• Tidak ada hasil yang ditemukan

paper 19-17-2009. 109KB Jun 04 2011 12:03:07 AM

N/A
N/A
Protected

Academic year: 2017

Membagikan "paper 19-17-2009. 109KB Jun 04 2011 12:03:07 AM"

Copied!
9
0
0

Teks penuh

(1)

SOME PROPERTIES OF THE SUBCLASS OF P-VALENT BAZILEVIC FUNCTIONS

Khalida Inayat Noor and Ali Muhammad

Abstract. In this paper, we define some new class, Bλ

k(a, b, c, p, n, α, ρ)

by using the integral operatorsIλ

p,n(a, b, c)f(z).We also derive some interesting

properties of functions belonging to the class Bλ

k(a, b, c, p, n, α, ρ). Our results

generalizing the works of Owa and Cho, see [2, 10].

2000 Mathematics Subject Classification: 30C45, 30C50.

Keywords and phrases: Analytic functions; Bazilevic functions, Functions with positive real part, Integral operator.

1. Introduction

Let An(p) denote the class of functions f(z) normalized by

f(z) = zp+ ∞ X

k=n

ap+kzp+k (p, n∈N ={1,2,3, ...}) (1.1)

which are analytic andp-valent in the unit disk E ={z : z ∈C and|z|<1}.

Let Pk(ρ) be the class of functions h(z) analytic in E satisfying the

prop-erties h(0) = 1 and

Z

0

Re h(z)−ρ 1−ρ

dθ ≤kπ (1.2)

where z = reiθ, k 2 and 0 ρ < 1. This class has been introduced in [12].

(2)

ρ = 0, k = 2 we have the well known class P of functions with positive real part. The case k = 2 gives the class P(ρ) of functions with positive real part greater than ρ. From (1.4) we can easily deduce thath∈Pk(ρ) if, and only if,

there exists h1, h2 ∈P(ρ) such that for z ∈E,

h(z) =

k 4 +

1 2

h1(z)−

k 4 −

1 2

h2(z). (1.3)

For functions fj(z)∈An(p),given by

fj(z) =zp+

∞ X

k=n

ap+k,jzp+k (j = 1,2), (1.4)

we define the Hadmard product (or convolution) off1(z) and f2(z) by

(f1∗f2)(z) =zp+

∞ X

k=n

ap+k,1ap+k,2zp+k = (f2∗f1)(z) (z ∈E) (1.5)

In our present investigation we shall make use of the Gauss hypergeometric functions defined by

2F1(a, b;c;z) =

∞ X

k=0

(a)k(b)kzk

(c)k(1)k

, (1.6)

wherea, b, c∈C, a, b, c /Z−

0 ={0,−1,−2, ...}, and (x)k denote the

Pochham-mer symbol (or the shifted factorial) given, in terms of the Gamma function Γ, by

(x)k =

Γ(k+n) Γ(k) =

x(x+ 1)...(x+k−1), k ∈N

1, k = 0

We note that the series defined by (1.6) converges absolutely forz ∈E and hence 2F1(a, b;z) represents an analytic function in the open unit disk E, see

[15].

We introduce a function (zp

2F1(a, b;c;z))(−1) given by

(zp

2F1(a, b;c;z))(zp 2F1(a, b;c;z))(

1)

= z

p

(1−z)λ+p, λ >−p, (1.7)

this leads us to a family of linear operators: Ip,nλ (a, b, c)f(z) = (z

p

2F1(a, b;c;z))(

1)

∗f(z), (a, b, c∈R\Z−

0 , λ >−p, z ∈E).

(3)

It is evident that Iλ

1,1(a, n+ 1, a)f(z) is the Noor integral operator, see [1,

4, 6, 7, 8, 9] which has fundament and significant applications in the geometric functions theory. The operatorIλ

p,n(a,1, c) was introduced by Cho et al [3].

After some computations, we obtain

Ip,nλ (a, b, c)f(z) =z p

+ ∞ X

k=n

(c)k(λ+p)k

(a)k(b)k

ap+kzp+k (1.9)

From equation (1.8) we deduce that Iλ

p,n(a, p+λ, a)f(z) = f(z) and Ip,nλ (a, p, a) =

zf′ (z) p ,

z(Iλ

p,n(a, b;c)f(z))

= (λ+p)Ip,nλ+1(a, b;c)f(z)−λIp,nλ (a, b;c)f(z), (1.10)

Using the operator Iλ

p,n(a, b;c)f(z) we now define a new subclass of An(p)

as follows:

Definition 1.1. Let f(z)∈An(p). Then f(z)∈Bλ

k(a, b, c, p, n, α, ρ) if and

only if

Iλ+1

p,n (a, b;c)f(z)

p,n(a, b;c)f(z)

! Iλ

p,n(a, b;c)f(z)

zp

∈Pk(ρ),

where k ≥2, α >0,0≤ρ < p and z ∈E. Special Cases.

(i) B0

2(a,1 +λ, a,1, n, α, ρ) = B(n, α, ρ) is the subclass of Bazileivic

func-tions studied by [2, 10]. (ii) The class B0

2(a,1 +λ, a,1,1, α,0) = B(α) is the subclass of Bazilevic

functions which has been studied by Singh [14], see also [11].

2. Preliminaries and main results

Lemma 2.1. [5] Let u = u1 +iu2 and v = v1 +iv2 and Ψ(u, v) be a

complex-valued function satisfying the conditions: (i) Ψ(u, v) is continuous in a domain D⊂C2.

(ii) (1,0)∈D and Ψ(1,0)>0.

(iii) ReΨ(iu2, v1)≤0 whenever (iu2, v1)∈D and v1 ≤ −n

2 (1 +u

(4)

If h(z) = 1 +cnzn+cn+1zn+1+...is analytic inE such that(h(z), zh′(z))∈

D and Re{Ψ(h(z), zh′

(z))}>0 for z ∈E, then Re h(z)>0 in E. Theorem 2.2. Let f(z)∈Bλ

k(a, b, c, p, n, α, ρ). Then

( Iλ

p,n(a, b, c)f(z)

zp

∈Pk(ρ1),

where ρ1 is given by

ρ1 =

2α(λ+p)ρ+np

2α(λ+p)ρ+n (2.1)

Proof. We begin by setting (

p,n(a, b, c)f(z)

zp

= (p−ρ1)h(z) +ρ1

=

k 4 +

1 2

((p−ρ1)h1(z) +ρ1) −

k 4 −

1 2

((p−ρ1)h2(z) +ρ1), (2.2)

so hi(z) is analytic inE, with hi(0) = 1, i= 1,2.

Taking logarithmic differentiation of (2.2), and using the identity (1.10) in the resulting equation we obtain

Iλ+1

p,n (a, b, c)f(z)

p,n(a, b, c)f(z)

! Iλ

p,n(a, b, c)f(z)

zp

!α =

=

(p−ρ1)h(z) +ρ1+

(p−ρ1)zh′(z)

α(λ+p)

∈Pk(ρ), z ∈E

This implies that 1

p−ρ

(p−ρ1)hi(z) +ρ1−ρ+

(p−ρ1)zh′(z)

α(λ+p)

∈P, z∈E, i= 1,2. We form the functional Ψ(u, v) by choosing u=hi(z), v =zh′i(z).

Ψ(u, v) =

(p−ρ1)u+ρ1−ρ+

(p−ρ1)v

α(λ+p)

(5)

The first two conditions of Lemma 2.1 are clearly satisfied. We verify the condition (iii) as follows:

Re{Ψ(iu2, v1)} = ρ1−ρ+Re

(p−ρ1)v1

α(λ+p)

≤ ρ1−ρ−

n(p−ρ1)(1 +u22)

2α(λ+p) = A+Bu

2 2

2C , where

A= 2α(λ+p)(ρ1−ρ)−n(p−ρ1),

B =−n(p−ρ1), C = 2α(λ+p)>0.

We notice that Re{Ψ(iu2, v1)} ≤ 0 if and only if A ≤ 0, B ≤ 0 and this

gives us ρ1 as given by (2.1) and B ≤ 0 gives us 0 ≤ ρ1 < 1. Therefore

applying Lemma 2.1, hi ∈P, i = 1,2 and consequently h∈ Pk(ρ1) for z ∈E.

This completes the proof.

Corollary 2.3. If f(z)∈B0

2(a, b, c,1, n, α, ρ), then

Re (

p,n(a, b, c)f(z)

z

)

> n+ 2αρ

n+ 2α , z ∈E, (2.3)

Corollary 2.4. If f(z)∈B0

2(a, b, c,1, n,1,0), then

Re (

p,n(a, b, c)f(z)

z

)

> n

n+ 2, z ∈E, (2.4)

Corollary 2.5. If f(z)∈B0

2(a, b, c,1, n,12, ρ) then

Re (

p,n(a, b, c)f(z)

z

)

> ρ+n

n+ 1, z ∈E, (2.5)

(6)

Theorem 2.6. Let f(z)∈Bλ

k(a, b, c, p, n, α, ρ). Then

( Iλ

p,n(a, b, c)f(z)

zp

2

∈Pk(λ),

where

λ = np+ p

(np)2+ 4(α(λ+p) +n)(ρα(λ+p))

2(α(λ+p) +n) (2.6)

Proof. Let (

p,n(a, b, c)f(z)

zp

= ((p−γ)h(z) +γ)2

=

k 4 +

1 2

((p−γ)h1(z) +γ)2 −

k 4 −

1 2

((p−γ)h2(z) +γ)2, (2.7)

so hi(z) is analytic inE with hi(0) = 1, i= 1,2.

Taking logarithmic differentiation of (2.7), and using the identity (1.10) in the resulting equation we obtain that

Iλ+1

p,n (a, b, c)f(z)

p,n(a, b, c)f(z)

! Iλ

p(a, b, c)f(z)

zp

!α =

=

{(p−γ)h(z) +γ}2+ 2

α(λ+p){(p−γ)h(z) +γ}(p−γ)zh ′

(z)

∈Pk(ρ).

This implies that 1

p−ρ

{(p−γ)hi(z) +γ}2+

2

α(λ+p){(p−γ)hi(z) +γ}(p−γ)zh ′

i(z)−ρ

∈P,

where z ∈ E, i = 1,2. We form the functional Ψ(u, v) by choosing u = hi(z), v =zh′i(z).

Ψ(u, v) = {(p−γ)u+γ}2+

2

α(λ+p){(p−γ)u+γ}(p−γ)v−ρ

(7)

Re{Ψ(iu2, v1)} = γ2−(p−γ)2u22+

2

α(λ+p)γ(p−γ)v1−ρ

≤ γ2−ρ−(p−γ)2u22

nγ(p−γ)(1 +u2 2)

α(λ+p)

= A+Bu

2 2

2C , where

A =γ2α(λ+p)ρα(λ+p) +nγ(pγ),

B =−(p−γ)2nγ(pγ)

C = α(λ+p) 2 >0.

We notice that Re{Ψ(iu2, v1)} ≤ 0 if and only if A ≤ 0, B ≤ 0 and this

gives us γ as given by (2.6) andB ≤0 gives us 0≤γ <1.Therefore applying Lemma 2.1, hi ∈ P, i = 1,2 and consequently h ∈ Pk(ρ1) for z ∈ E. This

completes the proof of Theorem 2.6. Corollary 2.7. If f(z)∈B0

2(a, b, c,1, n, α, ρ) then

Re (

p,n(a, b, c)f(z)

z

)

> n+ p

n2+ 4(α+n)(ρα)

2(α+n) , z ∈E. Corollary 2.8. If f(z)∈B0

2(a, b, c,1, n,1, ρ) then

Re (

p,n(a, b, c)f(z)

z

)

> n+ p

n2+ 4(1 +n)ρ

2(1 +n) , z ∈E. Corollary 2.9. If f(z)∈B0

2(a, b, c,1, n,2,0) then

Re (

p,n(a, b, c)f(z)

z

)

> n

1 +n, z ∈E.

Again with certain choices of the parameters λ, k, a, b, c, p, α, ρ and we ob-tain the corresponding works of [2, 10].

(8)

References

[1] N. E. Cho,The Noor integral operator and strongly close-to-convex func-tions, J. Math. Anal. Appl., 238 (2003), 202

[2] N. E. Cho, On certain subclasses of univalent functions, Bull. Korean Math. Soc. 25 (1988), 215

[3] N. E. Cho, Oh Sang Kown and H. M. Srivastava, Inclusion relation-ships and argument properties for certain subclasses of multivalent functions associated with a family of linear operators, J. Math. Anal. Appl., 292 (2004), 470

[4] J. L. Liu and K. I. Noor, Some properties of Noor integral operator, J. Natur. Geom. 21 (2002), 8190.

[5] S. S. Miller and P. T. Mocanu, Second order differential inequalities in the complex plane, J. Math. Anal. Appl., 65 (1978), 289

[6] K. I. Noor,Some classes of p-valent analytic functions defined by certain integral operator, Appl. Math. Compute. 157 (2004), 835840.

[7] K. I. Noor, On new classes of integral operator, J. Nat. Geo, 16 (1999), 71

[8] K. I. Noor and M. A. Noor, On certain classes of analytic functions defined by Noor integral operator, J. Math. Appl. 281 (2003), 244252.

[9] K. I. Noor and M. A. Noor,On integral operators, J. Math. Anal. Appl., 238 (1999), 341

[10] S. Owa, On certain Bazilevic functions of order, Internat. J. Math. and Math. Sci. 15 (1992), 613

[11] S. Owa and M. Obradovic, Certain subclasses of Bazilevic function of type, Internat. J. Math. and Math. Sci., 9:2 (1986), 97105.

[12] B. Pinchuk, Functions with bounded boundary rotation, Isr. J. Math., 10 (1971), 716.

[13] K. Padmanabhan and R. Parvatham,Properties of a class of functions with bounded boundary rotation, Ann. Polon. Math., 31 (1975), 311323.

[14] R. Singh, On Bazilevic functions, Proc. Amer. Math. Sci., 38 (1973), 261267.

(9)

Authors:

Khalida Inayat Noor Mathematics Department,

COMSATS Institute of Information Technology, H-8/1 Islamabad, Pakistan.

e-mail: khalidanoor@hotmail.com Ali Muhammad

Mathematics Department,

COMSATS Institute of Information Technology, H-8/1 Islamabad, Pakistan.

Referensi

Dokumen terkait

Modal sosial pemilik UMK sektor informal di wilayah Jawa Timur yang menjadi responden dalam penelitian ini memiliki hubungan dengan kinerja bisnisnya pada beberapa

Dari hasil penelitian yang dilakukan oleh peneliti, PT.Unichem Candi Indonesia menunjukkan bahwa dari sisi strategy perusahaan memiliki visi dan misi yang jelas,

Batas Akhir Pemasukan Dokumen Penawaran dan Pembukaan Dokumen Penawaran, waktu dan tempat ditentukan pada saat acara pemberian penjelasan Dokumen Pengadaan. Pendaftaran

Berdasarkan pada hasil analisis SWOT dan melakukan formulasi strategi pengembangan bisnis terhadap usaha Artharaga fitness center, maka pengembangan bisnis yang

llal-lrel yang telum iehs dapat ditanyakan pada saat pendaftaran. Ilemikhn Filgumunan ini, atas pertratiannya kami sampa*an

Maka bersama ini diumumkan bahwa Pelaksana Pekerjaan tersebut adalah sebagai berikut: Nama Perusahaan : CV.. Bumi

Restrukturisasi organisasi yang dilakukan oleh PT. Samudra Alam Raya dilakukan untuk mencari solusi atau jalan keluar bagi masalah menurunnya kinerja

Penetapan Pemenang Pelelangan Penyedia lasa Konstruksi Pekerjaan Peningkatan Jalan Daerah/Poros Desa,.. Jalan Menuju Ponpes Syaiful Islam, Desa Jambu,