• Tidak ada hasil yang ditemukan

Directory UMM :Journals:Journal_of_mathematics:VMJ:

N/A
N/A
Protected

Academic year: 2017

Membagikan "Directory UMM :Journals:Journal_of_mathematics:VMJ:"

Copied!
7
0
0

Teks penuh

(1)

žp¨î ‹¥®­¨¤®¢¨çã …à订ã

ª ¥£® è¥á⨤¥áï⨫¥â¨î

“„Š 512.54

Ž ƒ“€• ”Ž…ˆ“‘€,

‘Ž„…†€™ˆ• ‹…Œ…’ ŽŸ„Š€ 3

€. •. †ãà⮢

„®ª §ë¢ ¥âáï,çâ® £à㯯  ”஡¥­¨ãá 

G

, ¯®à®¦¤¥­­ ï ¤¢ã¬ï í«¥¬¥­â ¬¨ ¯®à浪  3, ª®­¥ç­ . Ÿ¤à® £à㯯ë

G

 ¡¥«¥¢® ¨ ç¨á«® ¥£® ¯®à®¦¤ îé¨å ­¥ ¯à¥¢ëè ¥âç¨á« 8,   ¤®¯®«­¥­¨¥«¨¡® 横«¨ç¥áª®¥,«¨¡®¨§®¬®àä­®®¤­®©¨§ £à㯯SL

2 (3),SL

2 (5).

‚ à ¡®â¥¯à®¤®«¦ îâáï¨áá«¥¤®¢ ­¨ï ­ ç âë¥ ¢ [1] ¨ [2]. — áâì

१ã«ìâ -⮢ ¯®«ã祭ë ᮢ¬¥áâ­®á ‚. „. Œ §ã஢ë¬.

 ¯®¬­¨¬, çâ® £à㯯®© ”஡¥­¨ãá  á ï¤à®¬

F

¨ ¤®¯®«­¥­¨¥¬

H

­ §ë¢ -¥âáï ¯®«ã¯àאַ¥ ¯à®¨§¢¥¤¥­¨¥

F

H

, 㤮¢«¥â¢®àïî饥 á«¥¤ãî騬 ãá«®¢¨ï¬:

 )

H

|ᮡá⢥­­ ï¯®¤£à㯯 ¢

G

¨

H

\

H

f

=1¤«ï«î¡®£®­¥¥¤¨­¨ç­®£®

í«¥¬¥­â 

f

2

F

,

¡)

F

nf1g=

G

nf

H

f

j

f

2

F

g.

’¥®à¥¬  1. ƒà㯯  ”஡¥­¨ãá 

G

, ¯®à®¦¤¥­­ ï ¤¢ã¬ï í«¥¬¥­â ¬¨ ¯®-à浪 3,ª®­¥ç­ . Ÿ¤à®£à㯯ë

G

 ¡¥«¥¢®¨ç¨á«®¥£®¯®à®¦¤ îé¨å ­¥ ¯à¥¢ë-è ¥â ç¨á« 8,  ¤®¯®«­¥­¨¥ «¨¡®æ¨ª«¨ç¥áª®¥, «¨¡®¨§®¬®àä­®®¤­®©¨§£à㯯

SL

2

(3), SL

2 (5).

„®ª § â¥«ìáâ¢ã ¯à¥¤¯®è«¥¬ âਠ«¥¬¬ë. ‚ ­¨å ¯®¤ ¬®¤ã«¥¬ ¤«ï

£àã¯-¯ë ¨«¨ ª®«ìæ  ¯®­¨¬ ¥âáï «î¡ ï  ¤¤¨â¨¢­® § ¯¨á ­­ ï  ¡¥«¥¢  £à㯯 , ­ 

ª®â®à®© ¤ ­­ ï £à㯯  ¨«¨ ª®«ìæ® ¤¥©áâ¢ã¥â. „«ï £àã¯¯ë € €-¬®¤ã«ì

V

­ -§ë¢ ¥âáï ä஡¥­¨ãᮢë¬, ¥á«¨

v

(

x

,1)6=0 ¨

V

(

x

,1)=

V

¤«ï ¢á¥å

V

3

v

6=0, 16=

x

2

A

.

‹¥¬¬  1. ãáâì

m

| ­ âãà «ì­®¥ ç¨á«® ¨

V

| ­¥­ã«¥¢®©

RA

-¬®¤ã«ì, £¤¥

R

| ¯®«¥ ¯à®á⮣® ¯®à浪  ¨«¨

R

= Z[1

=m

] ¨ ¢ í⮬ á«ãç ¥

V

­¥ ¨¬¥¥â ªàã祭¨ï, 

A

=h i|横«¨ç¥áª ï £à㯯 . …᫨ ¬®¤ã«ì

V

ª®­¥ç­®¯®à®¦¤¥­ ª ª

RA

-¬®¤ã«ì,â® áãé¥áâ¢ã¥â ­ âãà «ì­®¥ ç¨á«®

n

â ª®¥, çâ®

V

(

a

n

,1)6=

V

. C à¥¤¯®«®¦¨¬ ¢­ ç «¥, çâ®

R

=Z[1

=m

] ¨

V

| ¯à®â¨¢®à¥ç é¨© ¯à¨¬¥à á ­ ¨¬¥­ì訬 ç¨á«®¬

s

®¡à §ãîé¨å

v

1 ,

v

2

,

::: ; v

s
(2)

â® áãé¥áâ¢ã¥â ­¥­ã«¥¢®© ¯®«¨­®¬

f

(

x

) =

0 +

1

x

+

:::

+

t

x

t

2 Z[

x

] â  -ª®©, çâ®

v

s

f

(

a

) 2

v

1

S

+

:::

+

v

s,1

S

, £¤¥

S

=

R

h

a

i. ‚롥६

f

­ ¨¬¥­ì襩 á⥯¥­¨

t

. ’®£¤ 

0

6= 0 6=

t

¨

v

s

t

a

t

,

v

s

0

a

,1

2 s,1

P

i=1

v

i

S

. â® ®§­ ç ¥â,

çâ®

V

s,1

P

i=1

v

i

R

1

h

a

i+

v

s

t,1

P

j=0

R

1

a

j

=

V

1

, £¤¥

R

1

= Z[1

=m

0

t

], ¨

V

1

ï¥â-áï h

a

i-¬®¤ã«¥¬ ­ ¤

R

1

. „ «¥¥,

V

1

(

a

n

, 1) =

V

1

¤«ï «î¡®£®

n

2 N. ɇǬ

v

s (

0 +

1 +

:::

+

t,1

a

t,1 ) 2 s,1 P i=1

v

i

R

1

h

a

i ¤«ï ­¥ª®â®à®£® ­¥­ã«¥¢®£® ¢¥ªâ®-à  (

0 +

1 +

:::

+

t,1

) 2

R

t

1

, ⮠㬭®¦¨¢ ­  ¯®¤å®¤ï饥 ­ âãà «ì­®¥

ç¨á-«®, ¬ë ­ ©¤¥¬ ­¥âਢ¨ «ì­ë© ¯®«¨­®¬

g

2 Z[

x

] á⥯¥­¨ ­¥ ¡®«ìè¥

s

,1, ¤«ï ª®â®à®£®

v

s

g

(

a

) 2

s,1

P

i=1

v

i

S

. â® ¯à®â¨¢®à¥ç¨â ¢ë¡®àã

f

. ® ¢ë¡®àã

V

,

V

1 6=

s,1

P

i=1

v

i

R

1

h

a

i=

V

2

,

V

3

=

V

1

=V

2

| ­¥­ã«¥¢®© ª®­¥ç­®¬¥à­ë© h

a

i-¬®¤ã«ì ¡¥§ ªàã祭¨ï­ ¤

R

1

ᮤ­¨¬¯®à®¦¤ î騬

v

=

v

s +

V

2 ¨

V

3 (

a

n

,1)=

V

3

¤«ï¢á¥å

n

2 N. ’¥¯¥àì ¬ë ¬®¦¥¬ à áᬠâਢ âì

R

1

ª ª

R

,

V

3

ª ª

V

¨ áç¨â âì, çâ®

V

| ª®­¥ç­®¬¥à­ë© ®¤­®¯®à®¦¤¥­­ë©

S

-¬®¤ã«ì.

‚ í⮬ á«ãç ¥

V

ª ª

S

-¬®¤ã«ì ¨§®¬®à䥭 ª®«ìæã

S

0

=

S=

ker

V

. ãáâì

p

|¯à®á⮥ ç¨á«®, ­¥¤¥«ï饥

m

. ɇǬ

pV

=

V

,â®

pvg

(

a

)=

v

¤«ï­¥ª®â®à®£® ¯®«¨­®¬ 

g

­ ¤

R

á⥯¥­¨ ­¥ ¡®«ìè¥

s

,1, ¨

v

(

pg

,1) =0 ¢®¯à¥ª¨ ¢ë¡®àã

f

. ®í⮬ã

pS

0

| ᮡá⢥­­ë© ¨¤¥ « ¢

S

0

¨ ç¨á«® j

S

0

=pS

0

j = j

V

:

pV

j ª®­¥ç­®. ãáâì

M

|¬ ªá¨¬ «ì­ë©¨¤¥ «¨§

S

0

ᮤ¥à¦ é¨©

pS

0

. ’®£¤ 

a

62

M

,

S

0

=M

|

ª®­¥ç­®¥ ¯®«¥ ¨ ¯®í⮬ã áãé¥áâ¢ã¥â

n

2 N, ¤«ï ª®â®à®£®

a

n

+

M

= 1+

M

. „à㣨¬¨ á«®¢ ¬¨,

a

n

,1 2

M

,

S

0

(

a

n

,1)

M

6=

S

0

¨

V

(

a

n

,1) 6=

V

. â® ¯à®â¨¢®à¥ç¨¥ ¤®ª §ë¢ ¥â «¥¬¬ã ¤«ï

R

= Z[1

=m

]. ’¥ ¦¥ à áá㦤¥­¨ï (á ­¥-ª®â®à묨 ®ç¥¢¨¤­ë¬¨ ã¯à®é¥­¨ï¬¨) £®¤ïâáï ¨ ¤«ï ¯®«ï ¯à®á⮣® ¯®à浪 .

‹¥¬¬  ¤®ª § ­ . B

‹¥¬¬  2. ãáâì

A

| £à㯯 , ¯®à®¦¤¥­­ ï ¤¢ã¬ï í«¥¬¥­â ¬¨

x;y

¯®-à浪 3¨

V

|®¤­®¯®à®¦¤¥­­ë©ä஡¥­¨ãᮢ

A

-¬®¤ã«ì. ’®£¤ 

V

|ª®­¥ç­ ï  ¡¥«¥¢  £à㯯 .

C ãáâì

u

0

| ¯®à®¦¤ î騩

A

-¬®¤ã«ï

V

¨

T

| ¬­®¦¥á⢮ ¢á¥å í«¥¬¥­-⮢ ª®­¥ç­®£® ¯®à浪  ¨§

V

. ’®£¤ 

T

|

A

-¯®¤¬®¤ã«ì ¨

V=T

| £à㯯  ¡¥§ ªàã祭¨ï. …᫨

T

=

V

¨

m

| ¯®à冷ª í«¥¬¥­â 

u

0

, â®

mV

=0. ɇǬ

m

=

pn

, £¤¥

p

| ¯à®á⮩ ¤¥«¨â¥«ì ç¨á« 

m

, â®

V

0

= f

x

2

V

j

nx

= 0g | ᮡá⢥­­ë©

A

-¬®¤ã«ì. ãáâì

V

1

=

V=V

0

. ’®£¤ 

V

1

| ­¥­ã«¥¢®© ®¤­®¯®à®¦¤¥­­ë©

ä஡¥-­¨ãᮢ

A

-¬®¤ã«ì ­ ¤ ¯®«¥¬ ¯®à浪 

p

. …᫨ ¯®à冷ª£à㯯ë

V

1

ª®­¥ç¥­, â® ¨

¯®à冷ª

V

ª®­¥ç¥­. ’ ª¨¬ ®¡à §®¬,¢ í⮬á«ãç ¥ ¤®áâ â®ç­® ¤®ª § âì «¥¬¬ã ¤«ï

A

-¬®¤ã«ï ­ ¤ ¯®«¥¬

F

¯®à浪 

p

.

ɇǬ

T

6=

V

, â®

V

1
(3)

¬®¦¥¬ áç¨â âì, çâ® V

1

=V. ˆâ ª, ¬®¦­® ¯à¥¤¯®« £ âì V | R A-¬®¤ã«ì, £¤¥

R=F ¨«¨ R=Z ¨ ¢ í⮬ ¯®á«¥¤­¥¬ á«ãç ¥ V ­¥ ¨¬¥¥â ªàã祭¨ï.

Ž¡®§­ ç¨¬ a = xy ¨ ¯®«®¦¨¬ u

i = u 0 a i , v i = u 0 a i

x ¤«ï i 2 Z. ’®£¤ 

V =hfu

i ;v

i

ji2Zgi

u

i x=v

i ; v

i

x=,u

i ,v

i ; u

i

y =,u

i ,v

i,1 ; v

i y =u

i+1

(1)

¤«ï ¢á¥å 楫ëå ç¨á¥« i. ˆ§ (1) ¢ë⥪ ¥â, çâ® ¤«ï «î¡®£® 楫®£® i

u

i a=u

i+1 ; v

i

a,1=v

i,1 ; u i a ,1 =,u i,1 ; v i a ,1 =,u i +u i+1 +v i+1 : (2)

â® ¯®ª §ë¢ ¥â, çâ® u

0 ;v

0

| ¯®à®¦¤ î騥 ¤«ï R hai-¬®¤ã«ï V. ®

«¥¬-¬¥ 1 áãé¥áâ¢ã¥â n 2 N â ª®©, çâ® V(a n

,1) 6= V. ® ãá«®¢¨î a n

= 1. ®

[1] £à㯯  € ª®­¥ç­  ¨ V | ª®­¥ç­® ¯®à®¦¤¥­­ ï £à㯯 . …᫨ R =F, â® V

ª®­¥ç­ . à¥¤¯®«®¦¨¬, çâ® R=Z. ’®£¤  V = V(x,1) 2

= V(,3x) =3V, çâ®

­¥¢®§¬®¦­®. ‹¥¬¬  ¤®ª § ­ . B

‹¥¬¬  3. ãáâì A | ª®­¥ç­ ï £à㯯  ¯®à®¦¤¥­­ ï ¤¢ã¬ï í«¥¬¥­â ¬¨

x;y ¯®à浪®¢ 4¨ V |ª®­¥ç­ ï  ¡¥«¥¢ £à㯯  á s ¯®à®¦¤ î騬¨,ª®â®à ï

ï¥âáï ®¤­®¯®à®¦¤¥­­ë¬ ä஡¥­¨ãá®¢ë¬ A-¬®¤ã«¥¬. ’®£¤  ¢¥à­® ®¤­® ¨§

á«¥¤ãîé¨å ã⢥ত¥­¨©:

(1) £à㯯  A 横«¨ç¥áª ï ¯®à浪  2, 3, 4, 6 ¨«¨ 12 ¨ s ­¥ ¯à¥¢®á室¨â

ç¨á«  1, 2, 2, 2 ¨«¨ 4 ᮮ⢥âá⢥­­®;

(2) £à㯯  A ¨§®¬®àä­  SL

2

(3), GL

2

(3) ¨«¨ SL

2

(5) ¨ s ­¥ ¯à¥¢®á室¨â

ç¨á«  4, 4 ¨«¨ 8 ᮮ⢥âá⢥­­®;

(3) £à㯯  A ¨§®¬®àä­  £à㯯¥ SQ

2n = hx 2n = y 4 = 1jx n = y 2 ;x y

x = 1i

¯®à浪  4n ¨ s4'(n),£¤¥ '| äã­ªæ¨ï ©«¥à .

C „®ª § â¥«ìá⢮í⮩ «¥¬¬ë, ¯® áãé¥áâ¢ã, ᮤ¥à¦¨âáï¢ [1]. B

’¥¯¥à줮ª ¦¥¬â¥®à¥¬ã 1.

C ãáâì G =hx;zi = AP, £¤¥ x 3

= z 3

= 1, F | ï¤à® ¨  | ¤®¯®«­¥­¨¥

¢ G. Œ®¦­® áç¨â âì, çâ® x 2 H. ãáâì z = fy, £¤¥ f 2 F, y 2 H. ’®£¤ 

G = hf;x;yi, H = hx;yi, F = hf H

i. ãáâì M | ¬ ªá¨¬ «ì­ ï  ¡¥«¥¢ 

¯®¤-£à㯯 ¢F,ᮤ¥à¦ é ïf. …᫨¤«ï¢á¥åh2H ¢ë¯®«­¥­®à ¢¥­á⢮M h

=Œ,

â® F =M | ¡¥«¥¢  £à㯯 . à¥¤¯®«®¦¨¬, çâ®M h

6=M ¤«ï­¥ª®â®à®£®

í«¥-¬¥­â  h 2 H. ’®£¤  «¨¡® M x

6= M, «¨¡® M y

6= M. ˆ§-§  ᨬ¬¥âਨ ¬®¦­®

áç¨â âì, çâ® M x

6= M. ® ¢ë¡®àã M;[M x

;M] 6= 1. ãáâì  ;b 2 M. ’®£¤ 

1 = (a x b) 2 (a x b) x (a x

b) = ab x 2   x 2 b x a x

b = ab x 2 (a x 2 a x )(b x

b) = ab x 2   ,1 (b ,1 ) x 2 = [a ,1 ;(b ,1 ) x 2

] ¨ ¯®í⮬ã [a;b x

]= 1. ‘«¥¤®¢ â¥«ì­®, [M;M x

]=1. â®

(4)

‘«¥¤á⢨¥. ãáâì (G;H) | ¯ à  ”஡¥­¨ãá  ¨ H ᮤ¥à¦¨â í«¥¬¥­â x

¯®à浪  3. …᫨ ¤«ï «î¡®£® í«¥¬¥­â  g 2 G ¯®¤£à㯯  hx;x g

i | ï¥âáï

£à㯯®© ”஡¥­¨ãá , â® G=F H ¤«ï­®à¬ «ì­®© ¯¥à¨®¤¨ç¥áª®© ¯®¤£à㯯ë

F. à¨ í⮬, «¨¡® ¯®¤£à㯯  V = hx h

jh 2 Hi ¨§®¬®àä­  ®¤­®© ¨§ £à㯯

SL

2

(3), SL

2

(5) ¨ ¯®¤£à㯯  F |  ¡¥«¥¢ , «¨¡® hxi | ­®à¬ «ì­ ï ¯®¤£à㯯  ¢

H ¨ F ¤¢ãáâ㯥­­® ­¨«ì¯®â¥­â­ .

® ⥮६¥ 1 ¢ë¯®«­¥­ë ãá«®¢¨ï (⥮६ë 5 ¨§ [2]) f2;3g-£à㯯ë

ॣã-«ïà­ëå  ¢â®¬®à䨧¬®¢. ãáâì C

p 1

| ¡¥áª®­¥ç­ ï, «®ª «ì­® 横«¨ç¥áª ï

p-£à㯯 . â® ®§­ ç ¥â, çâ®

C

p 1

=ha

i ja

p

1

= 1; a p

i+1 =a

i

; i2Ni:

¥áª®­¥ç­®© ®¡®¡é¥­­®© £à㯯®© ª¢ â¥à­¨®­®¢ ­ §®¢¥¬£à㯯ã

Q 1

=hC

2 1

;tjt 2

=a

1 ; a

t

i =a

,1

i i:

‹¥£ª® ¯à®¢¥à¨âì, çâ® ª ¦¤ ï ¯®¤£à㯯  Q

i = ha

i

;ti ¨§®¬®àä­  ®¡®¡é¥­­®©

£à㯯¥ ª¢ â¥à­¨®­®¢ ¯®à浪  2 i+1

¨ Q 1

= S

i2N Q

i

. ‡ ¬¥â¨¬, çâ® N =ha

i ji2

Ni ¥¤¨­á⢥­­ ï ᮡá⢥­­ ï, ¡¥áª®­¥ç­ ï ¯®¤£à㯯  ¨§ Q 1

¨ «î¡®© í«¥¬¥­â

¨§ Q 1

, ¯®à冷ªª®â®à®£®¡®«ìè¥ ç¥âëà¥å, «¥¦¨â ¢ N.

ƒà㯯  Q 1

¯®à®¦¤ ¥âáï í«¥¬¥­â ¬¨ ¯®à浪  4.

‹î¡ ï ᮡá⢥­­ ï ¯®¤£à㯯  ¨§ Q 1

®â«¨ç­  ®â ᢮¥£® ­®à¬ «¨§ â®à  ¨

«¨¡®ª®­¥ç­ ¨ï¢«ï¥âáïæ¨ª«¨ç¥áª®©¨«¨®¡®¡é¥­­®©ª¢ â¥à­¨®­­®©£à㯯®©,

«¨¡® ᮢ¯ ¤ ¥â á N.

“⢥ত¥­¨¥. ãáâìG | £à㯯 , ¢ª®â®à®©«î¡ë¥ ¤¢ í«¥¬¥­â  x;yá®

᢮©á⢮¬x y

=x ,1

¯®à®¦¤ îâ2-¯®¤£à㯯ã ᥤ¨­á⢥­­®© ¨­¢®«î樥©.

‹î-¡ ï2-£à㯯 á¥¤¨­á⢥­­®© ¨­¢®«î樥©«¨¡®ï¢«ï¥âáï«®ª «ì­®æ¨ª«¨ç¥áª®©,

«¨¡® ®¡®¡é¥­­®© £à㯯®© ª¢ â¥à­¨®­®¢ (¢®§¬®¦­®, ¡¥áª®­¥ç­®©).

…᫨¢G­¥â­¥âਢ¨ «ì­ëå2-í«¥¬¥­â®¢,⮤®ª §ë¢ â쭥祣®. ‚

¯à®â¨¢-­®¬ á«ãç ¥ G ®¡« ¤ ¥â ¥¤¨­á⢥­­®© ¨­¢®«î樥© z. …᫨ ¢ G ­¥â í«¥¬¥­â®¢

¯®à浪 4,â®á­®¢ ¤®ª §ë¢ â쭥祣®. ãáâì¢G¥áâìí«¥¬¥­â¯®à浪 4.  ¬

¯®âॡã¥âáï á«¥¤ãîé ï «¥¬¬ .

‹¥¬¬  4. …᫨ y | í«¥¬¥­â ¯®à浪  4 ¨§ G, â® 2-í«¥¬¥­âë ¨§ C

G (y)

á®áâ ¢«ïîâ «®ª «ì­® 横«¨ç¥áªãî ¯®¤£à㯯ã C

0

,   ¢ N

G

(hyi) 2-í«¥¬¥­âë

á®-áâ ¢«ïîâ ­®à¬ «ì­ãî 2-¯®¤£à㯯ã, ¢ ª®â®à®© C

0

| ¯®¤£à㯯  ¨­¤¥ªá  2.

C ãáâì C

0

| ¬ ªá¨¬ «ì­ ï, ­®à¬ «ì­ ï «®ª «ì­® 横«¨ç¥áª ï

2-¯®¤£à㯯  ¨§ C = C

G

(y). …᫨ ­¥ ¢á¥ 2-í«¥¬¥­âë ¨§ C ᮤ¥à¦ âáï ¢ C

0 , â®

­ ©¤¥âáï â ª®© 2-í«¥¬¥­ât ¨§ C, çâ® tC

0

| ¨­¢®«îæ¨ï ¢ C=C

0 .

ɇǬt c

C

0 6=tC

0

¤«ï­¥ª®â®à®£® í«¥¬¥­â  c2C, â®ht;t c

;yi| ª®­¥ç­ ï ­¥

(5)

業âà à ¢¥­¤¢ã¬, íâ á¨âã æ¨ï­¥¢®§¬®¦­ ¨ht;C

0

i|­®à¬ «ì­ ï «®ª «ì­®

ª®­¥ç­ ï ¯®¤£à㯯 ¨§C,ᮤ¥à¦ é ï業âà «ì­ãî ¯®¤£à㯯㯮à浪 4.

®-í⮬ã ht;C

0

i| «®ª «ì­® 横«¨ç¥áª ï £à㯯 , ¢®¯à¥ª¨ ¢ë¡®àã ¯®¤£à㯯ë C

0 .

ˆâ ª C

0

ᮤ¥à¦¨â ¢á¥ 2-í«¥¬¥­âë ¨§ C. …᫨ N = N

G

(hyi 6= C, â® ­ ©¤¥âáï

í«¥¬¥­â x ¨§ N nC, çâ® y x

=y ,1

, ¯®í⮬ã x | 2-í«¥¬¥­â.

…᫨ x ­¥ 業âà «¨§ã¥â C=C

0

, â® ¯®áª®«ìªã hC

0

;xi | ­¥ ¡¥«¥¢  £à㯯 ,

®­  ®¡®¡é¥­­ ï £à㯯  ª¢ â¥à­¨®­®¢, x í«¥¬¥­â ¯®à浪  4 ¨ x 2

業âà «¨-§ã¥â C

0

. ãáâì cC=C

0 6= c

x

C=C

0

, ¤«ï ­¥ª®â®à®£® í«¥¬¥­â  c 2 C. ’®£¤ 

(c ,1

c x

) x

= (c ,1

c x

) ,1

, c ,1

c x

62 C

0

¨ ¯®í⮬㠭¥ ï¥âáï 2-í«¥¬¥­â®¬. â®

¯à®â¨¢®à¥ç¨â ãá«®¢¨î. ®í⮬ã x 業âà «¨§ã¥â C=C

0 ¨ hC

0

;xi ®¡®¡é¥­­ ï

£à㯯  ª¢ â¥à­¨®­®¢, ­®à¬ «ì­ ï ¢ N.

…᫨ ¢ G ­¥â í«¥¬¥­â®¢ ¯®à浪  8, â® «î¡ë¥ ¤¢  í«¥¬¥­â  ¯®à浪  4 ¨§

G¯¥à¥áâ ­®¢®ç­ë¯® ¬®¤ã«î hzi¨¯®í⮬㠢á¥2-í«¥¬¥­âë ¯®à®¦¤ îâ£à㯯ã

ª¢ â¥à­¨®­®¢ ¯®à浪  8.

ãáâì x | í«¥¬¥­â ¨§ G ¯®à浪  8 ¨ y = x 2

. ’®£¤  y 2

= z. ®«®¦¨¬

C = C

G

(y), N = N

G

(hyi). ® «¥¬¬¥ 4 ¢ C áãé¥áâ¢ã¥â «®ª «ì­®

横«¨ç¥á-ª ï ­®à¬ «ì­ ï ᨫ®¢áª ï 2-¯®¤£à㯯  C

0

,   ¢ N | ­®à¬ «ì­ ï ᨫ®¢áª ï

2-¯®¤£à㯯  N

0 ¨ jN

0 : C

0

j 2. ɇǬ N

0 6= C

0

, â® N

0

| ®¡®¡é¥­­ ï £à㯯 

ª¢ â¥à­¨®­®¢ (¢®§¬®¦­®,¡¥áª®­¥ç­ ï). …᫨¢á¥ í«¥¬¥­âë ¯®à浪  4 ¨§ G

á®-¤¥à¦ âáï¢N,⮢á«ãç ¥N =C¯®¤£à㯯 C ᮢ¯ ¤ ¥âáG, ¢á«ãç ¥N 6=C

¯®¤£à㯯  N

0

¯®à®¦¤ ¥âáïí«¥¬¥­â ¬¨ ¯®à浪 4¨,á«¥¤®¢ â¥«ì­®, ­®à¬ «ì­ 

¢ G. ® ⮣¤  hyiG ¨ N =G.

®í⮬ã¯ãáâìáãé¥áâ¢ã¥âí«¥¬¥­ât¯®à浪 4¨§G,ª®â®àë©­¥

ᮤ¥à¦¨â-áï ¢ N. ®¤£à㯯  hy;xi | ®¡®¡é¥­­ ï £à㯯  ª¢ â¥à­¨®­®¢ ¨ yt | í«¥¬¥­â,

¯®à冷ª ª®â®à®£® ¡®«ìè¥ ç¥âëà¥å. ãáâì z = (yt) 2

s

| í«¥¬¥­â ¯®à浪  8.

’®£¤  hx;ri ­®à¬ «¨§ã¥â H = hy;r 2

i ¨ xH;rH | ¨­¢®«îæ¨ï ¢ hx;ri=H. ’

 -ª¨¬ ®¡à §®¬ hx;ri | ª®­¥ç­ ï 2-¯®¤£à㯯  ¨§ G ᮤ¥à¦ é ï ¤¢¥ à §«¨ç­ë¥

横«¨ç¥áª¨¥ ¯®¤£àã¯¯ë ¯®à浪  8. â® ­¥¢®§¬®¦­®. B

’¥®à¥¬  2. ãáâì G | ­¥âਢ¨ «ì­ ï f2;3g-£à㯯  ॣã«ïà­ëå

 ¢â®-¬®à䨧¬®¢  ¡¥«¥¢®© £à㯯ë. …᫨ G ª®­¥ç­ , â® ¢¥à­® ®¤­® ¨§ á«¥¤ãîé¨å

ã⢥ত¥­¨©:

(1) G | 横«¨ç¥áª ï £à㯯 ;

(2) G = hx;yjx 3

t

= y 2

s

= 1; y ,1

xy = x ,1

i ¤«ï ­¥ª®â®àëå ­ âãà «ì­ëå

ç¨á¥« t ¨ s, s2;

(3) G = hx;yjx 2

s

3 t

= y 4

= 1; y 2

= x 2

s,1

3 t

; x y

= x ,1

i ¤«ï ­¥ª®â®àëå

­ âãà «ì­ëå ç¨á¥«t ¨ s, s 2;

(4) G = hx;y;zjx 4

= z 3

t

= 1; x 2

= y 2

; y x

= y ,1

; x z

= y; y z

= xy ,1

i,

(6)

ª¢ â¥à-­¥âਢ¨ «ì­ë©  ¢â®¬®à䨧¬;

(5)G=hx;y;z;vi,£¤¥hx;y;zi|£à㯯 â¨¯ 3,v 2

=x 2

,z v

=z ,1

,x v

=y ,1

,

y v

=x ,1

;

(6) G ¨§®¬®àä­  SL

2 (5);

(7) G ᮤ¥à¦¨â ¯®¤£à㯯㠨­¤¥ªá  2, ¨§®¬®àä­ãî SL

2

(5), ¨ ᨫ®¢áª ï

2-¯®¤£à㯯  ¨§ G | ®¡®¡é¥­­ ï £à㯯  ª¢ â¥à­¨®­®¢.

…᫨ G ¡¥áª®­¥ç­ , â® ¯®¤£à㯯  ¨§ G ¯®à®¦¤¥­­ ï ¢á¥¬¨ í«¥¬¥­â ¬¨

¯®à浪  3, ï¥âáïæ¨ª«¨ç¥áª®©, ¨ ¢¥à­®®¤­® ¨§ á«¥¤ãîé¨å ã⢥ত¥­¨©:

(8) G| à áè¨à¥­¨¥ «®ª «ì­®æ¨ª«¨ç¥áª®© 2-£àã¯¯ë ¨«¨ (¢®§¬®¦­®,

¡¥á-ª®­¥ç­®©) ®¡®¡é¥­­®© £àã¯¯ë ª¢ â¥à­¨®­®¢ ¯®á।á⢮¬ 3-£à㯯ë á

¥¤¨­áâ-¢¥­­®© ¯®¤£à㯯®© ¯®à浪  3;

(9) G | ¯®«ã¯àאַ¥ ¯à®¨§¢¥¤¥­¨¥ «®ª «ì­® 横«¨ç¥áª®© 3-¯®¤£à㯯ë R

¨ 横«¨ç¥áª®© 2-¯®¤£à㯯ë hsi ¯®à浪  4, r s

= r ,1

¤«ï «î¡®£® í«¥¬¥­â 

r 2R ;

(10) G = (U V)hti, £¤¥ U | «®ª «ì­® 横«¨ç¥áª ï 2-£à㯯  ¨«¨

ª®­¥ç-­ ï £à㯯  ª¢ â¥à­¨®­®¢, V | «®ª «ì­® 横«¨ç¥áª ï 3-£à㯯 , t | í«¥¬¥­â

¯®à浪  4, Uhti| (¢®§¬®¦­®, ¡¥áª®­¥ç­ ï) ®¡®¡é¥­­ ï £à㯯  ª¢ â¥à­¨®­®¢

¨ v t

=v ,1

¤«ï «î¡®£® í«¥¬¥­â  v 2V.

Žâ¬¥â¨¬, çâ®â®«ìª® ¢ á«ãç ¥ 8 £à㯯  G ¬®¦¥â ­¥ ¡ëâì «®ª «ì­®

ª®­¥ç-­®© (á¬. ¯à¨¬¥àë 1 ¨2 ¢ [3]).

C …᫨ G ª®­¥ç­ , â® ¥ñ áâ஥­¨¥ ¨§¢¥áâ­® (á¬. [4, 5, 6]). ãáâì G |

¡¥áª®­¥ç­ ¨A-¯®¤£à㯯 ¨§G,¯®à®¦¤¥­­ ï¢á¥¬¨í«¥¬¥­â ¬¨¯®à浪 3. ®

[2] A | 横«¨ç¥áª ï £à㯯  ¨«¨ £à㯯  ¨§®¬®àä­ ï ®¤­®© ¨§ £à㯯 SL

2 (3),

SL

2

(5). ‚® ¢â®à®¬ á«ãç ¥ C

G

(€) A ¨ ¯®í⮬ã G = N

G

(A) | ª®­¥ç­ ï

£à㯯 . ˆâ ª A | 横«¨ç¥áª ï £à㯯 .

…᫨ jAj = 1, â® G | 2-£à㯯  ¨ ¯® ¯à¥¤«®¦¥­¨î 1 G 㤮¢«¥â¢®àï¥â

ãá«®¢¨î 8. ®í⮬㠯ãáâì jAj =3. …᫨ B = C

G

(A), â® ¯® ¯à¥¤«®¦¥­¨î 1 ‚

㤮¢«¥â¢®àï¥â ãá«®¢¨ï¬ ¯ã­ªâ  8 ¨ ¯à¨ B=G ⥮६  ¤®ª § ­ .

…᫨B 6=G,â®jG:Bj=2. ãáâìS =O

2

(G). ’®£¤ G=S |à áè¨à¥­¨¥

3-£à㯯ëRᯮ¬®éì¤£à㯯ëhai¯®à浪 2,¨­¤ãæ¨àãî饩¢Rॣã«ïà­ãî

£àã¯¯ã  ¢â®¬®à䨧¬®¢. ãáâì r 2R . ’®£¤  [r;a]= a r

a | í«¥¬¥­â ­¥ç¥â­®£®

¯®à浪  ¨ ¯®í⮬㠢 ha r

;aiáãé¥áâ¢ã¥â ¨­¢®«îæ¨ï i, ¤«ï ª®â®à®© a ri

=a. â®

®§­ ç ¥â, çâ® ri = a, r = ai ¨ r a

= r ,1

. ’ ª¨¬ ®¡à §®¬, a ¨­¢¥àâ¨àã¥â ª

 ¦-¤ë©í«¥¬¥­â¨§R ,¯®í⮬ãR ¡¥«¥¢ ¨,á«¥¤®¢ â¥«ì­®, «®ª «ì­®æ¨ª«¨ç¥áª ï.

ãáâì t | í«¥¬¥­â ¨§GnB. ’®£¤  r t

=r ,1

¤«ï «î¡®£® í«¥¬¥­â  r 2R .

ãáâì R | ᨫ®¢áª ï 3-¯®¤£à㯯  ¨§ G, ⮣¤  R «®ª «ì­® 横«¨ç¥áª ï

£à㯯  ¨ SR = B. „¥©á⢨⥫쭮, ¥á«¨ SR 6= B, â® SR =S | ᮡá⢥­­ ï

¯®¤£à㯯  ¢ «®ª «ì­® 横«¨ç¥áª®© 3-£à㯯¥ B=S. ®í⮬ã R = hri |

横-«¨ç¥áª ï £à㯯  ª®­¥ç­®£® ¯®à浪  3 a

¨ áãé¥áâ¢ã¥â í«¥¬¥­â r

1

¢ B ¯®à浪 

(7)

2{25

®áª®«ìªã

B

«®ª «ì­® ª®­¥ç­ , ¯®¤£à㯯 

hr

1

i

ᮯà殮­  á ¯®¤£à㯯®© ¨§

hri

¢ ª®­¥ç­®© £à㯯¥

hr;r

1

i

¨ ¬ë ¯®«ãç ¥¬ ¯à®â¨¢®à¥ç¨¥. …᫨

R

­¥

業âà -«¨§ã¥â

S

, â®

S

| £à㯯  ª¢ â¥à­¨®­®¢ ¯®à浪  8,  

R

| 横«¨ç¥áª ï £à㯯 .

‚ í⮬ á«ãç ¥

G

| ª®­¥ç­ ï £à㯯  ¢®¯à¥ª¨ ¯à¥¤¯®«®¦¥­¨î. …᫨ ¦¥

R

業â-à «¨§ã¥â

S

, â®

R

| ­®à¬ «ì­ ï ¯®¤£à㯯  ¢

G

¨ ¢ë¯®«­¥­ë ãá«®¢¨ï ¯ã­ªâ 

9.

B

‹¨â¥à âãà 

1.

†ãà⮢€.•.

Š¢ ¤à â¨ç­ë¥  ¢â®¬®à䨧¬ë  ¡¥«¥¢ëå £à㯯 // €«£¥¡à  ¨

«®£¨ª  (¢ ¯¥ç â¨).

2.

†ãà⮢€. •.

Ž ॣã«ïà­ëå  ¢â®¬®à䨧¬ å ¯®à浪  3 ¨ ¯ à å

”஡¥­¨-ãá  // ‘¨¡. ¬ â. ¦ãà­.|2000.|’. 51, ü 2.

3.

‘®§ã⮢€..

Ž áâ஥­¨¨ ­¥ª¢ à¨ ­â­®£® ¬­®¦¨â¥«ï ¢ ­¥ª®â®àëå £à㯯 å

”஡¥­¨ãá  // ‘¨¡. ¬ â. ¦ãà­.|1994.|’. 35, ü 4.|‘. 893{901.

4.

Zassenyjuse H.

Kennzeichnung endlichen linearen Gruppen als

Permutations-gruppen // Abhandl. Math. Semin., Hamburg.|1936.|V. 11.|P. 17{40.

5.

ãáá à¨­ ‚. Œ., ƒ®àç ­®¢ ž. Œ.

Š®­¥ç­ë¥ à á饯«ï¥¬ë¥ £à㯯ë.|Œ.:

 ãª , 1969.

6.

Huppert B.,Blackburn N.

Finite groups 3.|Berlin: Springer Verlag, 1982.

Referensi

Dokumen terkait

Keywords and phrases: linear d -connections on the total space of a vector bundle, (12) D operators, w conjugations.. It results that ( n + m ) must be an even number and that m

girls, which contradicts the appeal for single-sex schooling.. year levels, the only students who thought they received more. attention were at the single-sex school but the

One’s manner of presenting it is an indication of what one believes to be most essential in it.” In this research study, three hundred ninety-seven urban early childhood teachers

consideration is given to existing theory and research in an attempt to determine those attitudes and beliefs, pertaining to these affective components, that may contribute

potentially difficult areas in algebra, it was generally thought that the particular questions set were.. less

From the school sample, there are 55 students whose greatest difference between CAT scores was 20 or more; six of these are identified as having specific learning difficulties.. It

Given an a priori valuation rule u , we define the associated a posteriori valuation rule h by an indifference argument: The u -value of optimally investing in the financial

Our previous experience, involving a large number of acromegalic patients from all over Italy, seemed to indicate that octreotide, besides decreasing GH and IGF-I concentrations,