• Tidak ada hasil yang ditemukan

Paper10-Acta25-2011. 125KB Jun 04 2011 12:03:15 AM

N/A
N/A
Protected

Academic year: 2017

Membagikan "Paper10-Acta25-2011. 125KB Jun 04 2011 12:03:15 AM"

Copied!
12
0
0

Teks penuh

(1)

FIRST ORDER LINEAR DIFFERENTIAL SUBORDINATIONS FOR A GENERALIZED OPERATOR

Afaf Ali Abubaker and Maslina Darus

Abstract. In this work, we obtain some results for first order linear strong differential subordination for new subclass of generalized operator.

2000Mathematics Subject Classification: 30C45.

1. Introduction And Preliminaries

Let H = H(U) denote the class of functions analytic in U. For n, a positive integer anda∈C, and let

H[a, n] ={f ∈H;f(z) =a+anz

n+. . . , zU}.

Let Abe the class of functionsf of the form f(z) =z+a2z

2+. . . , zU which are analytic in the unit disk. LetS∗

andC be the class of starlike and convex functions respectively given by

S∗

={f ∈A,ℜzf

(z) f(z) >0} and

C ={f ∈A,ℜ{1 +zf

′′

(z)

f′(z) }>0}.

For f ∈A, Ruscheweyh [6] considered the following generalized integral operator

f(z) =Iδ,γ(F)(z) = [

δ+γ zγ

z Z

0 tγ−1

Fδ(t)dt]1δ,(δ >0, ℜ γ >0).

(2)

Let

Dα,β,λ,µk f(z) =

∞ X

n=2

[β(n−1)(λ−α) + 1]kG(µ, n)anzn

where z∈U for α≥0, β ≥0, λ≥0 and k∈N0=N∪ {0}, µ≥0. Remark 1.3.

1. When α = 0, β = 1 and λ= 1 ,µ= 0, we get S˜al˜agean differential operator (see [8]).

2. When k= 0 gives Ruscheweyh (see [7]).

3. When α = 0, β = 1 and λ = 1 and µ = 0, we get Al-Oboudi differential operator (see [3]).

4. When µ= 0, the operator reduces to Darus and Ibrahim (see [2]). Definition 1.4.Let f ∈A, then f ∈Sk

α,β,λ,µ if and only if for z∈U :

ℜ{z(D

k

α,β,λ,µf(z)) ′

Dk

α,β,λ,µf(z)

}>0, .

In our present investigation of the first order linear strong differential subordina-tion for new subclass of generalized operator, we need the following definisubordina-tions and lemmas:

Definition 1.5. [1]LetH(z, ξ)be analytic in U×U¯ and letf analytic and univalent in U. The functionH(z, ξ) is strongly subordinate tof, writtenH(z, ξ)≺≺ f(z) if for each ξ ∈U¯, the function of z,H(z, ξ) is subordinate to f.

Remark 1.6. Since f is analytic and univalent, Definition 1.4 is equivalent to H(0, ξ) =f(0) andH(U×U¯)⊂ f(U).

Definition 1.7. [4]We denote by Q the set of functions f that are analytic and injective in U¯\E(f),where

E(f) ={ζ ∈∂U; lim

z→ζf(z) =∞}

and are such that f′

(ζ)6= 0for ζ ∈∂U\E(f). The subclass ofQfor which f(0) =a

(3)

Definition 1.8. [5] Let Ω be a set in C, q ∈ Q and n be a positive integer. The class of admissible functionsψn[Ω, q]consists of those functionsψ:C2×U×U¯ that

satisfy the admissibility condition:

ψ(r, s;z, ξ)∈/ Ω

whenever r=q(ζ), s=mζq′

(ζ), z∈U, ξ∈U , ζ¯ ∈∂U\E(f) and m≥n.

Lemma 1.9. [4] Let q ∈ Q(a), with q(0) = a and let p(z) = a+anzn +· · · be

analytic inU, with p(z)6=aandn≥1. Ifp is not subordinate toq, then there exist points z0 =r0eiθ0 ∈U and ζ0 ∈∂U\E(q), and an m≥n≥1

1. p(z0) =q(ζ0)

2. z0p′(z0) =mζ0q(ζ0).

2.Main Results

By referring to Definition 1.5, we state the first order linear strong differential sub-ordination for new subclass of generalized operator as follows:

Definition 2.1.A strong differential subordination for some subclasses of generalized operator of the form

A(z, ξ)[z 2(Dk

α,β,λ,µf(z)) ′′

Dk

α,β,λ,µf(z)

+ z(D

k

α,β,λ,µf(z)) ′

Dk

α,β,λ,µf(z)

−z 2(Dk

α,β,λ,µf(z)) ′2

(Dk

α,β,λ,µf(z) )2

]+

B(z, ξ)z(D

k

α,β,λ,µf(z)) ′

Dk

α,β,λ,µf(z)

≺≺ h(z), z∈U, ξ∈U¯ (1)

where p(z) = z(D

k

α,β,λ,µf(z))′

Dk

α,β,λ,µf(z)

and ψ(r, s;z, ξ) =A(z, ξ)zp′

(z) +B(z, ξ)p(z)is analytic in U for all ξ ∈ U¯ and h(z) is analytic in U is called first order linear strong differential subordination for new subclass of generalized operator.

Remark 2.2. If A(z, ξ) = 1, B(z, ξ) = 0 and h(z) is convex function then (1) becomes

z2(Dα,β,λ,µk f(z))′′

Dk

α,β,λ,µf(z)

+z(D

k

α,β,λ,µf(z)) ′

Dk

(4)

−z 2(Dk

α,β,λ,µf(z)) ′2

(Dk

α,β,λ,µf(z))2

≺ h(z), z∈U.

Theorem 2.3. Let z(D k

α,β,λ,µf(z))′

Dk

α,β,λ,µf(z)

∈H[0, n],A:U×U¯ → C, B :U×U¯ → C with

ψ(r, s;z, ξ) analytic in U for all, ξ ∈U¯ and

ℜ[nA(z, ξ) +B(z, ξ)]≥1, ℜA(z, ξ)≥0.

If

A(z, ξ)[z 2(Dk

α,β,λ,µf(z)) ′′

Dk

α,β,λ,µf(z)

+z(D

k

α,β,λ,µf(z)) ′

Dk

α,β,λ,µf(z)

−z 2(Dk

α,β,λ,µf(z)) ′2

(Dk

α,β,λ,µf(z))2

] +B(z, ξ)z(D

k

α,β,λ,µf(z)) ′

Dk

α,β,λ,µf(z)

≺≺ (n2+ 1)M z , z∈U, ξ ∈U , M >¯ 0 (2)

then

z(Dα,β,λ,µk f(z))′

Dk

α,β,λ,µf(z)

≺M z.

Proof. Letψ:C2×U ×U¯ → C

ψ(r, s;z, ξ) =A(z, ξ)[z 2(Dk

α,β,λ,µf(z)) ′′

Dk

α,β,λ,µf(z)

+z(D

k

α,β,λ,µf(z)) ′

Dk

α,β,λ,µf(z)

−z 2(Dk

α,β,λ,µf(z)) ′2

(Dk

α,β,λ,µf(z))2

] +B(z, ξ)z(D

k

α,β,λ,µf(z)) ′

Dk

α,β,λ,µf(z)

,

and (2) becomes

(5)

ψ(r, s;z, ξ)∈U(0,(n2+ 1)M). (4) Suppose that

z(Dk

α,β,λ,µf(z)) ′

Dk

α,β,λ,µf(z)

is not subordinated to q(z) = M z. Then by using Lemma 1.9, we have that there exist z0∈U and ζ0 ∈∂U such that

z0(Dα,β,λ,µk f(z0)) ′

Dk

α,β,λ,µf(z0)

=q(z0) =M eiθ0

,

where θ0 ∈R when|ζ0|= 1 and z2

0(Dkα,β,λ,µf(z0)) ′′

Dk

α,β,λ,µf(z0)

+z0(D

k

α,β,λ,µf(z0)) ′

Dk

α,β,λ,µf(z0)

−z 2

0(Dα,β,λ,µk f(z0)) ′2

(Dk

α,β,λ,µf(z0))2

=m ζ0h′(ζ0) =K eiθ0, K ≥ nM .

Hence we obtain

|ψ(r, s;z0, ξ)| =

A(z0, ξ) K e

iθ0 +B(z

0, ξ)M eiθ0

= |A(z0, ξ) K +B(z0, ξ)M|

≥ ℜ |A(z0, ξ)K +B(z0, ξ)M| ≥ KℜA(z0, ξ) +MℜB(z0, ξ)

≥ M[nℜA(z0, ξ) +ℜB(z0, ξ) ]≥ M,

Since this result contradicts (4), we conclude that the assumption made concerning the subordination relation between p and q is false, hence

z(Dk

α,β,λ,µf(z)) ′

Dk

α,β,λ,µf(z)

(6)

When φ(z) = 1 in Theorem 2.3 we get:

Corollary 2.4. Let z(D k

α,β,λ,µf(z))′

Dk

α,β,λ,µf(z)

∈H[0, n],A:U×U¯ → C, B:U×U¯ → C with

A(z, ξ)[z 2(Dk

α,β,λ,µf(z)) ′′

Dk

α,β,λ,µf(z)

+z(D

k

α,β,λ,µf(z)) ′

Dk

α,β,λ,µf(z)

−z 2(Dk

α,β,λ,µf(z)) ′2

(Dk

α,β,λ,µf(z))2

] +B(z, ξ)z(D

k

α,β,λ,µf(z)) ′

Dk

α,β,λ,µf(z)

,

analytic function in U for all, ξ ∈U¯ and

ℜ[nA(z, ξ) +B(z, ξ)]≥1, ℜA(z, ξ)≥0.

If

A(z, ξ)[z 2(Dk

α,β,λ,µf(z)) ′′

Dk

α,β,λ,µf(z)

+ z(D

k

α,β,λ,µf(z)) ′

Dk

α,β,λ,µf(z)

−z 2(Dk

α,β,λ,µf(z)) ′2

(Dk

α,β,λ,µf(z))2

]

+B(z, ξ)z(D

k

α,β,λ,µf(z)) ′

Dk

α,β,λ,µf(z)

≺≺ (n2+ 1)M z , z∈U, ξ∈U , M >¯ 0 (5)

then

z(Dk

α,β,λ,µf(z)) ′

Dk

α,β,λ,µf(z)

≺M z.

For k= 0, we get the following corollary.

Corollary 2.5. Let z ff(z()z) ∈H[0, n]and A:U ×U¯ → C, B:U ×U¯ → C with

A(z, ξ)[z 2f′′

(z) f(z) +

z f′

(z) f(z) −

z2(f

(z))2

(f(z))2 ] +B(z, ξ) zf′

(z) f(z) ,

analytic function in U for all, ξ ∈U¯ and

ℜ[nA(z, ξ) +B(z, ξ)]≥1, ℜA(z, ξ)≥0.

If

A(z, ξ)[z 2f′′

(z) f(z) +

z f′

(z) f(z) −

z2(f

(7)

+B(z, ξ)zf

(z)

f(z) ≺≺ (n

2+ 1)M z, zU, , ξU , M >¯ 0, (6)

then

z f′

(z)

f(z) ≺ M z.

Theorem 2.6. Let z(D k

α,β,λ,µf(z))′

Dk

α,β,λ,µf(z)

∈ H[1, n]and A:U×U¯ → C, B:U×U¯ → C

with ψ(r, s;z, ξ) a function of z, analytic in for anyξ∈U¯ and

ℜA(z, ξ)≥0, ℑB(z, ξ) ≤nℜA(z, ξ).

If

ℜ{A(z, ξ)[z 2(Dk

α,β,λ,µf(z)) ′′

Dk

α,β,λ,µf(z)

+z(D

k

α,β,λ,µf(z)) ′

Dk

α,β,λ,µf(z)

−z 2(Dk

α,β,λ,µf(z)) ′2

(Dk

α,β,λ,µf(z))2

] +B(z, ξ)z(D

k

α,β,λ,µf(z)) ′

Dk

α,β,λ,µf(z)

}>0 (7)

then

ℜz(D

k

α,β,λ,µf(z)) ′

Dk

α,β,λ,µf(z)

>0, z∈U.

Proof. Letψ:C2×U ×U¯ → C, ψ(r, s;z, ξ) =A(z, ξ)[z

2(Dk

α,β,λ,µf(z)) ′′

Dk

α,β,λ,µf(z)

+z(D

k

α,β,λ,µf(z)) ′

Dk

α,β,λ,µf(z)

−z 2(Dk

α,β,λ,µf(z)) ′2

(Dk

α,β,λ,µf(z))2

] +B(z, ξ)z(D

k

α,β,λ,µf(z)) ′

Dk

α,β,λ,µf(z)

,

In this case, (7) becomes

(8)

Since h(z) = 1+1+BzAz, −1≤B < A≤1, and

h(U) ={ω∈C:ℜω(z)>0}

from which we have that (8) becomes ψ(r, s;z, ξ) ≺ 1 +Az

1 +Bz, −1≤B < A≤1. Supposeℜ{z(D

k

α,β,λ,µf(z))′

Dk

α,β,λ,µf(z)

}<0, meaningp(z) = z(D

k

α,β,λ,µf(z))′

Dk

α,β,λ,µf(z)

is not subordinate to h(z) = 1+1+AzBz, −1≤B < A≤1. Using Lemma 1.5, we have that there existz0∈U and ζ0 ∈∂U with|ζ0|= 1 such that z0(D

k

α,β,λ,µf(z0))′

φ(z0)Dkα,β,λ,µf(z0) =h(ζ0) =ρi, and

z02(Dk

α,β,λ,µf(z0)) ′′

Dk

α,β,λ,µf(z0)

+z0(D

k

α,β,λ,µf(z0)) ′

Dk

α,β,λ,µf(z0)

−z 2

0(Dα,β,λ,µk f(z0)) ′2

(Dk

α,β,λ,µf(z0))2

=m ζ0h′

(ζ0) =σ,

where ρ, σ∈R and σ≤ −n(1 +ρ2), n1. Then we obtain: ℜψ(r, s;z0, ξ) =ℜψ(ρi, σ;z0, ξ)

=ℜ[A(z0, ξ)σ+B(z0, ξ)ρi] =ℜ{A(z0, ξ)σ+ [B(z0, ξ) +i B(z0, ξ)]ρi}

=σℜA(z0, ξ) −ρℑB(z0, ξ) ≤ −n(1 +ρ2)ℜA(z0, ξ)−ρℑB(z0, ξ)

≤ −n 2ρ

2ℜA(z

0, ξ)−ρℑB(z0, ξ) − n 2 ≤ 0.

Hence ℜψ(r, s;z0, ξ) ≤ 0 which contradicts (2.8) and we conclude that z(Dk

α,β,λ,µf(z)) ′

Dk

α,β,λ,µf(z)

>0, z∈U.

(9)

Corollary 2.7. Let z ff(z(z)) ∈H[1, n] and A :U ×U¯ → C, B :U ×U¯ → C with

ψ(r, s;z, ξ) a function of z, analytic in for anyξ ∈U¯ and

ℜA(z, ξ)≥0, ℑB(z, ξ) ≤nℜA(z, ξ).

If

A(z, ξ)[z 2f′′

(z) f(z) +

z f′

(z) f(z) −

z2(f′

(z))2

(f(z))2 ] +B(z, ξ) zf′

(z) f(z) >0

then

zf′

(z)

f(z) >0, z∈U.

Theorem 2.8. Let z(D k

α,β,λ,µf(z))′

Dk

α,β,λ,µf(z)

∈H[0, n],A:U×U¯ → C, B :U×U¯ → C with

ψ(r, s;z, ξ) analytic in U for allξ ∈U¯ and

ℜA(z, ξ)≥0,ℑB(z, ξ) ≤ nℜA(z, ξ)[−nℜA(z, ξ) +z].

If

A(z, ξ)[z 2(Dk

α,β,λ,µf(z)) ′′

Dk

α,β,λ,µf(z)

+z(D

k

α,β,λ,µf(z)) ′

Dk

α,β,λ,µf(z)

(9)

−z 2(Dk

α,β,λ,µf(z)) ′2

(Dk

α,β,λ,µf(z))2

] +B(z, ξ)z(D

k

α,β,λ,µf(z)) ′

Dk

α,β,λ,µf(z)

≺≺ M z, z∈U, , ξ∈U , M >¯ 0

then

z(Dk

α,β,λ,µf(z)) ′

Dk

α,β,λ,µf(z)

≺ 1 +Az

1 +Bz, −1≤B < A≤1, z∈U.

Proof. Letψ:C2×U ×U¯ → C, and

ψ(r, s;z, ξ) =A(z, ξ)[z 2(Dk

α,β,λ,µf(z)) ′′

Dk

α,β,λ,µf(z)

+z(D

k

α,β,λ,µf(z)) ′

Dk

(10)

−z 2(Dk

α,β,λ,µf(z)) ′2

(Dk

α,β,λ,µf(z))2

] +B(z, ξ)z(D

k

α,β,λ,µf(z)) ′

Dk

α,β,λ,µf(z)

,

then (9) becomes

ψ(r, s;z, ξ) ≺≺ M z (10) since h(z) =M z, we have h(z) =U(0, M). Thus

ψ(r, s;z, ξ)⊂U, z∈U, , ξ∈U .¯ (11) Suppose that z(D

k

α,β,λ,µf(z))′

Dk

α,β,λ,µf(z)

is not subordinated toq(z) = 1+Az

1+Bz, −1≤B < A≤1.

then ,by using Lemma 1.9, we have that there exist z0∈U and ζ0 ∈∂U such that z(Dk

α,β,λ,µf(z)) ′

Dk

α,β,λ,µf(z)

=q(ζ0) =υi,

z2(Dk

α,β,λ,µf(z)) ′′

Dk

α,β,λ,µf(z)

+z(D

k

α,β,λ,µf(z)) ′

Dk

α,β,λ,µf(z)

−z 2(Dk

α,β,λ,µf(z)) ′2

(Dk

α,β,λ,µf(z))2

] =mζ0q′(ζ0) =ρ

where υ, ρ∈R and ρ≤ n2(1 +υ2), n≥1. Then we obtain ℜψ(r, s;z0, ξ) =ℜψ(υi, ρ;z0, ξ)

=ℜ[A(z0, ξ)ρ+B(z0, ξ)υi] =ρℜA(z0, ξ)−υ ℑB(z0, ξ)

≤ −n 2(1 +υ

2)ℜA(z

0, ξ)−υ ℑB(z0, ξ)

≤ −n

2ℜA(z0, ξ)−υ ℑB(z0, ξ)− n

2υℜA(z0, ξ)≤ −1. Hence, we have

(11)

which contradicts (11) and we conclude that z(Dk

α,β,λ,µf(z)) ′

Dk

α,β,λ,µf(z)

≺ 1 +Az

1 +Bz, −1≤B < A≤1, z∈U. When k= 0 , M = 1 and q(z) = 1+1−zz in Theorem 2.8 we get:

Corollary 2.9. Let z ff(z()z) ∈H[1, n]and

A(z, ξ) [z 2f′′

(z) f(z) +

z f′

(z) f(z) −

z2(f′

(z))2

(f(z))2 ] +B(z, ξ) zf′

(z) f(z)

analytic function in U for allξ ∈U¯ and

ℜA(z, ξ)≥0,ℑB(z, ξ) ≤ nℜA(z, ξ)[−nℜA(z, ξ) +z].

If

A(z, ξ) [z 2f′′

(z) f(z) +

z f′

(z) f(z) −

z2(f′

(z))2

(f(z))2 ] +B(z, ξ) zf′

(z)

f(z) ≺≺ z, z∈U, , ξ∈U¯

then

z f′

(z) f(z) ≺

1 +z

1−z , z∈U.

Acknowledgement: This work is partially supported by UKM-ST-06-FRGS0107-2009, MOHE Malaysia.

References

[1] J.A. Antonino and Salvador Romaguera, Strong differential subordination to Briot-Bouquet differential equation, Journal of Differential Equations, 114 (1994),101-105.

[2] F. M. Al-Oboudi, on univalent functions defined by a generalized Sa˜la˜gean operator, Far East J. Math. Sci., 27(2004),1429-1436.

[3] M. Darus and R. W. Ibrahim,On subclasses for generalized operators of complex order, Far East J. Math. Sci., 33, 3 (2009), 299-308.

[4] S. S. Miller, P. T. Mocanu, Differential subordinations. Pure and Applied Math. No.225, Marcel Dekker, New York, (2000).

(12)

[6] Ruscheweyh, Eine invarianzeigenschaft der Bazilevic function, Math.Z.,134, (1973),215-219.

[7] St. Ruscheweyh, New criteria for univalent functions, Proc. Amer. Math. Soc.,49,(1975), 109-115.

[8] G. S. S˜al˜agean,Subclasses of univalent functions, Lecture Notes in Math.,1013, Springer-Verlag, Berlin, (1983),pp. 362-372.

[9] V. Pescar, D. Breaz, Some integral operators and their univalency , Acta Universitatis Apulensis, 15 (2008), 147-152.

[10] R. M. El-Ashwah and M. K. Aouf, Some properties of new integral operator, Acta Universitatis Apulensis, 24 (2010), 51-61.

Afaf Abubaker

School of Mathematical Sciences Faculty of Science and Technology Universiti Kebangsaan Malaysia

Bangi 43600 Selangor D. Ehsan, Malaysia email:m.afaf48@yahoo.com

Maslina Darus

School of Mathematical Sciences Faculty of Science and Technology Universiti Kebangsaan Malaysia

Referensi

Dokumen terkait

[r]

2 Kendaraan operasional roda empat untuk surveilans dan monitoring penyakit hewan Rp305,000,000 e-procurement. XIV PERALATAN PENUNJANG

Unit Layanan Pengadaan Kota Banjarbaru mengundang penyedia Pengadaan Barang/Jasa untuk mengikuti Pelelangan Umum pada Pemerintah Kota Banjarbaru yang dibiayai dengan Dana APBD

Meja Bhs Jepang Nada Isu Bhs Indonesia Dini Gomibako Bhs Inggris Daniel Randosēru Bhs Inggris Etienne Kabin Bhs Inggris Nobita Karend ā Bhs Jawa Sugiman.. Pencil case (box) Bhs

Hubungan yang baik ini juga dapat membantu proses produksi panel listrik karena dengan adanya kerjasama yang baik dengan pemasok, maka perusahaan tidak memiliki

Unit Layanan Pengadaan Kota Banjarbaru mengundang penyedia Pengadaan Barang/Jasa untuk mengikuti Pelelangan Umum pada Pemerintah Kota Banjarbaru yang dibiayai dengan Dana APBD Tahun

Penetapan hasil kualifikasi (Short List)g. Pengumuman hasil kualifikasi 11

Pejabat Pembuat Komitmen SMARTD mengundang para Peserta Lelang yang memenuhi syarat untuk menyampaikan surat penawaran dalam amplop tertutup untuk pelaksanaan pekerjaan