• Tidak ada hasil yang ditemukan

REKAYASA JALAN 1 sem 5

N/A
N/A
Protected

Academic year: 2017

Membagikan "REKAYASA JALAN 1 sem 5"

Copied!
93
0
0

Teks penuh

(1)

REKAYASA JALAN 1

(2)

PERBEDAAN JALAN

PERKOTAAN DAN JALAN

ANTAR KOTA

(3)
(4)

KLASIFIKASI MENURUT FUNGSI

JALAN

ARTERI PRIMER

V TINGGI, JARAK JAUH

AKSES MASUK DIBATASI

KOLEKTOR

V SEDANG, JARAK SEDANG

AKSES MASUK DIBATASI

LOKAL

V RENDAH, JARAK DEKAT

(5)

KLASIFIKASI MENURUT KELAS JALAN

FUNGSI KELAS MST [ton]

ARTERI I >10

II 10

III A 8

KOLEKTOR III B 8

(6)
(7)

KLASIFIKASI MENURUT MEDAN

JALAN

JENIS MEDAN NOTASI KEMIRINGAN MEDAN [%]

DATAR D < 3

PERBUKITAN B 3 – 25

(8)
(9)

KENDARAAN RENCANA

kendaraan terberat yg dipakai dlm

perencanaan geometrik

KENDARAAN RENCANA MACAM KENDARAAN

KECIL MOBIL PENUMPANG

SEDANG TRUK 3 AS TANDEM, BUS BESAR 2 AS

(10)

SATUAN MOBIL PENUMPANG

(11)

VOLUME LALU LINTAS

HARIAN RENCANA ( VLHR)

= smp/hari

volume lalin harian terbesar dalam setahun

VJR = VLHR x K/F smp/jam

(12)

VLHR K [%] F [%]

> 50.000 4 - 6 0,9 -1 30.000 – 50.000 6 – 8 0,8 – 1 10.000 – 30.000 6 – 8 0,8 – 1

5.000 – 10.000 8 – 10 0,6 – 0,8 1.000 – 5.000 10 – 12 0,6 – 0,8

(13)

KECEPATAN RENCANA

FUNGSI KECEPATAN RENCANA [km/jam]

JALAN DATAR BUKIT GUNUNG ARTERI 70 - 120 60 -80 40 – 70 KOLEKTOR 60 - 90 50 -60 30 – 50 LOKAL 40 - 70 30 -50 20 – 30 DAERAH YG SULIT, NILAI DI TABEL BISA DITURUNKAN 20

(14)

= Ruang manfaat jalan (Rumaja) x b 1,5 m 5 m d c a b c d

= Ruang milik jalan

(Rumija)

= Bangunan

= Ruang pengawasan jalan

(Ruwasja)

 a = jalur lalu lintas d = ambang pengaman

b = bahu jalan x = b+a+b = badan jalan

c = saluran tepi

BAGIAN-BAGIAN JALAN

(15)

CV CV CV CV CV CV 2/2 D

2 LAJUR – 2 ARAH DG MEDIAN

2/2 UD

2 LAJUR – 2 ARAH TANPA MEDIAN

4/2 D

4 LAJUR – 2 ARAH DG MEDIAN

4/2 UD

4 LAJUR – 2 ARAH TANPA MEDIAN

CV

2/1 UD

(16)
(17)
(18)
(19)
(20)
(21)
(22)

Here looks were considered unimportant. A continuous curve,

beginning at the bottom of the picture and ending where the right lane disappears, would have been a much superior design.

[image:22.720.5.719.101.482.2]
(23)

HORIZONTAL ALIGNMENT

3. Be consistent, no surprises.

General Controls

1. As directional as possible and

consistent with topography.

(24)
[image:24.720.8.708.34.527.2]

Long Tangent - Short Curve Figure B-3.2a(ii)

This photograph gives one the impression the

(25)
[image:25.720.52.715.107.433.2]

Flow With Natural Contours of the Terrain Figure B-3.2a(iii)

(26)
[image:26.720.0.708.37.493.2]

Curvilinear Alignment

Figure B-3.2c(ii)

(27)

HORIZONTAL ALIGNMENT

•4. Use long curves for small deflections.

General Controls

1. As directional as possible and consistent with

topography.

2. Avoid minimum radii.

(28)

Small Deflection Angles

For small deflection angles, use very

long flat curves for appearance even

where not required by the design speed. Avoid minimum curves wherever

(29)

HORIZONTAL ALIGNMENT

5. Avoid sharp curves on steep

hills.

General Controls

•1. As directional as possible and consistent with topography. •2. Avoid minimum radii.

•3. Be consistent, no surprises.

(30)

A long spiral beginning at the first entrance at the bottom of the hill and ending near the position of the truck would have improved the appearance of this curve.

[image:30.720.90.633.142.391.2]
(31)

HORIZONTAL ALIGNMENT

6. Avoid broken back curves.General Controls

•1. As directional as possible and consistent with topography.

•2. Avoid minimum radii.

•3. Be consistent, no surprises.

•4. Use long curves for small deflections.

(32)

Broken-Back Curve

Broken-back horizontal curves are

undesirable, especially at summits or sags. A sag profile intensifies the

broken-back effect. In each instance the use of a simple full curve is to be preferred. When similar curves are separated by a long straight,

appearance is improved by

(33)

HORIZONTAL ALIGNMENT

7. Avoid compound curves. (use

spirals)

8. Avoid abrupt reversals.

9. Reduce superelevation on bridge

decks.

10. Coordinate with vertical

alignment.

General Controls

•1. As directional as possible and consistent

with topography.

•2. Avoid minimum radii.

•3. Be consistent, no surprises.

•4. Use long curves for small deflections.

•5. Avoid sharp curves on steep hills.

(34)
[image:34.720.0.716.96.464.2]

Horizontal Curvature on a Vertical Curve Figure B-3.2g(ii)

Short vertical curvature at the end of a long horizontal

(35)
[image:35.720.0.716.86.479.2]

Horizontal Curvature on a Vertical Curve Figure B-3.2g(iii)

(36)
[image:36.720.3.720.103.516.2]

Horizontal and Vertical Alignment Figure B-3.2b(iii)

Because of straight alignment, one can often

see a long distance ahead. When this

happens, it is almost impossible to avoid a roller coaster appearance. Also, any median

width changes are difficult to conceal. Observe the width change just above the grade

(37)
[image:37.720.1.719.95.345.2]

Horizontal and Vertical Alignment Figure B-3.2c(i)

The roller-coaster or the hidden-dip type

profile should be avoided. In general, such profiles occur on relatively straight,

horizontal alignment where the roadway

(38)
[image:38.720.13.712.78.426.2]

Horizontal and Vertical Alignment Figure B-3.2d(i)

This drawing illustrates the effect of superimposing a short vertical curve on a relatively long horizontal curve. To

(39)
[image:39.720.0.715.94.451.2]

Horizontal and Vertical Alignment Figure B-3.2d(ii)

The sagging effect is clearly evident in

(40)

TIKUNGAN

NILAI SUPERELEVASI MAKSIMUM 10%

FULL CIRCLE fC

(41)

Superelevation

α α Fcp Fcn Wp

Wn F

f

Ff

α

Fc

W 1 ft

e

Rv

cp f

p F F

W  

 

 cos sin cos

sin 2 2 v v s gR WV gR WV W f

W 

(42)

Superelevation

 

 cos sin cos

sin 2 2 v v s gR WV gR WV W f

W 

      

 1 tan

tan 2 s v s f gR V

f   

f e

gR

V f

e s

v

s  

 1

2

(43)

KOEFISIEN GESEK f =0,14 –

0,24

max max

(44)

Side Friction Factor

(45)
(46)
(47)
(48)
(49)
(50)

SS  Lc = 0 DAN θs=⅟

2

(51)
(52)
(53)
(54)
(55)
(56)
(57)
(58)
(59)
(60)
(61)

Superelevation Transition

(62)
(63)
(64)
(65)
(66)

PANJANG KRITIS

(67)
(68)
(69)
(70)
(71)
(72)
(73)

Vertical Alignment

Objective:

Determine elevation to ensure

Proper drainage

Acceptable level of safety

Primary challenge

Transition between two gradesVertical curves

G1 G2

G1 G2

Crest Vertical Curve

(74)

Vertical Curve

Fundamentals

Parabolic function

Constant rate of change of slopeImplies equal curve tangents

y is the roadway elevation x stations

(or feet) from the beginning of the curve

c

bx

ax

(75)

Vertical Curve

Fundamentals

G1 G2 PVI PVT PVC L L/2 δ x Choose Either:

• G1, G2 in decimal form, L in feet • G1, G2 in percent, L in stations

c bx

ax

(76)

Relationships

Choose Either:

• G1, G2 in decimal form, L in feet

• G1, G2 in percent, L in stations

G1 G2 PVI PVT PVC L L/2 δ x 1 and 0 : PVC

At the b G

dx dY

x   

c Y

x 0 and 

: PVC At the L G G a L G G a dx Y d 2 2 :

Anywhere 2 1 2 1

(77)

Example

A 400 ft. equal tangent crest vertical curve has a PVC station of 100+00 at 59 ft. elevation. The initial grade is 2.0 percent and the final grade is -4.5

percent. Determine the elevation and stationing of PVI, PVT, and the high point of the curve.

G1=2.0%

G

2= - 4.5 %

PVI

PVT

(78)

G1=2.0%

G

2= -4.5 %

PVI

PVT

(79)

Other Properties

G1 G2 PVI PVT PVC x Ym Yf Y

•G1, G2 in percent

L in feet

2

200L x

A

Y

800

AL Ym

200

AL Yf

2

1 G

(80)
(81)
(82)
(83)
(84)
(85)
(86)
(87)
(88)
(89)
(90)
(91)
(92)
(93)

Gambar

Figure B-3.2a(i)
Figure B-3.2a(ii)
Figure B-3.2a(iii)
Figure B-3.2c(ii)
+7

Referensi

Dokumen terkait