy Dragon Innovation)
Figure 1-4. The factory floor (Photo courtesy Dragon Innovation)
+4

Referensi

Dokumen terkait