• Tidak ada hasil yang ditemukan

ON CERTAIN CLASSES OF P-VALENT FUNCTIONS DEFINED BY MULTIPLIER TRANSFORMATION AND DIFFERENTIAL OPERATOR | Tehranchi | Journal of the Indonesian Mathematical Society 72 289 1 PB

N/A
N/A
Protected

Academic year: 2017

Membagikan "ON CERTAIN CLASSES OF P-VALENT FUNCTIONS DEFINED BY MULTIPLIER TRANSFORMATION AND DIFFERENTIAL OPERATOR | Tehranchi | Journal of the Indonesian Mathematical Society 72 289 1 PB"

Copied!
12
0
0

Teks penuh

(1)

ON CERTAIN CLASSES OF

P

-VALENT

FUNCTIONS DEFINED BY

MULTIPLIER TRANSFORMATION

AND DIFFERENTIAL OPERATOR

A. Tehranchi , S. R. Kulkarni

and G. Murugusundaramoorthy

Abstract. In this paper, we discuss thep-valent functions that satisfy the differen-tial subordinations z(Ip(r,λ)f(z))(j+1)

(p−j)(Ip(r,λ)f(z))(j) ≺

a+(aB+(A−B)β)z

a(1+Bz) . We also obtain coefficient inequalities, extreme points, integral representation and arithmetic mean. Further we investigate some interesting properties of operators defined onAp(r, j, β, a, A, B).

1. INTRODUCTION

Denote byA the class of functions f(z) =z−P∞

n=2anzn analytic inD =

{z∈C:|z|<1}. Also denoteAp the class of all analytic functions of the form

f(z) =kzp+ 2p−1

X

n=p−1

tn−p+1zn−p+1− 2F1(a, b;c;z), |z|<1 (1)

where

2F1(a, b;c;z) = ∞

X

n=0

(a, n)(b, n) (c, n)n! z

n

(a, n) = Γ(a+n)

Γ(a) =a(a+ 1, n−1), c > b >0, c > a+b and

tn−p+1 =

(a, n−p+ 1)(b, n−p+ 1)

(c, n−p+ 1)(n−p+ 1)! , k >0. Received 14 August 2005, revised 28 July 2006, accepted 2 August 2006 .

2000 Mathematics Subject Classification: 30C45, 30C50.

Key words and Phrases: Multivalent function, Differential subordinations, multiplier transformation, differential operator.

(2)

These functions are analytic in the unit diskD (For details see [1], [5]).

Definition 1.1. A function f ∈ Ap is said to be in the class S∗

p(α) , p-valently

starlike functions of orderα, if it satisfiesRenzf ′ Minda [6]. But results about the convex class can be obtained easily from the corresponding result of functions inS∗

p(h). If

h(z) = 1 +z

1−z, (3)

then the classes reduce to the usual classes of starlike and convex functions. If h(z) = 1+(1−2α)z

1−z , 0≤α < p,then the classes reduce to the usual classes of starlike and convex functions of order α. Ifh(z) = 1+Az

1+Bz, −1 ≤B < A ≤1, then the classes reduce to the class of Janowski starlike functionS∗

p[A, B] defined by starlike and convex function of orderαthat consists of univalent functions f ∈A satisfying

or equivalently we have

SS∗

Obradoviˇcand Owa [8], Silverman [11], Obradoviˇcand Tuneski [9] and Tuneski [12] have studied the properties of classes of functions defined in terms of the ratio of 1 + zff′′′((zz)) and

zf′

(3)

Definition 1.2. A function f ∈Ap is said to be p-valent Bazilevic of type η and order αif there exists a function g∈S∗

p such that

Re

½ zf(z) f1−η(z)gη(z)

¾

> α, (z∈∆) (6)

for some η(η ≥0) and α(0 ≤α < p). We denote by Bp(η, α), the subclass of Ap

consisting of all such functions. In particular, a function in Bp(1, α) =Bp(α) is said to be p-valently close-to-convex of orderαin ∆.

Definition 1.3. [7] For two functions f and g, analytic in ∆ we say f is sub-ordinate to g denoted by f ≺ g if there exists a Schwarz function w(z), analytic in ∆ with w(0) = 1 and |w(z)|<1, such that f(z) = g(w(z)), z ∈∆. In partic-ular, if the function g is univalent in ∆, the above subordination is equivalent to

f(0) =g(0), f(∆)⊂g(∆). Also, we say that g is superordinate tof.

Using the techniques of Cho and Srivastava[4],Cho and Kim[3] and Uralegadi and Somanatha[12] we define the following transformation.

Definition 1.4. We define the multiplier transformation operatorIp(r, λ) on the infinite series f(z) =zp P∞

n=p+1

anzn as

Ip(r, λ)f(z) =zp

X

n=1+p

µn+λ

p+λ

¶r

anzn, (λ0). (7)

We note that Sˇalˇagean derivative operators [9] is closely related to the op-erators Ip(r, λ) when the coefficient of f(z) is positive. Also note that the class I1(r,1) =Ir [12] ,I1(r, λ) =Iλ

r the classes studied in [4] and [3].

Definition 1.5. For eachf(z) =zp

P

n=p+1

anzn we have

f(j)(z) = p! (p−i)!z

p−j

X

n=p+1 n! (n−j)!anz

n−j (8)

wheren, p∈N, p > j,andj∈N0={0} ∪N. Forj= 0 we havef(0)(z) =f(z).

Definition 1.6. A functionf ∈Apis said to be in the classAp(r, j;h)if it satisfies

z(Ip(r, λ)f(z))(j+1)

(4)

where

h(z) = 1 + A−B a

βz

1 +Bz, z∈∆,

and−1≤B < A≤1,0< β < p, a >0, we denoteAp(r, j;h) =Ap(r, j, β, a, A, B).

We say thatf(z) is superordinate toh(z) iff(z) satisfies the following

h(z)≺ z(Ip(r, λ)f(z))

(j+1)

(p−j)(Ip(r, λ)f(z))(j)

whereh(z) is analytic in ∆ andh(0) = 1. We note that if

z(Ip(r, λ)f(z))(j+1) (Ip(r, λ)f(z))(j) ≺

(p−j)[a+ (aB+ (A−B)β)z] a(1 +Bz)

so h(0) = 1 by choosingj =r= 0, p= 1, then f(z)∈S∗

p(h). Also a=A=β = 1, B = −1, f(z) ∈ S∗

p(1). But if a = β = 1 and −1 ≤ B < A ≤1 then f(z)∈ S∗[A, B], class of Janowski starlike function. If we putp=a=β=A= 1, B=1 thenf(z)∈SS∗

(1) classes of strongly starlike.

By Definition 1.2., ifg(z)∈S∗, univalent starlike andj=r= 0 andp=a= A=β = 1, B=−1 and ifRen zf

(z) f(z)−1g2(z)

o

>1, thenf(z)∈B(2,1) class Bazilevic function of typeη= 2 and order α= 1.

2. MAIN RESULTS

In this section we obtain sharp coefficient estimates for functions in Ap(r, j, β, a, A, B).

Theorem 2.1. Let f(z) be of the form (1). Then f ∈Ap(r, j, β, a, A, B) if and only if

X

m=p+1

γr(m, p)

·

a(1 +B)(δ(m, j)(p−j)−δ(m, j+ 1)) βκ(A−B)δ(p, j+ 1) −

δ(m, j)(p−j) κδ(p, j+ 1)

¸

km<1

(10)

where

γr(m, p) =

µm+λ

p+λ

¶r

, λ≥0, p, r∈N

and

δ(m, j) = m!

(5)

Proof. The function f(z) of the form (1) can be expressed as f(z) = κzp

(6)

But we have

¯ ¯ ¯ ¯

az(Ip(r, λ)f(z))(j+1)a(pj)(Ip(r, λ)f(z))(j) (p−j)R(Ip(r, λ)f(z))(j)Baz(Ip(r, λ)f(z))(j+1)

¯ ¯ ¯ ¯

=|[a ∞

X

m=p+1

γr(m, p)(δ(m, j)(pj)δ(m, j+ 1))kmzm−j]/

[β(A−B)δ(p, j+ 1)κzp−j

X

m=p+1

γr(m, p)(aB(δ(m, j)(p−j)−δ(m, j+ 1))−

δ(m, j)(A−B)β(p−j))km]|

<{[a ∞

X

m=p+1

γr(m, p)(δ(m, j)(pj)δ(m, j+ 1))km]/

[βκ(A−B)δ(p, j+ 1)

X

m=p+1

γr(m, p)(aB(δ(m, j)(p−j)−δ(m, j+ 1))−

δ(m, j)(A−B)β(p−j))km]}<1

and so proof is complete.

The inequality (10) is sharp for the function

f(z) =zp− βκ(A−B)δ(p, j+ 1)

γr(q, p)[a(1 +B)(δ(q, j)(pj)δ(q, j+ 1))δ(q, j)(AB)β(pj)]z q,

withq≥1 +p.

Corollary 2.2. Let f ∈Ap(r, j, β, a, A, B)then we have

km< κβ(A−B)δ(p,j+1)

γr(m,p)[a(1+B)(δ(m,j)(p−j)−δ(m,j+1))−δ(m,j)(A−B)β(p−j)], (14)

with m≥p+ 1

In the next theorem we prove that the classAp(r, j, β, α, A, B) is closed under linear combination.

Theorem 2.3. Letfq(z) =κzp P∞

m=p+1

km,qzm(q= 1,2,· · ·, t)be inAp(r, j, β, a, A, B).

Then the functionF(z) = t

P

q=1

dqfq(z)where

t

P

q=1

(7)

Proof. We have and this completes the proof.

(8)

Then the functionf(z)∈Ap(r, j, β, a, A, B)if and only if it can be expressed in the

Proof. Suppose thatf can be expressed in the form (15) then we have

f(z) =

Therefore we conclude the result.

(9)

= κzp− ∞ X

m=1+p

µm(κzp−fm(z))

= κzp(1

− ∞ X

m=1+p

µm)− ∞ X

m=1+p

µmfm(z)

= ∞ X

m=p

µmfm(z).

Remark 2.6. The extreme points of the classAp(r, j, β, a, A, B) are the function fp(z), fm+p(z), m≥1 +pas in Theorem 2.1.

In the following theorem, we obtain the integral representation for Ap(r, j, β, a, A, B).

Theorem 2.7. Letf(z)∈Ap(r, j, β, a, A, B)then

f(z) = exp

·Z z

0

p(ψ(t)R+a) t(1 +Bψ(t))dt

¸

where|ψ(z)|<1, z∈U andR=aB+ (A−B)β. Also

f(z) =zpexp

·Z

X

log(1−Bxz)p(AaB−B)βdµ( x)

¸

whereµ(x) is the probability measure onX={x:|x|= 1}.

Proof. Set

z(Ip(r, λ)f(z))(j+1)

(p−j)(Ip(r, λ)f(z))(j) =Q(z)

Sincef(z)∈Ap(r, j, β, a, A, B) so¯¯ ¯

a(Q(z)−1) R−aBQ(z)

¯ ¯

¯<1 whereR=aB+ (A−B)β.

Consequently we put Ra(QaBQ(z)−1)(z) =ψ(z),|ψ(z)|<1. Finally we can writeQ(z) = aψ+(aBψz)R+(za) or

(Ip(r, λ)f(z))(j+1) (Ip(r, λ)f(z))(j) =

(p−j)(ψ(z)R+a) az(1 +Bψ(z))

Then we have

log(Ip(r, λ)f(z))(j)=

Z z

0

(p−j)(ψ(t)R+a) t(1 +Bψ(t)) dt

(Ip(r, λ)f(z))(j)= exp·Z z 0

(p−j)(ψ(t)R+a) t(1 +Bψ(t)) dt

(10)

forr=j= 0 we have

Now, we introduce an integral operator due to Bernardi [2]

(11)

Sincem > pthen mp++cc ≤1 so we have

P∞

m=1+pγr(m, p)

ha(1+B)(δ(m,j)(pj)δ(m,j+1))

βκ(A−B)δ(p,j+1) −

δ(m,j)(p−j) κδ(p,j+1)

i ³

p+c m+c

´

km

≤P∞

m=1+pγr(m, p)

h

a(1+B)(δ(m,j)(p−j)−δ(m,j+1)) βκ(A−B)δ(p,j+1) −

δ(m,j)(p−j) κδ(p,j+1)

i

km<1.

ThusLc(f(z))∈Ap(r, j, β, a, A, B).

REFERENCES

1. C. E. Andrews, R. Askey and R. Roy, Special functions, Cambridge University Press, Cambridge, 1991.

2. S. D. Bernardi, “Convex and starlike univalent functions”,Trans. Amer. Math. Soc.

135 (1969), 429-446.

3. N. E. Cho and T. H. Kim,, “Multiplier transformations and strongly close-to-convex functions ”,Bull. Korean Math. Soc. 40(3) (2003), 399-410.

4. N. E. Cho and H. M. Srivastava,, “Argument estimates of certain analytic functions defined by a class of multiplier transformations ”,Math. Comput. Modelling. 37(1-2) (2003), 39-49.

5. Y. C. Kim and F. Rønning,, “Integral transforms of certain subclasses of analytic functions ”,J. Math. Anal. Appl. 258 (2001), 466-489.

6. W. C. Ma and D. Minda.,A unified treatment of some special classes of univalent functions., Proceedings of the Conference on Complex Analysis (Tianjin, 1992), Conf. Proc. Lecture Notes Anal. I. pages 157-169, Cambridge, MA, 1994, Internat. Press. 7. S. S. Miller and P. T. Mocanu, “Subordinants of differential superordinations”,

Complex Var. Theory Appl. 48(10) (2003), 815-826.

8. M. Obradoviˇcand S. Owa, “A criterion for starlikeness”,Math. Nachr. 140(1989),

97-102.

9. M. Obradoviˇc, N. Tuneski, “On the starlike criteria defined Silverman”,Zesz, Nauk.

Politech. Rzeszowskiej Mat. 181(24) (2000), 59-64.

10. G. S. Sˇalaˇgean, “Subclasses of univalent functions in Complex analysis” Fifth

Ro-manian - Finnish Seminar, Part 1 (Bucharest, 1981), 362-372,Lecture Notes in Math., 1013, Springer, Berlin.

11. H. Silverman, “Convex and starlike criteria”,Int. J. Math. Math. Sci. 22(1999), 75-79.

12. N. Tuneski, “On the quotient of the representations of convexity and starlikeness”,

Math. Nachr.,248-249(2003), 200-203.

(12)

A. Tehranchi and S. R. Kulkarni : Department of Mathematics, Fergusson College, Pune University, Pune - 411004, India.

E-mail: Tehranchiab@yahoo.co.uk and kulkarni−ferg@yahoo.com

G.Murugusundaramoorthy: School of Science and Humanities, Vellore Institute of Technology, Deemed University, Vellore-632 014 ,India.

Referensi

Dokumen terkait

Panitia Pengadaan pada Badan Kepegawaian Negara Kantor Regional VIII Banjarmasin akan melaksanakan Pelelangan Umum dengan pascakualifikasi untuk paket pekerjaan

Dari hasil penelitian yang dilakukan oleh peneliti, PT.Unichem Candi Indonesia menunjukkan bahwa dari sisi strategy perusahaan memiliki visi dan misi yang jelas,

Batas Akhir Pemasukan Dokumen Penawaran dan Pembukaan Dokumen Penawaran, waktu dan tempat ditentukan pada saat acara pemberian penjelasan Dokumen Pengadaan. Pendaftaran

Selanjutnya bagi pihak-pihak yang merasa berkeberatan atas penetapan pemenang lelang diberi kesempatan untuk menyampaikan sanggahan kepada Pokja Konstruksi ULP

Bagi peserta yang keberatan atas pengumuman pemenang lelang tersebut di atas dapat mengajukan sanggahan secara tertulis kepada Pokja Pengadaan Jasa Konstruksi

Berdasarkan Surat Penetapan Pemenang Pelelangan Pelaksana Pekerjaan Pengadaan Alat Kesehatan Puskesmas, Kegiatan Pengadaan Sarana Kesehatan (DPPID) Dinas

Sejak awal berdirinya perusahaan, perusahaan selalu berusaha untuk mencapai visi yang telah diangkat oleh perusahaan, yakni menjadi mitra strategis jangka panjang

Restrukturisasi organisasi yang dilakukan oleh PT. Samudra Alam Raya dilakukan untuk mencari solusi atau jalan keluar bagi masalah menurunnya kinerja