• Tidak ada hasil yang ditemukan

Jurnal Elektronika dan Telekomunikasi Volume 14, Nomor 1, Juni 2014 ISSN

N/A
N/A
Protected

Academic year: 2021

Membagikan "Jurnal Elektronika dan Telekomunikasi Volume 14, Nomor 1, Juni 2014 ISSN"

Copied!
10
0
0

Teks penuh

(1)
(2)

Jurnal Elektronika dan Telekomunikasi

Volume 14, Nomor 1, Juni 2014

ISSN 1411-8289

Pelindung/Penasehat

Deputi Bidang Ilmu Pengetahuan Teknik - LIPI

Penanggung Jawab

Kepala Pusat Penelitian Elektronika dan Telekomunikasi - LIPI

Dewan Editor Ketua

Dr. Goib Wiranto (Mikroelektronika)

Wakil Ketua

Dr. Ir. Yuyu Wahyu, MT (Telekomunikasi)

Anggota

Prof. Dr. Engkos Koswara N, M.Sc (Informatika) Ir. Mashury W, M.Eng (Telekomunikasi)

Dr. Purwoko Adhi, DEA (Elektronika) Dr. Nasrullah Armi, M.Eng (Elektronika)

Mitra Bestari

Prof. Dr. Eko Raharjo (Telekomunikasi) Dr. Ir. Heru Wijanto, MT (Telekomunikasi) Dr. Ir. Adit Kurniawan, M.Eng (Antena & Microwave)

Dr. Azwar Manaf (Fisika Material)

Prof. Dr. Masbah R.T Siregar (Fisika Material) Dr. Edy Supriyanto, S.Si (Fisika Material) Dr. Ir. A. Andaya Lestari (Antena & Microwave)

Drs. B.A. Tjipto Sujitno, M.Sc., Eng., APU (Sains Materi / Sensor)

Editor Pelaksana Ketua

I Dewa Putu Hermida, MT (Mikroelektronika)

Copy Editor

Asep Yudi Hercuadi, ST.EL (Elektronika) Yaya Sulaeman, ST (Elektronika)

Shobih, MT (Mikroelektronika) Topik Teguh Estu, ST (Telekomunikasi)

Graphic Designer

R. Indra Wijaya, MT (Desain Grafis& Tata Letak) Dicky Desmunandar (Desain Grafis& Tata Letak)

Wakil Ketua

Yadi Radiansah, ST (Informatika)

Layout Editor

Dayat Kurniawan, ST (Elektronika) Hana Arisesa, ST (Telekomunikasi) Novrita Idayanti, MT (Mikroelektronika)

R. Indra Wijaya, MT (Elektronika)

Sekretariat / Sirkulasi:

Poppy Sumarni Lisdiani

Web Admin

Iqbal Syamsu, MT (Komputer)

Sekretariat Redaksi

Jurnal Elektronika dan Telekomunikasi

Pusat Penelitian Elektronika dan Telekomunikasi, Lembaga Ilmu Pengetahuan Indonesia

Komplek LIPI Jl. Sangkuriang, Gedung 20, Lantai 4, Cisitu, Bandung, Indonesia, 40135

Telp: +62 22 2504660, 2504661, Fax: +62 22 2504659

email: [email protected]; [email protected]

(3)

Editorial  iii

JURNAL ELEKTRONIKA DAN TELEKOMUNIKASI, Vol. 14, No. 1, Juni 2014

Jurnal Elektronika dan Telekomunikasi

Volume 14, Nomor 1, Juni 2014

ISSN 1411-8289

Editorial

Puji dan syukur kami panjatkan ke hadirat Allah SWT yang telah memberikan karunia-Nya

sehingga Jurnal Elektronika dan Telekomunikasi bisa terbit di hadapan para pembaca semua.

Setiap makalah yang diterbitkan telah melalui proses pemeriksaan oleh Dewan Redaksi yang

telah ditunjuk sesuai dengan kompetensinya atau kepakarannya. Pada penerbitan Volume 14

Nomor 1 tahun 2014 ini, tersajikan dalam 6 makalah yang meliputi topik-topik dalam bidang

Telekomunikasi, Radar, Sonar, Sel Surya, Sensor, Material Maju, dan Aplikasi Elektronika.

Dimana makalah yang diterbitkan merupakan hasil dari penelitian yang telah dilakukan di

lingkungan LIPI.

Pada kesempatan kali ini redaksi juga memberi kesempatan kepada para peneliti dari instansi

lain yang terkait dengan bidang Elektronika, Telekomunikasi, Bahan dan Komponen

Mikroelektronika, untuk dapat ikut serta menerbitkan hasil penelitiannya di Jurnal ini.

Semoga makalah yang diterbitkan kali ini dapat bermanfaat bagi para pembaca dan dapat

memberi kontribusi bagi perkembangan ilmu pengetahuan di bidang yang terkait. Redaksi

berharap makalah yang diterima untuk penerbitan selanjutnya dapat lebih bervariasi sehingga

bisa menambah wawasan ilmu pengetahuan dan teknologi bagi para pembaca.

Bandung, Juni 2014

(4)

iv  Daftar Isi

ISSN 1411-8289

Jurnal Elektronika dan Telekomunikasi

Volume 14, Nomor 1, Juni 2014

ISSN 1411-8289

Daftar Isi

Radar Penembus Dinding UWB-FMCW 500-3000 MHz

R. Indra Wijaya, Purwoko Adhi, Asep Yudhi H, Ros Sari Ningrum, dan

Dadan Muliawandana

1 - 7

Simulasi dan Analisis Transmisi Multihop Mobile Wimax Dengan Metode Hybrid

Muhamad Asvial dan Taufiq Nugroho

8 - 14

Microstructures, Magnetic Properties and Microwave Absorption Characteristics

of Ti

2+

-Mn

4+

Substituted Barium Hexaferrite

Maykel Manawan, Azwar Manaf, Bambang Soegijono, and Asep Yudi

Hercuadi

15 - 19

Design of Rectangular Optical Waveguide on LiTaO

3

Crystal Using Thermal

Annealed Proton Exchange Methods

Yusuf Nur Wijayanto, Dadin Mahmudin, and Pamungkas Daud

20 - 23

Karakteristik Pasta TiO

2

Suhu Rendah untuk Aplikasi Dye Sensitized Solar Cell

(DSSC)

Mariya Al Qibtiya, Lia Muliani, dan Jojo Hidayat

24 - 28

Perancangan dan Implementasi Pengontrol Arah Pancaran Radar Pengawas Pantai

Terhadap Sudut Tertentu

Dadin Mahmudin, Andri Setya Dharma, Erwin Susanto, dan Yuyu Wahyu

(5)

Design of Rectangular Optical Waveguide on LiTaO

3

Crystal

Using Thermal Annealed Proton Exchange Methods

Desain Pemandu Gelombang Optik Persegi Panjang pada

Kristal LiTaO

3

Menggunakan Metode Pertukaran Proton

Anil Panas

Yusuf Nur Wijayanto

a, b, *

, Dadin Mahmudin

a

, and Pamungkas Daud

a

a

Research Center for Electronics and Telecommunication, Indonesian Institute of Sciences (LIPI) Komp LIPI Gd 20, Jl Sangkuriang 21/54D, Bandung 40135, Indonesia

b

Lightwave Device Laboratory, Photonic Network Research Institute National Institute of Information and Communications Technology (NICT)

4-2-1 Nukui-Kitamachi, Koganei, Tokyo 184-8795 JAPAN

Abstract

Optical waveguides are the key component for distributing optical signals with very low propagation loss in optical communication. Several type optical waveguides are established currently such as silica optical fiber. In the planar structure, planar optical waveguides are suitable for implementing to integrated optic applications. In here, rectangular optical waveguides on a planar structure with a LiTaO3 crystal as the substrate are described. The optical waveguides were designed for single mode operation at infrared optical wavelength. The Marcatili method is used for designing by separated the rectangular optical waveguides into two slab optical waveguides. Design rules for the rectangular optical waveguides are discussed in this paper.

Keywords: optical waveguide, LiTaO3 crystal, proton exchange methods, Marcatili methods, optical communication.

Abstrak

Pemandu gelombang optik adalah komponen penting untuk mendistribusikan sinyal optic dengan rugi propagasi yang sangat rendah pada komunikasi optik. Beberapa jenis pemandu gelombang optik digunakan saat ini seperti serat optic silikon. Pada struktur planar pemandu gelombang optik secara planar sesuai untuk implementasi pada aplikasi optik terintegrasi. Pada makalah ini dipaparkan tentang pemandu gelombang optik berbentuk persegi panjang pada struktur planar dengan kristal LiTaO3

sebagai substrat. Pemandu gelombang tersebut dirancang untuk operasi mode tunggal pada panjang gelombang optik infrared. Metode Marcatili digunakan untuk perancangan dengan memisahkan pemandu gelombang persegi panjang tersebut menjadi dua buah pemandu gelombang optik slab. Metode perancangan untuk pemandu gelombang optik persegi panjang didiskusikan secara rinci pada paper ini.

Kata kunci: pemandu gelombang optik, kristal LiTaO3, metode pertukaran proton, metode Marcatili, komunikasi optik.

I. INTRODUCTION

Optical fiber communication is going to establish rapidly to compensate for the heavy data traffic in the future [1]. By using the optical fiber network, the high quality data can be transferred with very fast of 100 Gbps through low loss optical fiber of 0.2 dB/km [2]. The optical fiber network is promising for supporting internet data transfer in the future. Several devices are required in the optical fiber networks based on optical waveguides. Planar optical waveguides are useful on the optical device by coupling to the optical fibers. The planar optical waveguides can be used also for integrated optics.

Integrated optics concern on creating simple and compact optical devices on a chip with small size [3]. The integrated optic devices are important to the optical fiber networks for high-speed communications over long distances with very low transmission loss. These devices also benefit from being immune to electromagnetic interference. Integrated optical components interface with such fibers to form devices such as Mach-Zender interferometers, amplitude and phase modulators, as well as ring resonators for digital filtering.

One of the devices is optical waveguides as the important component. The optical waveguides are used to couple light from fiber optic cables into the integrated optic devices. Basically, the optical waveguides have large refractive index at the core region and lower refractive indices at the substrate/cladding region. This allows light to be guided with very little loss inside the optical waveguide.

Two main processes of fabricating optical waveguides on a LiTaO3 crystal are titanium diffusion

* Corresponding Author.

Email: [email protected]

Received: June 6, 2014; Revised: June 16, 2014 Accepted: June 18, 2014

Published: June 30, 2013

(6)

Design of Rectangular Optical Waveguide on LiTaO3 Crystal Using Thermal Annealed Proton Exchange Methods  21

JURNAL ELEKTRONIKA DAN TELEKOMUNIKASI, Vol. 14, No. 1, Juni 2014

and proton exchange methods. Both processes insert impurities into the LiTaO3 crystal lattice. The region of

the crystal containing these impurities experiences an increase in refractive index. Light can therefore be confined to this region of increased refractive index forming an optical waveguide.

The titanium diffusion methods involve depositing a thin strip of titanium on the LiTaO3 crystal surface

where light will be guided [4]. The device is then treated to thermal anneal at temperatures in excess of 1000 C for a duration of ten hours or more. The thermal anneal drives the titanium source into the LiTaO3 crystal, creating a diffused concentration profile

of titanium ions embedded in the substrate. The inclusion of these ions in the substrate increases the refractive index of the crystal in this region, allowing light to be guided along this path.

The hydrogen proton exchange optical waveguides were first observed irregularly when forming optical waveguides by exchange of silver-lithium or thallium-lithium in a LiTaO3 crystal. It was found that small

amounts of water were present in the AgNO3 and

HTaO3 melts used for these experiments, and that

hydrogen-lithium exchange was the actual cause of index change requisite for forming optical waveguides. This discovery led to the use of a variety of acids as a hydrogen proton source.

This paper concern on design of planar optical waveguides, which serve as the basic building block for integrated optical devices. Design of the rectangular optical waveguides on a LiTaO3 crystal is discussed in

detail for single mode operation at 1.55 µm optical wavelength. The optical waveguides using proton exchange methods are analyzed using the Marcatili methods by separated the rectangular optical waveguide into two optical slab optical waveguides. The optical waveguide structure, modal dispersion, and field distribution are discussed with detail in this paper.

II. STRUCTURE

A rectangular optical waveguide is basically composed of a core region in region 1 as shown in Figure 1 and surrounding core regions, which are substrate and air in region 2, 3, 4, 5 as shown in Figure 1. In order to allow for guiding the optical wave, the refractive index of the core must be larger than the surrounding regions. As we know air is the lowest refractive index, which is 1 as the best cladding/ substrate. However, the air is impossible for the cladding since the waveguide core has very small size and requires other material as the support.

As shown in the Figure 1, a rectangular optical waveguide is designed on a LiTaO3 crystal where core

size is determined by depth of h and width of w. Refractive index of the waveguide core is slightly larger than the surrounding region, it will be discussed in detail in the next section.

III. THE SELLMEIER EQUATION

Rectangular optical waveguides can be designed on a LiTaO3 crystal using proton exchange methods and

thermal annealing process.Material dispersion can be

calculated by Sellmeier approach with its coefficient and equation.

(a) Whole Structure

(b) Cross-sectional View

Figure 1. Structure of the Rectangular Optical Waveguide.

Sellmeier equation is an empirical relationship between refractive index and optical wavelength for a particular transparent medium. The equation is used to determine a dispersion of light in a medium. Sellmeier equation for a LiTaO3 crystal can be expressed as [5]

(1)

where n is the refractive index, λ is the wavelength in vacuum, and A1, 2, 3, 4 are experimentally determined by

Sellmeier coefficients. The Sellmeier coefficients for the LiTaO3 crystal are shown in Table 1.

TABLE I

SELLMEIER COEFFICIENCT FOR A LiTaO3CRYSTAL

Ordinary Extraordinary

A1 4.5122 4.52999

A2 0.0847522 0.0844313

A3 0.19876 0.20344

A4 - 0.0239046 - 0.0237909

Sellmeier curve of a LiTaO3 crystal is shown in

Figure 2, the curves for ordinary and extraordinary are represented by solid line and dashed line, respectively.

Figure 2. The Sellmeier Curve for the LiTaO3 Crystal.

In this paper, rectangular optical waveguide are designed in infrared optical wavelength of 1.55 µm using thermal annealed proton exchange methods. The proton exchange method optical waveguides are operated Transverse Magnetic (TM) mode only. Design of the optical waveguide will be discussed in detail.

(7)

22  Yusuf Nur Wijayanto et al.

ISSN 1411-8289

IV. MODAL DISPERSION

Generally, planar optical waveguides have two types, which are slab/two dimensional (2D) waveguides and rectangular/three dimensional (3D) waveguides. Rectangular optical waveguides can be designed using Marcatili method. In the Marcatili method, a rectangular optical waveguide is separated by two slab optical waveguides in the horizontal (W) and vertical (H) as illustrated in Figure 3. The film region of nf is the

largest than surrounding regions of ns and nc.

Furthermore, fields in film region vary in an oscillatory manner in the x and y directions, while fields in outer regions decay exponentially from boundaries. Optical fields in the four corners are very weak and can be ignored completely in the consideration.

a. Rectangular Waveguide.

b. Slab Waveguide H.

c. Slab Waveguide W.

Figure 3. Analysis Methods of the Rectangular Optical Waveguide.

Dispersion relations for the slab waveguide H as shown in Figure 3 (a) and the slab waveguide W as shown in Figure 3 (b) are expressed as following equations respectively by [5], [6]. √ ( ) ( ) (2) √ (√ ) (√ ) (3)

where k is the wave number of lightwave, nf is the

refractive index of waveguide core, ns is the refractive

index of waveguide substrate, nc is the refractive index

of waveguide cladding, m is the mode number, h is the core height/depth, w is the core width, and N is the effective index.

Fig. 4 Effective Index as a Function of Core Depth (h).

Fig. 5 Effective Index as a Function of Core Width (w).

As mentioned before, the rectangular optical waveguide is designed on a LiTaO3 crystal using

thermal annealed proton exchange method and operated for 1.55 µm optical wavelength. Refractive index of a LiTaO3 crystal at the designed wavelength can be

calculated using Equation 1. Calculated refractive index of the LiTaO3 crystal is 2.12. By using the proton

exchange methods on the LiTaO3 crystal, refractive

index of the core is larger 0.017 than the substrate refractive index [7]. Therefore, refractive index of the core becomes 2.137. As a result, modal dispersion of the designed optical waveguide can be calculated using Equations (2) and (3). Dispersion curve for the slab waveguide H as a function of the waveguide core depth (h) is shown in Figure 4. Based on result of the calculated modal dispersion, the depth/height of the optical waveguide core is determined less than 4 µm for single mode operation in 1.55 µm optical wavelength. When the height is set 2 µm, the modal dispersion for slab waveguide (w) as a function to the waveguide width is shown in Figure 5. We can see that the width of the optical waveguide core must be set less than 7 µm for single mode operation at 1.55 µm optical wavelength.

As summary based on the calculated result, a LiTaO3 optical waveguide with annealing proton

exchange method for single mode operation in 1.55 µm optical wavelength can be obtained using waveguide core size of 2x7µm. In addition, multimode operation can be designed also by considering modal dispersion.

(8)

Design of Rectangular Optical Waveguide on LiTaO3 Crystal Using Thermal Annealed Proton Exchange Methods  23

JURNAL ELEKTRONIKA DAN TELEKOMUNIKASI, Vol. 14, No. 1, Juni 2014

(a) Contour Curve in Cross-sectional View

(b) Curve in 3-D View

Figure 6. Field Distribution of the Designed Optical Waveguide.

V. OPTICAL FIELD DISTRIBUTION

Optical field profiles of the rectangular optical waveguide can be calculated using the Maxwell equations [8], [9]. The optical field in core region is a sinusoidal function and the optical fields in outer sides of the core region are expressed as an exponential function to decay. Field distribution of the designed optical waveguide is shown in Figure 6.

The calculated field distribution with contour curve in the xz-plane is shown in Figure 6 (a). We can see that strong fields are confined in the waveguide core with single mode. A 3-D curve for the calculated field distribution is also shown in Figure 6 (b) where the y-axis is the field magnitude with arbitrary unit (a.u.). Clear strong fields are illustrated in the 3-D curve.

The rectangular optical waveguide for single mode operation at 1.55 µm optical wavelength is designed with 2 µm-depth waveguide core and 4 µm-width waveguide core. The designed optical waveguide are fabricated on a LiTaO3 crystal using annealed proton

exchange methods. The fabrication process will be discussed in the other paper.

CONCLUSION

We have discussed regarding design of rectangular optical waveguide on a LiTaO3 crystal using proton

exchange method with thermal annealing process. The

optical waveguide was designed using the Marcatili method by separating rectangular optical waveguide into two slab optical waveguides. The modal dispersion and field profiles of the designed optical waveguide were discussed for single mode operation at 1.55 µm optical wavelength. Based on the result, single mode rectangular optical waveguide on a LiTaO3 crystal can

be obtained when waveguide core size is 2 µm-depth and below 7 µm-width. TM mode optical fields are operated in the annealed proton exchange optical waveguide on a LiTaO3 crystal.

Fabrication processes of the designed optical waveguide using standard lithography process will be reported later in other paper. Measurement of the optical waveguide characteristics using simple measurement setup will be also reported later.

Planar optical waveguidesare promising for integrated optic applications such as optical interconnects for high-speed data transfer, optical sensor for precise measurement, and so on. Compact optical devices can be obtained based on the planar optical waveguide with large bandwidth and high speed for transferring data.

ACKNOWLEDGMENTS

Authors would like thanks to members of Telecommunication Division at Research Center for Electronics and Telecommunication (PPET) in the Indonesian Institute of Sciences (LIPI) for their kind supports by the constructive comments and advices during discussion.

REFERENCES

[1] E. Forestieri, Optical Communication Theory and Technique, Boston: Springer Science + Business Media Inc., 2005. [2] G. P. Agrawal, Fiber-Optic Communications Systems, Third

Edition, Hoboken, New Jersey:John Wiley & Sons, Inc, 2002. [3] R. G. Hunsperger, Integrated Optics: Theory and Technology,

New York: Springer, 2009.

[4] L. W. Stulz, “Titanium in-diffused LiNbO3 optical waveguide fabrication”, Applied Optics, vol. 18, no. 12, pp. 2041-2044, 1979.

[5] C. L. Chen, Foundations for Guide Wave Optics, Hoboken, New Jersey: John Wiley & Sons, Inc1997.

[6] D. P. Chrissoulidis and E. E. Kriezis, “Field distribution in slab waveguide with non-uniform deterministic index profile by using fredholm's perturbation method”, Archive for electrotechnic 64, 1, pp. 37-141, 1981.

[7] D. E. Zelmon, D. L. Small, and D. Jundt, “Infrared corrected Sellmeier coefficient for congruently grown LiNbO3 & 5 mol % MgO-doped LiNbO3”, J. Opt. Soc. Am. B., vol. 14 no. 12, pp. 3319-3322, December 1997.

[8] R. Fitzpatrick, Maxwell’s Equation and the Principles of

Electromagnetism, Hingham: Infinity Science Press, 2008.

[9] S. Iezekiel, Microwave Photonic : Device and Applications, Chichester: John Wiley & Sons, Ltd., 2009

(9)

JURNAL ELEKTRONIKA DAN TELEKOMUNIKASI, Vol. 14, No. 1, Juni 2014

Panduan Penulisan

Jurnal Elektronika dan Telekomunikasi

Naskah harus diserahkan sesuai dengan ketentuan sebagai berikut:

1. Naskah ditulis dalam bahasa Indonesia atau Inggris dan disampaikan secara online melalui email ke alamat redaksi : [email protected] atau [email protected].

2. Naskah harus mengandung setidaknya 2.000 kata dan tidak melebihi 8 halaman A4 termasuk gambar dan tabel, tidak mengandung lampiran, ditulis menggunakan Open Office Text Document (odt.) Atau Microsoft Word (.doc/.docx) dengan margin untuk atas, kanan dan bawah adalah 2 cm dan 2,5 cm untuk kiri.

3. Seluruh dokumen diketik dengan font Times New Roman (TNR) atau Times dengan jarak antar baris (spasi 1). Jenis font yang lain dapat digunakan jika diperlukan untuk tujuan khusus.

4. Judul, nama penulis, alamat, dan afiliasi ditulis dalam format satu kolom, rata tengah. Abstrak juga ditulis dalam format satu kolom, sedangkan bagian-bagian naskah selanjutnya ditulis dalam dua kolom, rata kiri-kanan, dengan lebar masing-masing kolom 8 cm dan jarak antar kolom 0,5 cm.

5. Judul harus kurang dari 15 kata dengan format font TNR 18, title case, small caps, rata tengah, tebal. Nama-nama penulis dipisahkan dengan tanda koma dengan format font TNR 13, title case, rata tengah, tebal. Alamat afiliasi ditulis secara berurutan dengan format font TNR 9, rata tengah, miring.

6. Abstrak tidak mengandung gambar atau tabel, rata kiri-kanan, dalam TNR 9. Heading adalah 'Abstract' (dalam bahasa Inggris) dan 'Abstrak' (dalam bahasa Indonesia): dicetak miring dan tebal. Abstrak Indonesia harus tidak melebihi 250 kata dan abstrak bahasa Inggris tidak boleh lebih dari 150 kata.

7. Kata kunci berisi 3-5 kata dipisahkan dengan koma, rata kiri-kanan, dalam TNR 9. Heading adalah 'Keywords' (dalam bahasa Inggris) dan 'Kata Kunci' (dalam bahasa Indonesia): dicetak miring dan tebal.

8. Untuk naskah yang ditulis dalam bahasa Indonesia, anda diharuskan untuk menyertakan juga judul, abstrak, dan kata kunci dalam bahasa Inggris dan sebaliknya.

9. Tubuh naskah harus diketik dalam TNR 10 dengan spasi tunggal, rata kiri-kanan. Setiap baris pertama paragraf menjorok 0,63 cm.

10. Naskah disusun dalam empat bagian utama: Pendahuluan, Isi Naskah, Hasil dan Pembahasan, serta Kesimpulan. Selanjutnya diikuti Ucapan Terima Kasih dan Daftar Pustaka.

11. Heading perbagian diharapkan tidak lebih dari tiga level. Heading level 4 tidak direkomendasikan namun masih dapat diterima.

a. Heading level 1 ditulis dengan format; title case, small caps, rata tengah, dengan penomoran romawi diikuti titik.

Dengan jarak spasi before = 9 dan after = 3.

b. Heading level 2 ditulis dengan format; title case, rata kiri, dengan penomoran huruf besar diikuti titik. Dengan jarak

spasi before = 7.5 dan after = 3.

c. Heading level 3 ditulis dengan format; title case, rata kiri, dengan penomoran angka diikuti kurung tutup. Dengan jarak

spasi before = 6 dan after = 3.

d. Heading level 4 tidak direkomendasikan, namun masih dapat diterima dengan format; sentence case, justified, left indent 0,63 cm, hanging indent 0,63 cm, penomoran huruf kecil diikuti kurung tutup. Dengan jarak spasi before = 6 dan after = 3. Heading level 5 tidak dapat diterima.

12. Gambar/tabel direkomendasikan dalam format hitam putih dengan resolusi 150-300 dpi. Jika dibuat dalam format berwarna, harus dipastikan bahwa masih dapat terbaca dengan jelas ketika naskah dicetak hitam putih. Gambar/tabel harus diletakkan rata tengah kolom. Gambar/tabel yang lebar dapat diletakkan sampai 2 kolom dan harus diletakkan pada bagian awal atau akhir halaman.

13. Setiap gambar harus diberi nomor urut dengan angka arab dan keterangan ringkas, diletakkan setalah gambar, dengan format; rata tengah, TNR 8. Setiap tabel harus diberi nomor urut dengan angka romawi dan keterangan ringkas, diletakkan sebelum tabel, dengan format; small caps, rata tengah, TNR 8. Keterangan tabel diletakkan sebelum tabel yang bersangkutan.

14. Persamaan harus ditulis dengan jelas, diberi nomor urut dan diikuti keterangan notasi-notasi yang dipergunakan.

15. Header dan footer termasuk nomor halaman tidak direkomendasikan untuk ditulis. Semua hyperlink yang menuju ke suatu URL akan dihilangkan. Jika hendak mengacu pada suatu URL, hendaknya ditulis menggunakan font biasa.

16. Penomoran sumber acuan dalam daftar pustaka menggunakan kurung siku disesuaikan dengan kemunculannya dalam naskah (contoh [1], [2], [3], dst). Diketik rata kanan-kiri, hanging indent 0,63 cm, TNR 8, spasi 1. Ketika mengacu daftar pustaka dalam naskah, cukup menggunakan nomor referensi, seperti dalam [1]. Jika menggunakan lebih dari satu acuan masingmasing nomor sumber acuan ditulis dengan kurung siku yang dipisahkan dengan tanda koma (misalnya [2], [3], [4] -[6]).

17. Petunjuk rinci penulisan sumber acuan dapat dilihat pada 'petunjuk tata letak tulisan' yang bisa digunakan sebagai template penulisan, dapat unduh dari www.ppet.lipi.go.id/jurnal/paper_format.doc.

18. Dewan redaksi berwenang menolak naskah berdasarkan pertimbangan peer reviewer dan membuat perubahan yang diperlukan atau penyesuaian terkait dengan tata bahasa tanpa mengubah substansi. Perubahan yang menyangkut substansi akan dikonsultasikan dengan penulis pertama.

(10)

x  Indeks Pengarang

Gambar

Figure 1. Structure of the Rectangular Optical Waveguide.
Figure 3. Analysis Methods of the Rectangular Optical Waveguide.
Figure 6. Field Distribution of the Designed Optical Waveguide.

Referensi

Dokumen terkait

1, Tahun 2014 Halaman 90 Rectangular adalah grafik pengendali yang mempunyai nilai variansi paling besar, atau dengan kata lain mempunyai batas – batas

Desain dan Realisasi Antena Mikrostrip Patch Persegi Susunan Linier dengan Teknik Pencatuan Proximity Coupled pada Frekuensi 4,3 GHz untuk Radio Altimeter Pesawat..

Hasil penelitian menunjukkan bahwa masyarakat mempertahankan nilai-nilai kearifan lokal dalam usaha mitigasi bencana longsorlahan seperti pengetahuan yang berasal

Program studi Pedidikan Geografi, FKIP, Universitas Siliwangi Jl. Abstrak : Masyarakat Kampung Naga merupakan salah satu masyarakat adat yang berlokasi di Desa

Namun kenyataan di lapangan terdapat perbedaan antara sekolah satu dengan yang lain tentang kepemilikan dan kemampuan dalam pengadaan media pembelajaran khususnya

Penelitian ini bertujuan untuk (1) mendeskripsikan hubungan kekerabatan bahasa Barangas dan bahasa Bakumpai dan (2) mengetahui perubahan bunyi yang terjadi pada kedua

7 Tahun 2004 tentang sumberdaya air didasari pada keinginan mengembalikan objek air sebagai hak asasi yang melekat pada tiap individu, mengubah kewenangan semula

Agar diperoleh kondisi jaringan irigasi air tanah (JIAT) yang dapat berfungsi dengan baik dan lancar dalam mendistribusikan air irigasi, maka model partisipasi aktif P3A