• Tidak ada hasil yang ditemukan

Paper-22-20-2009. 98KB Jun 04 2011 12:03:12 AM

N/A
N/A
Protected

Academic year: 2017

Membagikan "Paper-22-20-2009. 98KB Jun 04 2011 12:03:12 AM"

Copied!
6
0
0

Teks penuh

(1)

ON THE FIBONACCI Q-MATRICES OF THE ORDERm

Serpil Halıcı, Tuna Batu

Abstract. In this paper, the Fibonacci Q-matrices of the order m and their properties are considered. In addition to this, we introduce the Fibonacci Q-matrices of the order a negative real number m and the pure imaginary m. Further, we examine some properties of these matrices.

2000Mathematics Subject Classification: 11B37, 11B39,11B50. 1. Introduction

In the last decades the theory of Fibonacci numbers was complemented by the theory of the so-called Fibonacci Q-matrix (see [1], [2], [5]). This 2×2 square matrix is defined in [5] as follows.

Q= "

1 1 1 0

#

. (1)

It is well known that, (see [7]), the nth power of the Q-matrix is

Qn= "

Fn+1 Fn Fn Fn

−1

#

, (2)

wheren= 0,±1,±2,· · ·,andFn isn th Fibonacci number. Q n

matrix is expressed by the formula

Qn= "

Fn+Fn

−1 Fn−1+Fn−2

Fn

−1+Fn−2 Fn−2+Fn−3

# =

"

Fn Fn

−1

Fn

−1 Fn−2

# +

" Fn

−1 Fn−2

Fn

−2 Fn−3

# . The Fibonacci Q-matrices of the ordermare considered by Stakhov in [1].These matrices are defined by Stakhov as follows, for mR+

Gm = "

m 1 1 0

#

(2)

It is well known that the Fibonacci numbers of ordermis defined by the following recurrence relation for nZ,

Fm(n+ 2) =mFm(n+ 1) +Fm(n) (4) where Fm(0) = 0 and Fm(1) = 1. The entries of these matrices of orderm can be represented by Fibonacci numbers of orderm as follows,

Gnm = "

Fm(n+ 1) Fm(n) Fm(n) Fm(n−1)

#

, (5)

wherem∈R+andn∈Z.If we consider the determinants of theGnm matrices of the order m, then we can see that

Det(Gnm) =

Fm(n+ 1) Fm(n) Fm(n) Fm(n−1)

= (−1)n. (6)

It can be seen that the Cassini Formula for the Fibonacci numbers of the order m is

Fm(n+ 1)Fm(n−1)−[Fm(n)] 2

= (1)n. (7)

Theorem 1. Form∈R+and n∈Z,

Gnm=mG n

−1

m +G

n

−2

m . (8)

Proof. Since,

Gn−1

m =

"

Fm(n) Fm(n−1) Fm(n−1) Fm(n−2)

#

(9) and

Gn−2

m =

"

Fm(n−1) Fm(n−2) Fm(n−2) Fm(n−3)

#

, (10)

one can write mGn1

m +G n2 m =

mFm(n) +Fm(n−1) mFm(n−1) +Fm(n−2)

mFm(n−1) +Fm(n−2) mFm(n−2) +Fm(n−3)

(11)

mGn−1

m +G

n

−2

m =

"

Fm(n+ 1) Fm(n) Fm(n) Fm(n−1)

#

. (12)

(3)

2. The Fibonacci Q-Matrices of the Order m FormR+, the Fibonacci Q-matrices of order

−mcan be defined by

Since, the Fibonacci numbers of order m can be defined by the following recurrence relation , for m∈R+ ,n∈Z

Fm(n+ 2) =−mF

−m(n+ 1) +F−m(n) (14)

where Fm(0) = 0, F

−m(1) = 1.The following theorem sets a connection of the

Gm matrix with the generalized Fibonacci numbers of order−m. Theorem 2.For m∈R+ and n∈Z, we can write

G1

By the inductive method, we can easily verify that Gn

(4)

Det Gn

−m

= (−1)n. (20)

Proof. Using general properties of the determinants the proof can be easily seen. It is clear that the above equation is a generalized of the famous Cassini formula. Theorem 4. For a given integern and a positive real numberm we have that

Gn

3. The Fibonacci Q-Matrices of the Order √m

The Fibonacci Q-matrices with the order√−m can be defined by the following expression

where m is a positive number. The Fibonacci numbers with order √−m is defined by the following recurrence relation,

F√

Theorem 5.For a given integer nand a positive real m numberwe have that

(5)

Proof. Since, F√

Thus, by the inductive method we obtain that

Gn√

Taking into account the Cassini formula we can write DetGn√

−m

= (1)n. (30)

Thus, we can also write

F√

This equation can be called Cassini Formula of Fibonacci numbers of the order √

−m.

Using the recursive relationF√

−m(n+ 2) =

write the following theorem. Theorem 6.

Proof. The proof is immediately follows from the definition Gn√ −m.

(6)

References

[1] A. P. Stakhov, The golden matrices and a new kind of cryptography, Chaos, Solitions and Fractals 32(2007), 1138-1146.

[2] A. Stakhov and B. Rozin,The golden shofar, Chaos, Solitions and Fractals, 26 (2005), 677-684.

[3] A. P. Stakhov, Fibonacci matrices, a generalization of the Cassini formula and a new coding theory, Solitions and Fractals, 30 (2006), 56-66.

[4] http://www.goldenmuseum.com/0905 HyperFibLuck engl.html

[5] T. Koshy,Fibonacci and Lucas Numbers with Applications, A Wiley-Interscience publication, U.S.A, (2001).

[6] F. E. Hohn,Elementary Matrix Algebra, Macmillan Company, New York, (1973).

[7] V. E. Hoggat, Fibonacci and Lucas numbers, Houghton-Mifflin, Palo Alto, (1969).

Serpil Halici

Department of Mathematics Faculty of Arts and Sciences University of Sakarya

Turkey.

Referensi

Dokumen terkait

Berdasarkan Tabel 3.4 di atas, dapat diketahui bahwa dapat diketahui bahwa nilai korelasi variabel leader member exchange (X 1 ) dan kepuasan terhadap bonus (X 2 )

Penelitian ini adalah penelitian kualitatif deskriptif dengan tema desain organisasi Star Model, dari Star Model, yang akan menjelaskan antara Strategy, Structure, People, Process,

Dari tabel di atas, dapat dilihat bahwa pemilik usaha mikro dan kecil yang memiliki visionary tinggi, ternyata juga sering melakukan perubahan pada pengendalian/kontrol

Pada indikator kualitas, persentase terbanyak terdapat pada item perubahan dalam pengembangan kualitas yaitu 42.2% dengan frekuensi 35 orang dalam kategori sering yang

Mitra Agro Lestari Bersama, dimana perusahaan harus melakukan inovasi produk untuk melebarkan produk yang ditawarkan misalnya saja membuat mete goreng atau

Sejak awal berdirinya perusahaan, perusahaan selalu berusaha untuk mencapai visi yang telah diangkat oleh perusahaan, yakni menjadi mitra strategis jangka panjang

Penulis menggunakan definisi yang diambil dari Zarkasyi (2008), yaitu adanya suatu sistem (input, proses, output) dan mengatur hubungan-hubungan dan mencegah terjadinya

Maka bersama ini diumumkan bahwa Pelaksana Pekerjaan tersebut adalah sebagai berikut: Nama Perusahaan : CV.. Bumi