• Tidak ada hasil yang ditemukan

History of food chemistry

N/A
N/A
Protected

Academic year: 2018

Membagikan "History of food chemistry"

Copied!
13
0
0

Teks penuh

(1)

History of food chemistry- DESSY

Food chemistry's history dates back as far as the late 18th century when many famous

chemists were involved in discovering chemicals important in foods, including Carl Wilhelm Scheele (isolated malic acid from apples in 1785), and Sir Humphry Davy published the first book on agricultural and food chemistry in 1813 titled Elements of Agricultural Chemistry, in a Course of Lectures for the Board of Agriculture in the United Kingdom which would serve as a foundation for the profession worldwide, going into a fifth edition.

In 1874 the Society of Public Analysts was formed, with the aim of applying analytical methods to the benefit of the public.[3] Its early experiments were based on bread, milk and wine.

It was also out of concern for the quality of the food supply, mainly food adulteration and contamination issues that would first stem from intentional contamination to later with chemical food additives by the 1950s. The development of colleges and universities worldwide, most notably in the United States, would expand food chemistry as well with research of the dietary substances, most notably the Single-grain experiment during 1907-11. Additional research by Harvey W. Wiley at the United States Department of Agriculture during the late 19th century would play a key factor in the creation of the United States Food and Drug Administration in 1906. The American Chemical Society would establish their Agricultural and Food Chemistry Division in 1908 while the Institute of Food Technologists would establish their Food Chemistry Division in 1995.

Food chemistry concepts are often drawn from rheology, theories of transport phenomena, physical and chemical thermodynamics, chemical bonds and interaction forces, quantum mechanics and reaction kinetics, biopolymer science, colloidal interactions, nucleation, glass transitions and freezing/disordered or noncrystalline solids, and thus has Food Physical Chemistry as a foundation area.[4][5]

Water- DESSY

From Wikipedia, the free encyclopedia

"H2O" and "HOH" redirect here. For other uses, see H2O (disambiguation) and HOH (disambiguation).

(2)

Water in three states: liquid, solid (ice), and gas (invisible water vapor in the air). Clouds are accumulations of water droplets, condensed from vapor-saturated air.

Play media

Video demonstrating states of water present in domestic life.

Water is a transparent fluid which forms the world's streams, lakes, oceans and rain, and is

the major constituent of the fluids of living things. As a chemical compound, a water

molecule contains one oxygen and two hydrogenatoms that are connected by covalent bonds. Water is a liquid at standard ambient temperature and pressure, but it often co-exists on Earth with its solid state, ice; and gaseous state, steam (water vapor).

Water covers 71% of the Earth's surface.[1] It is vital for all known forms of life. On Earth, 96.5% of the planet's water is found in seas and oceans, 1.7% in groundwater, 1.7% in glaciers and the ice caps of Antarctica and Greenland, a small fraction in other large water bodies, and 0.001% in the air as vapor, clouds (formed of solid and liquid water particles suspended in air), and precipitation.[2][3] Only 2.5% of the Earth's water is freshwater, and 98.8% of that water is in ice and groundwater. Less than 0.3% of all freshwater is in rivers, lakes, and the atmosphere, and an even smaller amount of the Earth's freshwater (0.003%) is contained within biological bodies and manufactured products.[2]

Water on Earth moves continually through the water cycle of evaporation and transpiration (evapotranspiration), condensation, precipitation, and runoff, usually reaching the sea. Evaporation and transpiration contribute to the precipitation over land. Water used in the production of a good or service is known as virtual water.

Safe drinking water is essential to humans and other lifeforms even though it provides no calories or organicnutrients. Access to safe drinking water has improved over the last decades in almost every part of the world, but approximately one billion people still lack access to safe water and over 2.5 billion lack access to adequate sanitation.[4] There is a clear correlation between access to safe water and gross domestic product per capita.[5] However, some observers have estimated that by 2025 more than half of the world population will be facing water-based vulnerability.[6] A report, issued in November 2009, suggests that by 2030, in some developing regions of the world, water demand will exceed supply by 50%.[7] Water plays an important role in the world economy, as it functions as a solvent for a wide variety of chemical substances and facilitates industrial cooling and transportation. Approximately 70% of the fresh water used by humans goes to agriculture.[8]

Carbohydrate-RYAN

(3)

Jump to: navigation, search

Lactose is a disaccharide found in milk. It consists of a molecule of galactose and a molecule of D-glucose bonded by beta-1-4 glycosidic linkage. It has a formula of C12H22O11.

A carbohydrate is a large biological molecule, or macromolecule, consisting of carbon (C),

hydrogen (H), and oxygen (O) atoms, usually with a hydrogen:oxygen atom ratio of 2:1 (as in water); in other words, with the empirical formula Cm(H2O)n (where m could be different from

n).[1] Some exceptions exist; for example, deoxyribose, a sugar component of DNA,[2] has the empirical formula C5H10O4.[3] Carbohydrates are technically hydrates of carbon;[4] structurally it

is more accurate to view them as polyhydroxy aldehydes and ketones.[5]

The term is most common in biochemistry, where it is a synonym of saccharide. The carbohydrates (saccharides) are divided into four chemical groups: monosaccharides, disaccharides, oligosaccharides, and polysaccharides. In general, the monosaccharides and disaccharides, which are smaller (lower molecular weight) carbohydrates, are commonly referred to as sugars.[6] The word saccharide comes from the Greek word σάκχαρον (sákkharon), meaning "sugar." While the scientific nomenclature of carbohydrates is complex, the names of the monosaccharides and disaccharides very often end in the suffix -ose. For example, grape sugar is the monosaccharide glucose, cane sugar is the disaccharide sucrose, and milk sugar is the disaccharide lactose (see illustration).

Carbohydrates perform numerous roles in living organisms. Polysaccharides serve for the storage of energy (e.g., starch and glycogen), and as structural components (e.g., cellulose in plants and chitin in arthropods). The 5-carbon monosaccharide ribose is an important

component of coenzymes (e.g., ATP, FAD, and NAD) and the backbone of the genetic molecule known as RNA. The related deoxyribose is a component of DNA. Saccharides and their derivatives include many other important biomolecules that play key roles in the immune system, fertilization, preventing pathogenesis, blood clotting, and development.[7]

In food science and in many informal contexts, the term carbohydrate often means any food that is particularly rich in the complex carbohydrate starch (such as cereals, bread, and pasta) or simple carbohydrates, such as sugar (found in candy, jams, and desserts).

Lipid-RYAN

From Wikipedia, the free encyclopedia

(4)

Structures of some common lipids. At the top are cholesterol[1] and oleic acid.[2] The middle structure is a triglyceride composed of oleoyl, stearoyl, and palmitoyl chains attached to a glycerol backbone. At the bottom is the common phospholipid, phosphatidylcholine.[3]

Lipids are a group of naturally occurring molecules that include fats, waxes, sterols,

fat-soluble vitamins (such as vitamins A, D, E, and K), monoglycerides, diglycerides, triglycerides, phospholipids, and others. The main biological functions of lipids include storing energy, signaling, and acting as structural components of cell membranes.[4][5] Lipids have applications in the cosmetic and food industries as well as in nanotechnology.[6]

Lipids may be broadly defined as hydrophobic or amphiphilic small molecules; the amphiphilic nature of some lipids allows them to form structures such as vesicles,

multilamellar/unilamellar liposomes, or membranes in an aqueous environment. Biological lipids originate entirely or in part from two distinct types of biochemical subunits or

"building-blocks": ketoacyl and isoprene groups.[4] Using this approach, lipids may be divided into eight categories: fatty acids, glycerolipids, glycerophospholipids, sphingolipids,

saccharolipids, and polyketides (derived from condensation of ketoacyl subunits); and sterol lipids and prenol lipids (derived from condensation of isoprene subunits).[4]

(5)

biosynthetic pathways to both break down and synthesize lipids, some essential lipids cannot be made this way and must be obtained from the diet.

The chemical formation of pre-biological lipids and their formation into protocells are considered key steps in models of abiogenesis, the origin of life.

Protein-RYAN

From Wikipedia, the free encyclopedia

Jump to: navigation, search

This article is about a class of molecules. For protein as a nutrient, see Protein (nutrient). For other uses, see Protein (disambiguation).

A representation of the 3D structure of the protein myoglobin showing turquoise alpha helices. This protein was the first to have its structure solved by X-ray crystallography. Towards the right-center among the coils, a prosthetic group called a heme group (shown in gray) with a bound oxygen molecule (red).

Proteins (/ ˈ p r o ʊ t iˌ n z /ː or / ˈ p r o t i . ʊ ɨ n z /) are large biological molecules, or macromolecules, consisting of one or more long chains of amino acidresidues. Proteins perform a vast array of functions within living organisms, including catalyzing metabolic reactions, replicating DNA, responding to stimuli, and transporting molecules from one location to another. Proteins differ from one another primarily in their sequence of amino acids, which is dictated by the nucleotide sequence of their genes, and which usually results in folding of the protein into a specific three-dimensional structure that determines its activity.

(6)

—in certain archaea—pyrrolysine. Shortly after or even during synthesis, the residues in a protein are often chemically modified by posttranslational modification, which alters the physical and chemical properties, folding, stability, activity, and ultimately, the function of the proteins. Sometimes proteins have non-peptide groups attached, which can be called prosthetic groups or cofactors. Proteins can also work together to achieve a particular function, and they often associate to form stable protein complexes.

Once formed, proteins only exist for a certain period of time and are then degraded and recycled by the cell's machinery through the process of protein turnover. A protein's lifespan is measured in terms of its half-life and covers a wide range. They can exist for minutes or years with an average lifespan of 1–2 days in mammalian cells. Abnormal and or misfolded proteins are degraded more rapidly either due to being targeted for destruction or due to being unstable.

Like other biological macromolecules such as polysaccharides and nucleic acids, proteins are essential parts of organisms and participate in virtually every process within cells. Many proteins are enzymes that catalyze biochemical reactions and are vital to metabolism.

Proteins also have structural or mechanical functions, such as actin and myosin in muscle and the proteins in the cytoskeleton, which form a system of scaffolding that maintains cell shape. Other proteins are important in cell signaling, immune responses, cell adhesion, and the cell cycle. Proteins are also necessary in animals' diets, since animals cannot synthesize all the amino acids they need and must obtain essential amino acids from food. Through the process of digestion, animals break down ingested protein into free amino acids that are then used in metabolism.

Proteins may be purified from other cellular components using a variety of techniques such as ultracentrifugation, precipitation, electrophoresis, and chromatography; the advent of genetic engineering has made possible a number of methods to facilitate purification. Methods commonly used to study protein structure and function include immunohistochemistry, site-directed mutagenesis, X-ray crystallography, nuclear magnetic resonance and mass

spectrometry.

Enzyme- ARTYANDI

From Wikipedia, the free encyclopedia

Jump to: navigation, search

(7)

Human glyoxalase I. Two zinc ions that are needed for the enzyme to catalyze its reaction are shown as purple spheres, and an enzyme inhibitor called S-hexylglutathione is shown as a space-filling model, filling the two active sites.

Enzymes/ ˈ ɛ n z a mɪ z / are macromolecularbiologicalcatalysts. They are responsible for

thousands of metabolic processes that sustain life.[1][2] Enzymes are highly selective catalysts, greatly accelerating both the rate and specificity of metabolic chemical reactions, from the digestion of food to the synthesis of DNA. Most enzymes are proteins, although some catalytic RNA molecules have been identified. Enzymes adopt a specific three-dimensional structure, and may employ organic (e.g. biotin) and inorganic (e.g. magnesiumion) cofactors to assist in catalysis.

Enzymes act by converting starting molecules (substrates) into different molecules

(products). Almost all chemical reactions in a biological cell need enzymes in order to occur at rates sufficient for life. Since enzymes are selective for their substrates and speed up only a few reactions from among many possibilities, the set of enzymes made in a cell determines which metabolic pathways occur in that cell, tissue and organ. Organelles are also

differentially enriched in sets of enzymes to compartmentalise function within the cell.

Like all catalysts, enzymes increase the rate of a reaction by lowering its activation energy (Ea‡). As a result, products are formed faster and reactions reach their equilibrium state more

rapidly. Most enzyme reaction rates are millions of times faster than those of comparable un-catalyzed reactions and some are so fast that they are diffusion limited. As with all catalysts, enzymes are not consumed by the reactions they catalyze, nor do they alter the equilibrium of these reactions. However, enzymes do differ from most other catalysts in that they are highly specific for their substrates. Enzymes are known to catalyze about 4,000 biochemical

reactions.[3] A few RNA molecules called ribozymes also catalyze reactions, with an important example being some parts of the ribosome.[4][5] Synthetic molecules called artificial enzymes also display enzyme-like catalysis.[6]

(8)

enzymes in biological washing powders break down protein or fat stains on clothes; enzymes in meat tenderizers break down proteins into smaller molecules, making the meat easier to chew). The study of enzymes is called enzymology

Vitamin- ARTYANDI

From Wikipedia, the free encyclopedia

Jump to: navigation, search

A bottle of high potency B-complex vitamin supplement pills.

A vitamin (US / ˈ v a t mɪ ə ɪ n / and UK / ˈ v ɪ t mə ɪ n /) is an organic compound and a vital nutrient that an organism requires in limited amounts.[1] An organic chemical compound (or related set of compounds) is called a vitamin when the organism cannot synthesize the compound in sufficient quantities, and must be obtained through the diet; thus, the term "vitamin" is conditional upon the circumstances and the particular organism. For example, ascorbic acid (vitamin C) is a vitamin for humans, but not for most other animal organisms.

Supplementation is important for the treatment of certain health problems, but there is little evidence of nutritional benefit when used by otherwise healthy people.[2]

By convention, the term vitamin includes neither other essential nutrients, such as dietary minerals, essential fatty acids, or essential amino acids (which are needed in greater amounts than vitamins) nor the great number of other nutrients that promote health, and are required less often to maintain the health of the organism.[3] Thirteen vitamins are universally

(9)

Vitamins have diverse biochemical functions. Some, such as vitamin D, have hormone-like functions as regulators of mineral metabolism, or regulators of cell and tissue growth and differentiation (such as some forms of vitamin A). Others function as antioxidants (e.g., vitamin E and sometimes vitamin C).[4] The largest number of vitamins, the B complex vitamins, function as precursors for enzyme cofactors, that help enzymes in their work as catalysts in metabolism. In this role, vitamins may be tightly bound to enzymes as part of prosthetic groups: For example, biotin is part of enzymes involved in making fatty acids. They may also be less tightly bound to enzyme catalysts as coenzymes, detachable molecules that function to carry chemical groups or electrons between molecules. For example, folic acid may carry methyl, formyl, and methylene groups in the cell. Although these roles in assisting enzyme-substrate reactions are vitamins' best-known function, the other vitamin functions are equally important.[5]

Until the mid-1930s, when the first commercial yeast-extract vitamin B complex and semi-synthetic vitamin C supplement tablets were sold, vitamins were obtained solely through food intake, and changes in diet (which, for example, could occur during a particular growing season) usually greatly altered the types and amounts of vitamins ingested. However, vitamins have been produced as commodity chemicals and made widely available as inexpensive semisynthetic and synthetic-source multivitamin dietary and food supplements and additives, since the middle of the 20th century

Dietary element-ARTYANDI

From Wikipedia, the free encyclopedia

Jump to: navigation, search

Dietary elements (commonly known as dietary minerals or mineral nutrients) are the

chemical elements required by living organisms, other than the four elements carbon, hydrogen, nitrogen, and oxygen present in common organic molecules. The term "dietary mineral" is archaic, as the substances it refers to are chemical elements rather than actual minerals.

Chemical elements in order of abundance in the human body include the seven major dietary elements calcium, phosphorus, potassium, sulfur, sodium, chlorine, and magnesium.

Important "trace" or minor dietary elements, necessary for mammalian life, include iron, cobalt, copper, zinc, manganese, molybdenum, iodine, bromine, and selenium (see below for detailed discussion).

Over twenty dietary elements are necessary for mammals, and several more for various other types of life. The total number of chemical elements that are absolutely needed is not known for any organism. Ultratrace amounts of some elements (e.g., boron, chromium) are known to clearly have a role but the exact biochemical nature is unknown, and others (e.g. arsenic, silicon) are suspected to have a role in health, but without proof.

(10)

organisms may also consume soil (geophagia) and visit salt licks to obtain limiting dietary elements they are unable to acquire through other components of their diet.

Bacteria play an essential role in the weathering of primary elements that results in the release of nutrients for their own nutrition and for the nutrition of others in the ecological food chain. One element, cobalt, is available for use by animals only after having been processed into complicated molecules (e.g., vitamin B12), by bacteria. Scientists are only recently starting to appreciate the magnitude and role that microorganisms have in the global cycling and formation of biominerals

Food coloring-REBECCA

From Wikipedia, the free encyclopedia

Jump to: navigation, search

Food coloring spreading on a thin water film in the International Space Station

Food coloring, or color additive, is any dye, pigment or substance that imparts color when it

is added to food or drink. They come in many forms consisting of liquids, powders, gels, and pastes. Food coloring is used both in commercial food production and in domestic cooking. Due to its safety and general availability, food coloring is also used in a variety of non-food applications including cosmetics, pharmaceuticals, home craft projects and medical devices.[1]

Flavor-REBECCA

From Wikipedia, the free encyclopedia

Jump to: navigation, search

(11)

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.

(October 2012)

Flavor or flavour (see spelling differences) is the sensory impression of a food or other

substance, and is determined mainly by the chemical senses of taste and smell. The "trigeminal senses", which detect chemical irritants in the mouth and throat as well as temperature and texture, are also very important to the overall Gestalt of flavor perception. The flavor of the food, as such, can be altered with natural or artificial flavorants, which affect these senses.

Flavorant is defined as a substance that gives another substance flavor, altering the characteristics of the solute, causing it to become sweet, sour, tangy, etc.

Of the three chemical senses, smell is the main determinant of a food item's flavor. While the taste of food is limited to sweet, sour, bitter, salty, umami (savory), pungent or piquant, and metallic – the seven basic tastes – the smells of a food are potentially limitless. A food's flavor, therefore, can be easily altered by changing its smell while keeping its taste similar. Nowhere is this better exemplified than in artificially flavored jellies, soft drinks and candies, which, while made of bases with a similar taste, have dramatically different flavors due to the use of different scents or fragrances. The flavorings of commercially produced food products are typically created by flavorists.

Although the terms "flavoring" or "flavorant" in common language denote the combined chemical sensations of taste and smell, the same terms are usually used in the fragrance and flavors industry to refer to edible chemicals and extracts that alter the flavor of food and food products through the sense of smell. Due to the high cost or unavailability of natural flavor extracts, most commercial flavorants are nature-identical, which means that they are the chemical equivalent of natural flavors but chemically synthesized rather than being extracted from the source materials. Identification of nature-identical flavorants are done using

technology such as headspace techniques

Food additive-SYARIFAH

From Wikipedia, the free encyclopedia

Jump to: navigation, search

Food additives are substances added to food to preserve flavor or enhance its taste and

(12)

Antioxidant-SYARIFAH

From Wikipedia, the free encyclopedia

Jump to: navigation, search

Model of the antioxidant metabolite glutathione. The yellow sphere is the redox-active sulfur atom that provides antioxidant activity, while the red, blue, white, and dark grey spheres represent oxygen, nitrogen, hydrogen, and carbon atoms, respectively.

An antioxidant is a molecule that inhibits the oxidation of other molecules. Oxidation is a

chemical reaction that transfers electrons or hydrogen from a substance to an oxidizing agent. Oxidation reactions can produce free radicals. In turn, these radicals can start chain reactions. When the chain reaction occurs in a cell, it can cause damage or death to the cell.

Antioxidants terminate these chain reactions by removing free radical intermediates, and inhibit other oxidation reactions. They do this by being oxidized themselves, so antioxidants are often reducing agents such as thiols, ascorbic acid, or polyphenols.[1]

Substituted phenols and derivatives of phenylenediamine are common antioxidants used to inhibit gum formation in gasoline (petrol).

(13)

Antioxidants are widely used in dietary supplements and have been investigated for the prevention of diseases such as cancer, coronary heart disease and even altitude sickness.[2] Although initial studies suggested that antioxidant supplements might promote health, later large clinical trials of antioxidant supplements including beta-carotene, vitamin A, and vitamin E singly or in different combinations suggest that supplementation has no effect on mortality or possibly increases it.[3][4][5] Randomized clinical trials of antioxidants including beta carotene, vitamin E, vitamin C and selenium have shown no effect on cancer risk or increased cancer risk associated with supplementation.[6][7][8][9][10][11][12] Supplementation with selenium or vitamin E does not reduce the risk of cardiovascular disease.[13][14]

Referensi

Dokumen terkait

Students involved in group work, group projects and collaborative learning should be encouraged to utilise peer feedback because they can learn from other students and the lecturer..

Tujuan dari penelitian ini adalah untuk mengetahui kandungan senyawa fenolik dan kapasitas antioksidan ekstrak teripang pasir dari pantai Kenjeran Surabaya,

Tinggi Modal Sosial menunjukan model persamaan regresi berdasarkan data penelitian adalah tidak signifikan. artinya, model regresi linier tidak memenuhi kriteria

Berdasarkan Surat Permohonan dari Ketua Jurusan Pendidikan Bahasa. Daerair FBS UNY

Beberapa teori menyatakan bahwa jatuhnya peradaban Mohenjodaro- Harappa disebabkan karena adanya kekeringan yang diakibatkan oleh musim kering yang amat hebat serta lama. Atau

Pada tahun 1996, Bianco dan Yohai [2] memperkenalkan metode yang di- gunakan untuk mengestimasi parameter regresi logistik agar menghasilkan model regresi logistik robust yang

MESIN PENGADUK DODOL JENANG MADU MONGSO

Bagaimana hasil pembelajaran rampak kendang di Sanggar Seni Kutalaras.