• Tidak ada hasil yang ditemukan

BAB II TINJAUAN PUSTAKA

N/A
N/A
Protected

Academic year: 2022

Membagikan "BAB II TINJAUAN PUSTAKA"

Copied!
27
0
0

Teks penuh

(1)

6 BAB II

TINJAUAN PUSTAKA

2.1. Pengertian Jalan

Menurut Undang-Undang No. 38 tahun 2004, jalan adalah prasarana transportasi darat yang meliputi segala bagian jalan, termasuk bangunan pelengkap dan perlengkapannya yang diperuntukkan bagi lalu lintas, yang berada pada permukaan tanah, di atas permukaan tanah, di bawah permukaan tanah dan/atau air, serta di atas permukaan air, kecuali jalan kereta api, jalan lori, dan jalan kabel.

2.2. Klasifikasi Jalan

Menurut Departemen Pekerjaan Umum (1997), jalan raya pada umumnya dapat digolongkan dalam 4 klasifikasi, yaitu: klasifikasi menurut fungsi jalan, klasifikasi menurut kelas jalan, klasifikasi menurut medan jalan, dan klasifikasi menurut wewenang jalan.

2.2.1. Klasifikasi Menurut Fungsi Jalan

Klasifikasi menurut fungsi jalan terbagi atas:

 Jalan Arteri: Jalan yang melayani angkutan utama dengan ciri-ciri perjalanan jarak jauh, kecepatan rata-rata tinggi, dan jumlah jalan masuk dibatasi secara efisien,

 Jalan Kolektor: Jalan yang melayani angkutan pengumpul/pembagi dengan ciri-ciri perjalanan jarak sedang, kecepatan rata-rata sedang dan jumlah jalan masuk dibatasi,

 Jalan Lokal: Jalan yang melayani angkutan setempat dengan ciri-ciri perjalanan jarak dekat, kecepatan rata-rata rendah, dan jumlah jalan masuk tidak dibatasi.

(2)

2.2.2. Klasifikasi Menurut Kelas Jalan

Klasifikasi menurut kelas jalan berkaitan dengan kemampuan jalan untuk menerima beban lalu lintas, dinyatakan dalam muatan sumbu terberat (MST) dalam satuan ton. Klasifikasi menurut kelas jalan dan ketentuannya serta kaitannya dengan klasifikasi menurut fungsi jalan dapat dilihat pada Tabel 2.1.

Tabel 2.1. Klasifikasi Menurut Kelas Jalan

Fungsi Kelas Muatan Sumbu Terberat

MST (ton)

Arteri

I >10

II 10

III A 8

Kolektor III A

III B 8

Lokal III C 8

Sumber: DPU (1997)

2.2.3. Klasifikasi Menurut Medan Jalan

Medan jalan diklasifikasikan berdasarkan kondisi sebagian besar kemiringan medanyang diukur tegak lurus garis kontur. Klasifikasi menurut medan jalan dapat dilihat pada Tabel 2.2.

Tabel 2.2. Klasifikasi Berdasarkan Medan Jalan

No. Jenis Medan Notasi Kemiringan Medan (%)

1 Datar D < 3

2 Perbukitan B 3 – 25

3 Pegunungan G > 25

Sumber: DPU (1997)

2.2.4. Klasifikasi Menurut Wewenang Pembinaan Jalan

Klasifikasi jalan menurut wewenang pembinaannya sesuai PP. No.26/1985 adalah jalan Nasional, Jalan Provinsi, Jalan Kabupaten/Kotamadya, Jalan Desa, dan Jalan Khusus.

 Jalan Nasional merupakan jalan arteri dan jalan kolektor dalam sistem jaringan jalan primer yang menghubungkan antar ibu kota provinsi dan jalan strategis nasional serta jalan tol.

(3)

 Jalan Provinsi merupakan jalan kolektor dalam sistem jaringan jalan primer yang menghubungkan ibu kota provinsi dengan ibu kota kabupaten/kota, atau antar ibu kota kabupaten/kota dan jalan strategis provinsi.

 Jalan Kabupaten merupakan jalan lokal dalam sistem jaringan jalan primer yang tidak termasuk pada jalan nasional dan jalan provinsi yang menghubungkan ibu kota kabupaten dengan ibu kota kecamatan.

 Jalan Desa merupakan jalan umum yang menghubungkan kawasan dan/atau antar pemukiman di dalam desa serta jalan lingkungan.

 Jalan Khusus merupakan jalan yang dibangun dan dipelihara oleh instansi atau badan hukum atau perorangan untuk melayani kepentingan masing-masing.

2.3. Pengertian Perkerasan Jalan

Menurut Saodang (2005), perkerasan jalan adalah lapisan konstruksi yang dipasang langsung di atas tanah dasar badan jalan pada jalur lalu lintas yang bertujuan untuk menerima dan menahan beban langsung dari lalu lintas.

2.4. Kinerja Perkerasan Jalan

Berdasarkan suatu studi oleh Sasuwuk, Waani dan Rumayar (2019), dalam Highway Research Board (1962), kinerja perkerasan jalan merupakan fungsi dari kemampuan relatif pada perkerasan untuk melayani lalu lintas dalam suatu periode tertentu.

Menurut Sukirman (1999), kinerja perkerasan jalan (pavement performance) meliputi 3 hal, yaitu:

 Keamanan, yang ditentukan oleh besarnya gesekan akibat adanya kontak antara ban dan permukaan jalan. Besarnya gaya gesek yang terjadi dipengaruhi oleh bentuk dan kondisi ban, tekstur permukaan jalan, kondisi cuaca, dan lain sebagainya.

(4)

 Wujud perkerasan (structural perkerasan), sehubungan dengan kondisi fisik dari jalan tersebut seperti adanya retak-retak, amblas, alur, gelombang dan lain sebagainya.

 Fungsi pelayanan (functional performance), sehubungan dengan bagaimana perkerasan tersebut memberikan pelayanan kepada pemakai jalan. Wujud perkerasan dan fungsi pelayanan umumnya merupakan satu kesatuan yang dapat di gambarkan dengan “kenyamanan mengemudi (riding quality)”.

2.5. Umur Rencana

Menurut Departemen Pekerjaan Umum (1987), dijelaskan bahwa umur rencana adalah jumlah waktu dan tahun dihitung sejak jalan tersebut mulai dibuka sampai saat diperlukan perbaikan berat atau dianggap perlu diberi lapis permukaan yang baru. Umur rencana adalah jumlah tahun dari saat jalan tersebut dibuka untuk lalu lintas kendaraan sampai diperlukan suatu perbaikan yang bersifat struktural.

Menurut Sukirman (1999), selama umur rencana tersebut pemeliharaan perkerasan jalan tetap harus dilakukan, seperti pelapisan non struktural yang berfungsi sebagai lapisan aus dan kedap air. Umur rencana untuk perkerasan lentur jalan baru umumnya diambil 20 tahun dan untuk peningkatan jalan 10 tahun. Umur rencana yang lebih besar dari 20 tahun tidak lagi ekonomis karena perkembangan lalu lintas yang terlalu besar dan sukar mendapatkan ketelitian yang memadai.

Sedangkan menurut Departemen Permukiman dan Prasarana Wilayah (2003), umur rencana perkerasan jalan ditentukan atas pertimbangan klasifikasi fungsional jalan, pola lalu lintas serta nilai ekonomi jalan yang bersangkutan, yang dapat ditentukan antara lain dengan metode Benefit Cost Ratio, Internal Rate of Return, kombinasi dari metode tersebut atau cara lain yang tidak terlepas dari pola pengembangan wilayah. Umumnya perkerasan beton semen dapat direncanakan dengan umur rencana 20 tahun sampai 40 tahun.

(5)

2.6. Jenis Konstruksi Perkerasan

Menurut Sukirman (1999), berdasarkan bahan pengikatnya, konstruksi perkerasan jalan dapat dibedakan atas:

 Konstruksi perkerasan lentur (flexible pavement), yaitu perkerasan yang menggunakan aspal sebagai bahan pengikat. Lapisan-lapisan perkerasannya bersifat memikul dan menyebarkan beban lalu lintas ke tanah dasar.

 Konstruksi perkerasan kaku (rigid pavement), yaitu perkerasan yang menggunakan semen (portland cement) sebagai bahan pengikat. Pelat beton dengan atau tanpa tulangan diletakkan di atas tanah dasar dengan atau tanpa lapis pondasi bawah. Beban lalu lintas sebagian besar dipikul oleh pelat beton.

 Konstruksi perkerasan komposit (composite pavement), yaitu perkerasan kaku yang dikombinasikan dengan perkerasan lentur di atas perkerasan kaku, atau perkerasan kaku di atas perkerasan lentur.

2.7. Perkerasan Lentur Metode Bina Marga SKBI-2.3.26.1987

Menurut Departemen Pekerjaan Umum (1987), perkerasan lentur adalah perkerasan yang umumnya menggunakan bahan campuran beraspal sebagai lapis permukaan serta bahan berbutir sebagai lapisan di bawahnya.

2.7.1. Struktur Lapis Perkerasan Jalan

Pada umumnya lapisan perkerasan jalan dibagi menjadi tiga bagian, meliputi: lapis pondasi bawah, lapis pondasi, dan lapis permukaan. Struktur lapis perkerasan dapat dilihat pada Gambar 2.1.

D1 Lapis Permukaan

D2 Lapis Pondasi

D3 Lapis Pondasi

Bawah

Gambar 2.1. Susunan Lapis Perkerasan Jalan (DPU, 1987)

(6)

2.7.1.1. Tanah Dasar

Kekuatan dan keawetan konstruksi perkerasan jalan sangat tergantung dari sifat-sifat dan daya dukung tanah dasar. Umumnya persoalan yang menyangkut tanah dasar adalah sebagai berikut:

Perubahan bentuk tetap (deformasi permanen) dari macam tanah tertentu akibat beban lalu lintas,

Sifat mengembang dan menyusut dari tanah tertentu akibat perubahan kadar air,

Daya dukung tanah yang tidak merata dan sukar ditentukan secara pasti pada daerah dengan macam tanah yang sangat berbeda sifat dan kedudukannya, atau akibat pelaksanaan,

Lendutan dan lendutan balik selama dan sesudah pembebanan lalu lintas dari macam tanah tertentu,

Tambahan pemadatan akibat pembebanan lalu lintas dan penurunan yang diakibatkannya, yaitu pada tanah berbutir kasar (granular soil) yang tidak dipadatkan secara baik pada saat pelaksanaan.

Untuk sedapat mungkin mencegah timbulnya persoalan di atas maka tanah dasar harus dikerjakan sesuai dengan "Petunjuk Perencanaan Tebal Perkerasan Lentur Jalan Raya" edisi SKBI-2.3.26.1987.

2.7.1.2. Lapis Pondasi Bawah

Fungsi lapis pondasi bawah antara lain:

Sebagai bagian dari konstruksi perkerasan untuk mendukung dan menyebarkan beban roda,

Mencapai efisiensi penggunaan material yang relatif murah agar lapisan-lapisan selebihnya dapat dikurangi tebalnya (penghematan biaya konstruksi),

Untuk mencegah tanah dasar masuk ke dalam lapis pondasi,

Sebagai lapis pertama agar pelaksanaan dapat berjalan lancar.

(7)

Hal ini sehubungan dengan terlalu lemahnya daya dukung tanah dasar terhadap roda-roda alat-alat besar atau karena kondisi lapangan yang memaksa harus segera menutup tanah dasar dari pengaruh cuaca. Bermacam-macam tipe tanah setempat (CBR ≥ 20%, PI ≤ 10%) yang relatif lebih baik dari tanah dasar dapat digunakan sebagai bahan pondasi bawah. Campuran-campuran tanah setempat dengan kapur atau semen portland dalam beberapa hal sangat dianjurkan, agar dapat bantuan yang efektif terhadap kestabilan konstruksi perkerasan.

2.7.1.3. Lapis Pondasi

Fungsi lapis pondasi antara lain:

Sebagai bagian perkerasan yang menahan beban roda,

Sebagai perletakan terhadap lapis permukaan.

Bahan-bahan untuk lapis pondasi umumnya harus cukup kuat dan awet sehingga dapat menahan beban-beban roda. Sebelum menentukan suatu bahan untuk digunakan sebagai bahan pondasi, hendaknya dilakukan penyelidikan dan pertimbangan sebaik-baiknya sehubungan dengan persyaratan teknik. Bermacam- macam bahan alam/bahan setempat (CBR ≥ 50%, PI ≤ 4%) dapat digunakan sebagai bahan lapis pondasi, antara lain: batu pecah, kerikil pecah dan stabilisasi tanah dengan semen atau kapur.

2.7.1.4. Lapis Permukaan

Fungsi lapis permukaan antara lain:

Sebagai bahan perkerasan untuk menahan beban roda,

Sebagai lapisan rapat air untuk melindungi badan jalan kerusakan akibat cuaca,

Sebagai lapisan aus (wearing course).

Bahan untuk lapis permukaan umumnya adalah sama dengan bahan untuk lapis pondasi, dengan persyaratan yang lebih tinggi. Penggunaan bahan aspal diperlukan agar lapisan dapat bersifat kedap air, disamping itu bahan aspal sendiri memberikan bantuan tegangan tarik, yang berarti mempertinggi daya dukung

(8)

lapisan terhadap beban roda lalu lintas. Pemilihan bahan untuk lapis permukaan perlu dipertimbangkan kegunaan, umur rencana serta pentahapan konstruksi, agar dicapai manfaat yang sebesar-besarnya dari biaya yang dikeluarkan.

2.7.2. Jumlah Jalur dan Koefisien Distribusi Kendaraan (C)

Jalur rencana merupakan salah satu jalur lalu lintas dari suatu ruas jalan raya, yang menampung lalu lintas terbesar. Jika jalan tidak memiliki tanda batas jalur, maka jumlah jalur ditentukan dari lebar perkerasan menurut Tabel 2.3.

Tabel 2.3. Jumlah Lajur Berdasarkan Lebar Perkerasan

Lebar Perkerasan (L) Jumlah Lajur (n)

L < 5,50 m 1 jalur

5,50 m ≤ L < 8,25 m 2 jalur 8,25 m ≤ L < 11,25 m 3 jalur 11,25 m ≤ L < 15,00 m 4 jalur 15,00 m ≤ L < 18,75 m 5 jalur 18,75 m ≤ L < 22,00 m 6 jalur Sumber: DPU (1987)

Koefisien distribusi kendaraan (C) untuk kendaraan ringan dan berat yang lewat pada jalur rencana ditentukan menurut Tabel 2.4.

Tabel 2.4. Koefisien Distribusi Kendaraan (C)

Jumlah Lajur

Kendaraan Ringan*) Kendaraan Berat**) 1 arah 2 arah 1 arah 2 arah

1 lajur 1,00 1,00 1,00 1,000

2 lajur 0,60 0,50 0,70 0,500

3 lajur 0,40 0,40 0,50 0,475

4 lajur - 0,30 - 0,450

5 lajur - 0,25 - 0,425

6 lajur - 0,20 - 0,400

Sumber: DPU (1987)

*) Berat total <5 ton, seperti, mobil penumpang, pick up, mobil hantaran

**) Berat total >5 ton, seperti, bus, truk, traktor, semi trailer, trailer

(9)

2.7.3. Angka Ekivalen (E) Beban Sumbu Kendaraan

Angka Ekivalen (E) masing-masing golongan beban sumbu (setiap kendaraan) ditentukan berdasarkan daftar pada Tabel 2.5.

Tabel 2.5. Angka Ekivalen (E) Beban Sumbu Kendaraan

Beban Sumbu Angka Ekivalen

Kg Lb Sumbu

tunggal

Sumbu ganda

1000 2205 0,0002 -

2000 4409 0,0036 0,0003

3000 6614 0,0183 0,0016

4000 8818 0,0577 0,0050

5000 11023 0,1410 0,0121

6000 13228 0,2923 0,0251

7000 15432 0,5415 0,0466

8000 17637 0,9238 0,0794

8160 18000 1,0000 0,0860

9000 19841 1,4798 0,1273

10000 22046 2,2555 0,1940

11000 24251 3,3022 0,2840

12000 26455 4,6770 0,4022

13000 28660 6,4419 0,5540

14000 30864 8,6647 0,7452

15000 33069 11,4184 0,9820

16000 35276 14,7815 1,2712

Sumber: DPU (1987)

2.7.4. Lalu Lintas Harian Rata-rata dan Rumus-rumus Lintas Ekivalen a. Lalu lintas Harian Rata-rata (LHR) setiap jenis kendaraan ditentukan

pada awal umur rencana, yang dihitung untuk dua arah pada jalan tanpa median atau masing-masing arah pada jalan dengan median.

b. Lintas Ekivalen Permulaan (LEP) dihitung dengan rumus sebagai berikut:

LEP = ∑ LHRj× Cj× Ej

n

j=1

Catatan: j = jenis kendaraan

(10)

c. Lintas Ekivalen Akhir (LEA) dihitung dengan rumus sebagai berikut:

LEA = ∑ LHRj(1 + i)UR× Cj× Ej

n

j=1

Catatan: i = perkembangan lalu lintas j = jenis kendaraan

d. Lintas Ekivalen Tengah (LET) dihitung dengan rumus sebagai berikut:

LET = 1 2 × (LEP + LEA)⁄

e. Lintas Ekivalesn Rencana (LER) dihitung dengan rumus sebagai berikut:

LER = LET × FP FP ditentukan dengan rumus:

LET = UR 10⁄

2.7.5. Penentuan Harga California Bearing Ratio (CBR)

CBR lapangan biasanya digunakan untuk perencanaan lapis tambahan (overlay). Untuk mengetahui nilai CBR dapat dilakukan sebagai berikut:

pengambilan contoh tanah dasar dilakukan dengan menggunakan tabung (undisturb) – kemudian direndam dan diperiksa nilai CBR-nya atau pengukuran langsung di lapangan (saat musim hujan, bila musim kemarau dilakukan perendaman).

CBR laboratorium biasanya dipakai untuk perencanaan pembangunan jalan baru. Sementara ini dianjurkan untuk mendasarkan daya dukung tanah dasar hanya kepada pengukuran nilai CBR. Sedangkan cara lainnya yang bisa dipergunakan diantaranya: Group Index, Plate Bearing Test atau R-value.

Setiap segmen jalan mempunyai satu nilai CBR yang dapat mewakili daya dukung tanah dasar dan dipergunakan sebagai data perencanaan tebal lapisan perkerasan dari segmen tersebut. Nilai CBR segmen dapat ditentukan dengan menggunakan cara analisis atau cara grafis.

(11)

a. Metode Analitis

CBRsegmen= CBRrata−rata−CBRmax− CBRmin R

Catatan: nilai R tergantung dari jumlah data yang terdapat dalam 1 (satu) segmen, sebagaimana yang tertera pada Tabel 2.6.

Tabel 2.6. Nilai R untuk Perhitungan CBR Segmen

Jumlah Titik

Pengamatan Nilai R

2 1,41

3 1,91

4 2,24

5 2,48

6 2,67

7 2,83

8 2,96

9 3,08

> 10 3,18 Sumber: Sukirman (1999)

b. Metode Grafis

Harga yang mewakili dari sejumlah harga CBR yang dilaporkan, ditentukan sebagai berikut:

1. Tentukan harga CBR terendah,

2. Tentukan berapa banyak nilai CBR yang sama atau lebih besar dari masing-masing nilai CBR dan kemudian disusun secara tabelaris mulai dari nilai CBR terkecil sampai yang terbesar,

3. Angka terbanyak diberi nilai 100%, angka yang lain merupakan prosentase dari 100%,

4. Buat grafik hubungan antara harga CBR dan prosentase jumlah tadi, 5. Nilai CBR segmen adalah nilai pada keadaan 90% dari grafik tersebut.

2.7.6. Daya Dukung Tanah (DDT) dan CBR

Dalam perencanaan tebal lapis perkerasan lentur, daya dukung tanah (DDT) ditetapkan berdasarkan grafik korelasi antara nilai CBR dan DDT. Adapun grafik korelasi antara nilai CBR dan DDT dapat dilihat pada Gambar 2.2.

(12)

Gambar 2.2. Korelasi antara Nilai CBR dengan DDT (DPU, 1987)

2.7.7. Faktor Regional (FR)

Keadaan lapangan mencakup permeabilitas tanah, perlengkapan drainase, bentuk alinyemen serta persentase kendaraan dengan berat 13 ton, dan kendaraan yang berhenti, sedangkan keadaan iklim mencakup curah hujan rata-rata per tahun.

Mengingat persyaratan penggunaan disesuaikan dengan "Petunjuk Perencanaan Tebal Perkerasan Lentur Jalan Raya" edisi SKBI-2.3.26.1987, maka pengaruh keadaan lapangan yang menyangkut permeabilitas tanah dan perlengkapan drainase dapat dianggap sama. Dengan demikian dalam penentuan tebal perkerasan ini, Faktor Regional hanya dipengaruhi oleh bentuk alinyemen (kelandaian dan tikungan), persentase kendaraan berat dan yang berhenti serta iklim (curah hujan) sebagaimana yang tertera pada Tabel 2.7.

(13)

Tabel 2.7. Faktor Regional (FR)

Kelandaiannn I

(< 6%)

Kelandaian II (6 – 10%)

Kelandaian III (>10%)

% kendaraan berat % kendaraan berat % kendaraan berat

≤ 30 % > 30 % ≤ 30 % > 30 % ≤ 30 % > 30 % Iklim I

< 900 mm/th

0,5 1,0 – 1,5 1,0 1,5 – 2,0 1,5 2,0 – 2,5 Iklim II

> 900 mm/th

1,5 2,0 – 2,5 2,0 2,5 – 3,0 2,5 3,0 – 3,5 Sumber: DPU (1987)

Catatan: Pada bagian-bagian jalan tertentu, seperti persimpangan, pemberhentian atau tikungan tajam (jari-jari 30 m) FR ditambah dengan 0,5. Pada daerah rawa- rawa FR ditambah dengan 1,0.

2.7.8. Indeks Permukaan (IP)

Menurut Departemen Pekerjaan Umum, Indeks Permukaan menyatakan nilai daripada kerataan atau kehalusan serta kekokohan permukaan yang bertalian dengan tingkat pelayanan bagi lalu lintas yang lewat. Adapun beberapa nilai IP beserta artinya adalah seperti di bawah ini:

IP = 1,0 : menyatakan permukaan jalan dalam keadaan rusak berat sehingga sangat mengganggu lalu Iintas kendaraan.

IP = 1,5 : tingkat pelayanan terendah yang masih mungkin (jalan tidak terputus).

IP = 2,0 : tingkat pelayanan rendah bagi jalan yang masih mantap.

IP = 2,5 : menyatakan permukaan jalan yang masih cukup stabil dan baik.

Dalam menentukan indeks permukaan (IP) pada akhir umur rencana, perlu dipertimbangkan faktor-faktor klasifikasi fungsional jalan dan jumlah lintas ekivalen rencana (LER), yang dapat dilihat pada Tabel 2.8.

Tabel 2.8. Indeks Permukaan pada Akhir Umur Rencana (IP)

LER = Lintas Ekivalen Rencana *)

Klasifikasi Jalan

Lokal Kolektor Arteri Tol

< 10 1,0 – 1,5 1,5 1,5 – 2,0 -

10 – 100 1,5 1,5 – 2,0 2,0 -

100 – 1000 1,5 – 2,0 2,0 2,0 – 2,5 -

> 1000 - 2,0 – 2,5 2,5 2,5

Sumber: DPU (1987)

(14)

*) LER dalam satuan angka ekivalen 8,16 ton beban sumbu tunggal.

Catatan: Pada proyek-proyek penunjang jalan, JAPAT/jalan murah atau jalan darurat maka IP dapat diambil 1,0.

Dalam menentukan indeks permukaan pada awal umur rencana (IPo) perlu diperhatikan jenis lapis permukaan jalan (kerataan/kehalusan serta kekokohan) pada awal umur rencana, menurut Tabel 2.9.

Tabel 2.9. Indeks Permukaan pada Awal Umur Rencana (IPo)

Jenis Permukaan IPo Roughness *) (mm/km)

LASTON ≥ 4 ≤ 1000

3,9 – 3,5 > 1000

LASBUTAG 3,9 – 3,5 ≤ 2000

3,4 – 3,0 > 2000

HRA 3,9 – 3,5 ≤ 2000

3,4 – 3,0 > 2000

BURDA 3,9 – 3,5 < 2000

BURTU 3,4 – 3,0 < 2000

LAPEN 3,4 – 3,0 ≤ 3000

2,9 – 2,5 > 3000

LATASBUM 2,9 – 2,5

BURAS 2,9 – 2,5

LATASIR 2,9 – 2,5

JALAN TANAH ≤ 2,4

JALAN KERIKIL ≤ 2,4

Sumber: DPU (1987)

*) Alat pengukur roughness yang dipakai adalah roughometer NAASRA, yang dipasang pada kendaraan standar Datsun 1500 station wagon, dengan kecepatan kendaraan ± 32 km per jam. Gerakan sumbu belakang dalam arah vertikal dipindahkan pada alat roughometer melalui kabel yang dipasang di tengah-tengah sumbu belakang kendaraan, yang selanjutnya dipindahkan kepada counter melalui

"flexible drive”. Setiap putaran counter adalah sama dengan 15,2 mm gerakan vertikal antara sumbu belakang dan body kendaraan. Alat pengukur roughness tipe lain dapat digunakan dengan mengkalibrasikan hasil yang diperoleh terhadap roughometer NAASRA.

(15)

2.7.9. Koefisien Kekuatan Relatif (a)

Koefisien kekuatan relatif (a) masing-masing bahan dan kegunaannya sebagai lapis permukaan, pondasi, pondasi bawah, ditentukan secara korelasi sesuai nilai Marshall Test (untuk bahan dengan aspal), kuat tekan (untuk bahan yang distabilisasi dengan semen atau kapur), atau CBR (untuk bahan lapis pondasi bawah). Jika alat Marshall Test tidak tersedia, maka kekuatan (stabilitas) bahan beraspal bisa diukur dengan cara lain seperti Hveem Test, Hubbard Field, dan Smith Triaxial. Adapun koefisien kekuatan relatif tertera pada Tabel 2.10.

Tabel 2.10. Koefisien Kekuatan Relatif (a)

Koefisien Kekuatan

Relatif Kekuatan Bahan

Jenis Bahan

a1 a2 a3 MS (kg) Kt

(kg/cm)

CBR (%)

0,40 - - 744 - -

0,35 - - 590 - -

Laston

0,35 - - 454 - -

0,30 - - 340 - -

0,35 - - 744 - -

0,31 - - 590 - -

Lasbutag

0,28 - - 454 - -

0,26 - - 340 - -

0,30 - - 340 - - HRA

0,26 - - 340 - - Aspal macadam

0,25 - - - - - Lapen (mekanis)

0,20 - - - - - Lapen (manual)

- 0,28 - 590 - -

- 0,26 - 454 - - Laston Atas

- 0,24 - 340 - -

- 0,23 - - - - Lapen (mekanis)

- 0,19 - - - - Lapen (manual)

- 0,15 - - 22 -

Stab. Tanah dengan semen

- 0,13 - - 18 -

- 0,15 - - 22 -

Stab. Tanah dengan kapur

- 0,13 - - 18 -

- 0,14 - - - 100 Batu pecah (kelas A)

- 0,13 - - - 80 Batu pecah (kelas B)

- 0,12 - - - 60 Batu pecah (kelas C)

- - 0,13 - - 70 Sirtu/pitrun (kelas A)

- - 0,12 - - 50 Sirtu/pitrun (kelas B)

- - 0,11 - - 30 Sirtu/pitrun (kelas C)

- - 0,10 - - 20 Tanah/lempung kepasiran

Sumber: DPU (1987)

(16)

2.7.10. Indeks Tebal Perkerasan (ITP)

Terdapat sembilan macam grafik nomogram yang sudah tersedia. Dalam hal ini indeks tebal perkerasan untuk perkerasan lentur didapatkan dengan menarik garis pada grafik nomogram, dengan melihat masing-masing nilai yang diambil dari indeks permukaan (IPo dan IPt). Nilai daya dukung tanah dasar (DDT), lintas ekivalen rata-rata (LER) dan faktor regional (FR) saling berpengaruh dalam grafik nomogram ini. Salah satu contoh grafik nomogram dapat dilihat pada Gambar 2.3.

Gambar 2.3. Nomogram (DPU, 1987)

Langkah-langkah untuk menggunakan nomogram tersebut adalah sebagai berikut:

1. Terdapat 9 (sembilan) macam nomogram yang disediakan, tergantung pada nilai indeks permukaan awal (IPo) dan indeks permukaan akhir (IPt),

2. Menentukan titik nilai daya dukung tanah (DDT) yang telah didapat dari korelasi dengan nilai CBR,

3. Menentukan titik nilai LER yang telah didapat dari perhitungan,

(17)

4. Kemudian tarik garis lurus dari 2 titik (DDT dan LER) hingga mengenai garis ITP.

5. Tentukan titik nilai FR dari tabel 2.7.

6. Dari titik ITP yang didapat, disambungkan dengan titik FR hingga mengenai garis ITP̅̅̅̅̅.

2.7.11. Batas-batas Minimum Tebal Lapisan Perkerasan

Pada perkerasan lentur, susunan lapis perkerasan terdiri dari 3 lapisan utama yaitu lapis permukaan, lapis pondasi atas dan lapis pondasi bawah. Tiap lapis perkerasan memiliki nilai minimum untuk indeks tebal perkerasan yang diambil dari nomogram ITP̅̅̅̅̅ berdasarkan hubungan daya dukung tanah (DDT), lintas ekivalen rata-rata (LER) dan factor regional (FR). Adapun batas-batas minimum tebal lapisan perkerasan dapat dilihat pada Tabel 2.11 dan Tabel 2.12.

Tabel 2.11. Lapis Permukaan

ITP Tebal Minimum

(cm) Bahan

< 3,00 5 Lapis pelindung: (Buras/Burtu/Burda)

3,00 – 6,70 5 Lapen/Aspal Macadam, HRA, Lasbutag, Laston 6,71 – 7,49 7,5 Lapen/Aspal Macadam, HRA, Lasbutag, Laston

7,50 – 9,99 7,5 Lasbutag, Laston

≥ 10,00 10 Laston

Sumber: DPU (1987)

Tabel 2.12. Lapis Pondasi

ITP Tebal Minimum

(cm) Bahan

< 3,00 15 Batu pecah, stabilitas tanah dengan semen, stabilitas tanah dengan kapur

3,00 – 7,49 20*) Batu pecah, stabilitas tanah dengan semen, stabilitas tanah dengan kapur

10 Laston Atas

7,50 – 9,99 20 Batu pecah, stabilitas tanah dengan semen, stabilitas tanah dengan kapur, pondasi macadam

15 Laston Atas

10 – 12,14 20 Batu pecah, stabilitas tanah dengan semen, stabilitas tanah dengan kapur, pondasi macadam, Lapen, Laston Atas

≥ 12,25 25 Batu pecah, stabilitas tanah dengan semen, stabilitas tanah dengan kapur, pondasi macadam, Lapen, Laston Atas Sumber: DPU (1987)

(18)

Untuk setiap nilai ITP bila digunakan pondasi bawah, tebal minimum adalah 10 cm.

2.7.12. Pelapisan Tambahan

Untuk perhitungan pelapisan tambahan, kondisi perkerasan jalan lama (existing pavement) dinilai sesuai dengan kondisi perkerasan jalan sebagai berikut:

a. Lapis Permukaan

Umumnya tidak retak, sedikit deformasi pada jalur roda ... 90 – 100%

Terlihat retak halus, sedikit deformasi pada jalur roda namun masih tetap stabil... 70 – 90%

Retak sedang, beberapa deformasi pada jalur roda, pada dasarnya masih menunjukkan kestabilan ... 50 – 70%

Retak banyak, demikian juga deformasi pada jalur roda, menunjukkan gejala ketidakstabilan ... 30 – 50%

b. Lapis Pondasi

 Pondasi Aspal Beton atau Penetrasi Macadam

Umumnya tidak retak ... 90 – 100%

Terlihat retak halus, namun masih tetap stabil ... 70 – 90%

Retak sedang, pada dasarnya masih menunjukkan kestabilan . 50 – 70%

Retak banyak, menunjukkan gejala ketidakstabilan ... 30 – 50%

 Stabilisasi Tanah dengan Semen atau Kapur:

Indek Plastisitas (Plasticity Index = PI) ≤ 10 ... 70 – 100%

 Pondasi Macadam atau Batu Pecah:

Indek Plastisitas (Plasticity Index = PI) ≤ 6 ... 80 – 100%

c. Lapis Pondasi Bawah

Indek plastisitas (Plasticity Index = PI) ≤ 6 ... 90 – 100%

Indek plastisitas (Plasticity Index = PI) > 6 ... 70 – 90%

2.7.13. Analisis Komponen Perkerasan

Perhitungan perencenaan didasarkan pada kekuatan relatif masing-masing lapisan perkerasan jangka panjang, di mana penentuan tebal perkerasan dinyatakan oleh ITP dengan rumus:

(19)

ITP = a1D1+ a2D2+ a3D3

a1, a2, a3 = koefisien kekuatan relatif bahan perkerasan D1, D2, D3 = tebal masing-masing lapisan perkrasan (cm)

Angka 1, 2 dan 3 = masing-masing untuk lapisan permukaan, lapis pondasi atas dan lapis pondasi bawah.

2.8. Keuntungan dan Kerugian Perkerasan Lentur

Menurut Suryawan (2009), terdapat beberapa keuntungan dan kerugian pada pemilihan penggunaan perkerasan lentur, antara lain:

a. Perkerasan Lentur Keuntungan:

 Dapat digunakan untuk semua tingkat volume lalu lintas.

 Kerusakan tidak merambat ke bagian konstruksi yang lain, kecuali jika perkerasan terendam air.

 Pada umumnya biaya awal konstruksi rendah, terutama untuk jalan lokal dengan volume lalu lintas rendah.

 Pelapisan ulang dapat dilaksanakan pada semua tingkat ketebalan perkerasan yang diperlukan, dan lebih mudah menentukan perkiraan pelapisan ulang.

Kerugian:

 Kendali kualitas untuk job mix lebih rumit.

 Sulit untuk bertahan terhadap kondisi drainase yang buruk.

 Umur rencana relatif pendek, 5 – 10 tahun.

 Indeks pelayanan yang terbaik hanya pada saat selesai pelaksanaan konstruksi, setelah itu berkurang seiring dengan waktu dan frekuensi beban lalu lintasnya.

 Biaya pemeliharaan yang dikeluarkan mencapai lebih kurang dua kali lebih besar daripada perkerasan kaku.

(20)

2.9. Rencana Anggaran Biaya

Menurut Kementerian Pekerjaan Umum (2012), estimasi biaya suatu kegiatan pekerjaan meliputi mobilisasi dan biaya pekerjaan. Biaya pekerjaan adalah total seluruh volume pekerjaan yang masing-masig dikalikan dengan harga satuan pekerjaan setiap mata pembayaran. Estimasi biaya termasuk pajak-pajak.

2.9.1. Pengertian Rencana Anggaran Biaya

Menurut Syawaldi dan Siswanto (2016), rencana anggaran biaya adalah:

 Perhitungan banyaknya biaya yang diperlukan untuk bahan dan upah, serta biaya-biaya lain yang berhubungan dengan pelaksanaan bangunan atau proyek tertentu.

 Merencanakan sesuatu bangunan dalam bentuk dan faedah penggunaannya, beserta besar biaya yang diperlukan dan susunan- susunan pelaksanaan dalam bidang administrasi maupun pelaksanaan pekerjaan dalam bidang teknik.

Dua cara yang dapat dilakukan dalam penyusunan anggararan biaya, antara lain:

 Anggaran Biaya Kasar (Taksiran), sebagai pedomannya digunakan harga satuannya tiap meter persegi luas lantai. Namun anggaran biaya kasar dapat juga sebagai pedoman dalam penyusunan RAB yang dihitung secara teliti.

 Anggaran Biaya Teliti, proyek yang dihitung dengan teliti dan cermat sesuai dengan ketentuan dan syarat-syarat penyusunan anggaran biaya.

2.9.2. Tujuan Rencana Anggaran Biaya

Menurut Syawaldi dan Siswanto (2016), tujuan dari pembuatan rencana anggaran biaya adalah untuk mengetahui harga bagian atau item pekerjaan sebagai pedoman untuk mengeluarkan biaya-biaya dalam masa pelaksanaan. Selain itu supaya bangunan yang akan didirikan dapat dilaksanakan secara efektif dan efisien.

(21)

2.9.3. Fungsi Rencana Anggaran Biaya

Menurut Syawaldi dan Siswanto (2016), fungsi rencana anggaran biaya adalah sebagai pedoman pelaksanaan pekerjaan dan sebagai alat pengontrol pelaksanaan pekerjaan.

2.9.4. Analisis Harga Satuan Dasar (HSD)

Menurut Kementerian Pekerjaan Umum (2012), komponen untuk menyusun harga satuan pekerjaan (HSP) memerlukan HSD tenaga kerja, HSD alat, dan HSD bahan. Berikut ini diberikan penjelasan mengenai komponen-komponen yang dimaksud.

 Perhitungan HSD Tenaga Kerja

Untuk menghitung harga satuan pekerjaan, maka perlu ditetapkan dahulu bahan rujukan harga standar untuk upah sebagai HSD tenaga kerja. Langkah perhitungan HSD tenaga kerja adalah sebagai berikut:

a. Tentukan jenis keterampilan tenaga kerja, misal pekerja (P), tukang (Tx), mandor (M), atau kepala tukang (KaT)

b. Kumpulkan data upah yang sesuai dengan peraturan daerah (Gubernur, Walikota, Bupati) setempat, data upah hasil survei di lokasi yang berdekatan dan berlaku untuk daerah tempat lokasi pekerjaan akan dilakukan

c. Perhitungkan tenaga kerja yang didatangkan dari luar daerah dengan memperhitungkan biaya makan, menginap dan transport

d. Tentukan jumlah hari efektif bekerja selama satu bulan (24-26 hari), dan jumlah jam efektif dalam satu hari (7 jam)

e. Hitung biaya upah masing-masing per jam per orang

f. Rata-ratakan seluruh biaya upah per jam sebagai upah rata- rata per jam.

Gambaran untuk menetapkan perhitungan HSD upah pekerja, dengan asumsi jumlah hari kerja rata-rata 25 hari per bulan dan jumlah jam kerja efektif per hari selama 7 jam, dapat dilihat pada Tabel 2.13.

(22)

Tabel 2.13. Data Upah Pekerja

Variasi Upah Pekerja Besar Upah

Lama Bekerja Efektif

Upah per Jam (Rp) Sebulan

(hari)

Sehari (jam) Berdasarkan upah pekerja per

bulan

837.375,-

per bulan 25 7 =837.375

25 × 7

= Rp4785,00/jam Data dasar dari instansi yang

berwenang (dikeluarkan secara rutin di Provinsi), sesuai dengan harga pasaran upah pekerja per hari di lokasi pekerjaan (hasil survey) tenaga kerja local.

30.504,6

per hari 25 7 =30.504,6

= Rp4357,80/jam 7

Bila tenaga didatangkan dari luar daerah (luar lokasi), maka diperhitungkan biaya transport dan biaya tempat menginap sementara selama kegiatan pekerjaan berjalan per bulan.

779.471,-

per bulan 25 7 =779.471

25 × 7

= Rp4454,12/jam

Sumber: KemenPU (2012)

Dengan membandingkan ketiga harga dasar di atas, maka dapat diambil harga satuan dasar upah pekerja rata-rata sebagai berikut:

Rp4785,00 + Rp4357,80 + Rp4454,12

3 = Rp4532,31/jam

Demikian pula halnya untuk harga dasar upah berdasarkan kualifikasi, seperti tukang, mandor, operator, dan sebagainya. Contoh daftar harga satuan dasar (HSD) upah per jam lainnya dapat dilihat pada Tabel 2.14.

Tabel 2.14. Harga Satuan Dasar (HSD) Upah per Jam

No. Uraian Kode Satuan Harga Satuan

(Rp)

1 Pekerja (L01) Jam 4532,31

2 Tukang (L02) Jam 5963,57

3 Mandor (L04) Jam 7156,29

4 Operator (L08) Jam 4054,29

5 Pembantu Operator (L09) Jam 3582,86

6 Sopir/driver (L10) Jam 6600,00

7 Pembantu Sopir/driver (L11) Jam 4337,14

8 Mekanik (L07) Jam 3928,57

9 Pembantu Mekanik (L16) Jam 2857,14

10 Kepala Tukang (L03) Jam 5000,00

Sumber: KemenPU (2012)

(23)

 Perhitungan HSD Alat

Analisis HSD alat memerlukan data upah operator atau sopir, spesifikasi alat meliputi tenaga mesin, kapasitas kerja alat (m³), umur ekonomis alat (dari pabrik pembuatnya), jam kerja dalam satu tahun, dan harga alat. Faktor lainnya adalah komponen investasi alat meliputi suku bunga bank, asuransi alat, faktor alat yang spesifik seperti faktor bucket untuk Excavator, harga perolehan alat, dan Loader, dan lain-lain. Contoh harga sewa alat dapat dilihat pada Tabel 2.15.

Tabel 2.15. Harga Sewa Alat

No. Uraian Kode HP Kapasitas Satuan Sewa Alat

(Rp) 1 Asphalt mixing plant E01 294,0 60,0 T/Jam 4.818.593,08

2 Asphalt finisher E02 72,4 10,0 Ton 820.779,19

3 Asphalt sprayer E03 4,0 850,0 Liter 402.799,43

4 Bulldozer 100-150 hp E04 155,0 - -

5 Compressor 4000-6500 l\m E05 60,0 5.000,0 CPM/(L/m) 106.890,74

6 Concrete mixer 0.3-0.6 m³ E06 20,0 500,0 Liter

7 Crane 10-15 ton E07 138,0 15,0 Ton

8 Dump Truck 3.5 ton E08 100,0 3,5 Ton

9 Dump Truck 10 ton E09 190,0 10,0 Ton 212.812,53

10 Excavator 80-140 hp E10 133,0 0,9 383.294,39

11 Flat bed truck 3-4 m³ E11 190,0 10,0 ton

12 Generator set E12 180,0 135,0 KVA 277.104,99

13 Motor grader >100 hp E13 135,0 10.800,0 - 327.468,61

14 Track Loader 75-100 hp E14 70,0 0,8

15 Wheel Loader 1.0-1.6 m³ E15 96,0 1,5 253.964,94

16 Three wheel roller 6-8 t E16 55,0 8,0 Ton

17 Tandem roller 6-8 t. E17 82,0 8,1 Ton 379.339,78

18 Tire roller 8-10 t. E18 100,5 9,0 Ton 335.448,22

19 Vibratory roller 5-8 t. E19 82,0 7,1 Ton 316.831,09

20 Concrete vibrator E20 5,5 25,0 - 18.353,23

21 Stone crusher E21 220,0 50,0 T/Jam

22 Water pump 70-100 mm E22 6,0 - -

23 Water tanker 3000-4500 l. E23 100,0 4.000,0 Liter 155.193,02

24 Pedestrian roller E24 8,8 835,00 Ton

25 Tamper E25 4,7 121,00 Ton

26 Jack Hammer E26 0,0 1.330,00 - 15.795,70

27 Fulvi mixer E27 345,0 2.005,00 -

28 Concrete pump E28 100,0 8,00 155.156,84

29 Trailer 20 ton E29 175,0 20,00 Ton

30 Pile driver + hammer E30 25,0 2,50 Ton

31 Crane on track 35 ton E31 125,0 35,0 Ton

32 Welding set E32 40,0 250,0 Amp

33 Bore pile machine E33 150,0 2.000,0 Meter

34 Asphalt liquid mixer E34 5,0 1.000,0 Liter

35 Tronton E35 150,0 15,0 Ton

(24)

Tabel 2.15. Lanjutan

No. Uraian Kode HP Kapasitas Satuan Sewa Alat

(Rp)

36 Cold milling E36 248,0 1.000,0 M

37 Rock drill breaker E37 3,0 - - 266.452,13

38 Cold recycler E38 900,0 2,2 M

39 Hot recycler E39 400,0 3,0 M

40 Aggregat (chip) spreader E40 115,0 3,5 M

41 Asphalt distributor E41 115,0 4.000,0 Liter

42 Slip form paver E42 105,0 2,5 M 426.628,68

43 Concrete pan mixer E43 134,0 600,0 Liter 493.265,26

44 Concrete breaker E44 290, 20,0 m³/jam

45 Aspahlt tanker E45 190,0 4.000,0 Liter

46 Cement tanker E46 190,0 4.000,0 Liter

47 Condrete mixer (350) E47 20,0 350,0 Liter

48 Vibrating rammer E48 4,2 80,0 Kg

49 Truck mixer (agitator) E49 220,0 5,0 449.232,73

50 Bore pile machine E50 125,0 60,0 CM

51 Crane on track 75-100 ton E51 200,0 75,0 Ton

52 Blending equipment E52 50,0 30,0 Ton

53 Asphalt liquid mixer E34a 40,0 20.000,0 Liter Sumber: KemenPU (2012)

 Perhitungan HSD Bahan

Analisis HSD bahan memerlukan data harga bahan baku, serta biaya transportasi dan biaya produksi bahan baku menjadi bahan olahan atau bahan jadi.

Produksi bahan memerlukan alat yang mungkin lebih dari satu alat. Setiap alat dihitung kapasitas produksinya dalam satuan pengukuran per jam, dengan cara memasukkan data kapasitas alat, faktor efisiensi alat, faktor lain dan waktu siklus masing-masing. HSD bahan terdiri atas harga bahan baku atau HSD bahan baku, HSD bahan olahan, dan HSD bahan jadi. Perhitungan harga satuan dasar (HSD) bahan yang diambil dari quarry dapat menjadi dua macam, yaitu berupa bahan baku (batu kali/gunung, pasir sungai/gunung dll), dan berupa bahan olahan (misalnya agregat kasar dan halus hasil produksi mesin pemecah batu dan lain sebagainya).

Harga bahan di quarry berbeda dengan harga bahan yang dikirim ke base camp atau ke tempat pekerjaan, karena perlu biaya tambahan berupa biaya pengangkutan material dari quarry ke base camp. Contoh daftar harga satuan dasar (HSD) bahan dan bahan olahan dapat dilihat pada Tabel 2.16.

(25)

Tabel 2.16. Harga Satuan Dasar (HSD) Bahan dan Bahan Olahan

No. Nama Bahan Kode Satuan Harga (Rp) Lokasi

1 Pasir Pasang (Sedang) M01b 142.000,00 Base camp 2 Pasir Beton (Kasar) M01a 96.500,00 Base camp 3 Pasir Halus (untuk HRS) M01c 75.000,00 Base camp 4 Pasir Urug (ada unsur lempung) M01d 96.500,00 Base camp

5 Batu Kali M02 146.500,00 Lokasi Pekerjaan

6 Agregat Kasar M03 205.392,28 Base camp

7 Agregat Halus M04 205.392,28 Base camp

8 Filler M05 Kg 550,00 Proses/Base camp

9 Batu Belah / Kerakal M06 182.300,00 Lokasi Pekerjaan

10 Gravel M07 224.300,00 Base camp

11 Bahan Tanah Timbunan M08 20.000,00 Borrow Pit/quarry

12 Bahan Pilihan M09 25.000,00 Quarry

13 Aspal M10 Kg 6.400,00 Base camp

14 Kerosen / Minyak Tanah M11 Liter 8.000,00 Base camp

15 Semen / PC (50kg) M12 Zak 60546,25 Base camp

16 Semen / PC (kg) M12 Kg 1.210,93 Base camp

17 Besi Beton M13 Kg 7.000,00 Lokasi Pekerjaan

18 Kawat Beton M14 Kg 6.000,00 Lokasi Pekerjaan

19 Kawat Bronjong M15 Kg 5.500,00 Lokasi Pekerjaan

20 Sirtu M16 139.800,00 Lokasi Pekerjaan

21 Cat Marka (Non Thermoplas) M17a Kg 22.500,00 Lokasi Pekerjaan 22 Cat Marka (Thermoplastic) M17b Kg 27.500,00 Lokasi Pekerjaan

23 Paku M18 Kg 5.500,00 Lokasi Pekerjaan

24 Kayu Perancah M19 1.250.000,00 Lokasi Pekerjaan

25 Bensin M20 Liter 5.833,80 Pertamina

26 Solar M21 Liter 6.548,35 Pertamina

27 Minyak Pelumas / Olie M22 Liter 18.000,00 Pertamina

28 Plastik Filter M23 15.000,00 Lokasi Pekerjaan

29 Pipa Galvanis Dia. 1.6" M24 Batang 154.000,00 Lokasi Pekerjaan

30 Pipa Porus M25 m' 40.000,00 Lokasi Pekerjaan

31 Bahan Agr.Base Kelas A M26 198.215,28 Base camp 32 Bahan Agr.Base Kelas B M27 184.154,34 Base camp 33 Bahan Agr.Base Kelas C M28 205.953,53 Base camp 34 Bahan Agr.Base Kelas C2 M29 0,00 Tidak tersedia

35 Geotextile M30 27.500,00 Lokasi Pekerjaan

36 Aspal Emulsi M31 Kg 5.000,00 Base camp

37 Gebalan Rumput M32 3.500,00 Lokasi Pekerjaan

38 Thinner M33 Liter 12.000,00 Lokasi Pekerjaan

Sumber: KemenPU (2012)

(26)

2.10. Penelitian Terdahulu

Penelitian terdahulu merupakan referensi bagi penulis untuk melakukan perencanaan ini. Dari penelitian terdahulu, penulis dapat memperkaya teori yang digunakan untuk mengerjakan perencanaan yang dilakukan. Pada bagian ini penulis mencantumkan beberapa hasil penelitian terdahulu baik berupa jurnal maupun skripsi yang terkait dengan perencanaan yang penulis lakukan, di antaranya:

1. Raja (2013), dengan judul Studi Perencanaan Lapis Tambahan (Over Lay) Jalan Kampung Baru-Sedadap (STA.0+000 – 15 +000) Kabupaten Nunukan. Dari penelitian yang dilakukan pada Jalan Kampung Baru - Sedadap sepanjang 15 km menggunakan metode Bina Marga, dapat disimpulkan bahwa tebal lapis tambah perkerasan lentur yang diperlukan yaitu 3 cm, dengan biaya pelaksanaan sebesar Rp10.364. 013.000,00.

2. Maulana (2014), dengan judul Studi Perencanaan Tebal Lapis Tambah Perkerasan (Overlay) Pada Jalan Simpang Serapat Marahaban (STA.

0+000 – 12+000) Kalimantan Selatan. Dari penelitian yang dilakukan pada Jalan Simpang Serapat Marahaban sepanjang 12 km menggunakan metode Bina Marga, dapat disimpulkan bahwa tebal lapis tambah perkerasan lentur yang diperlukan yaitu 4 cm, dengan biaya pelaksanaan sebesar Rp4.565.237.600,00.

3. Fuady (2014), dengan judul Studi Perencanaan Tebal Lapis Tambah Perkerasan (Overlay) pada Jalan Maospati - Sukomoro (STA. 0+000 – 12+000) di Kabupaten Magetan Propinsi Jawa Timur. Dari penelitian yang dilakukan pada Jalan Maospati - Sukomoro sepanjang 12 km menggunakan metode Bina Marga, dapat disimpulkan bahwa tebal lapis tambah perkerasan lentur yang diperlukan yaitu 4 cm, dengan biaya pelaksanaan sebesar Rp4.565.237.600,00.

4. Amrullah (2018), dengan judul Perencanaan Tebal Lapisan Tambahan Perkerasan Lentur pada Ruas Jalan Raya Dander Kabupaten Bojonegoro (STA 4+000 – STA10+200)

.

Dari penelitian yang dilakukan pada Ruas Jalan Raya Dander sepanjang 6,2 km menggunakan metode Bina Marga, dapat disimpulkan bahwa tebal lapis tambahan perkerasan lentur yang

(27)

diperlukan yaitu 3 cm, dengan biaya pelaksanaan sebesar Rp2.101.390.297,00.

Berikut pada Tabel 2.17 penulis sajikan beberapa hasil penelitian terdahulu yang terkait dengan perencanaan yang penulis lakukan.

Tabel 2.17. Penelitian Terdahulu

No. Nama Judul Metode Tahun

1

Ngaodang Lumban

Raja

Studi Perencanaan Lapis Tambahan (Over Lay) Jalan Kampung Baru-Sedadap ( STA.0+000 – 15

+000 ) Kabupaten Nunukan

Bina

Marga 2013

2 Ahcmad Maulana

Studi Perencanaan Tebal Lapis Tambah Perkerasan (Overlay) Pada Jalan Simpang Serapat Marahaban (STA. 0+000 – 12+000)

Kalimantan Selatan

Bina

Marga 2014

3

Helmy Ahmed

Fuady

Studi Perencanaan Tebal Lapis Tambah Perkerasan (Overlay) pada Jalan Maospati - Sukomoro (STA. 0+000 – 12+000) di Kabupaten

Magetan Propinsi Jawa Timur

Bina

Marga 2014

4 Muhammad Amrullah

Perencanaan Tebal Lapisan Tambahan Perkerasan Lentur pada Ruas Jalan Raya Dander

Kabupaten Bojonegoro (STA 4+000 – STA10+200)

Bina

Marga 2018

Referensi

Dokumen terkait

Pada siklus I siswa belum mengaitkan materi dengan pengalaman nyata sehari-hari, siswa masih malu untuk bertanya dan menjawab pertanyaan guru, siswa belum

3 Saya merasa tidak senang Jika Dosen berkomunikasi bahasa Jawa lebih dari pada Bahasa Indonesia saat dalam perkuliahan 4 Ketika saya berbicara saya merasa temanya

(5) Ketentuan umum peraturan zonasi untuk kawasan ruang terbuka hijau (RTH) sebagaimana dimaksud pada ayat (1) huruf e, dilakukan dengan ketentuan sebagai

Berdasarkan uraian judul di atas, secara garis besar maksud dalam tulisan ini adalah penggunaan media fotografi pada ranah fotografi komersial untuk membuat

Sedangkan rumsan masalahnya adalah adakah pengaruh pembelajaran aqidah akhlak terhadap perilaku (etika, tata krama dan moral) siswa di Madrasah Aliyah Negeri Kampar

Kepala program studi memiliki tampilan seperti Gambar 5.2 dengan menu Beranda, Proposal (Pengajuan Judul, Pend. Sidang Proposal, Sidang Proposal, Revisi Proposal),

[r]