• Tidak ada hasil yang ditemukan

getdoc8953. 341KB Jun 04 2011 12:04:38 AM

N/A
N/A
Protected

Academic year: 2017

Membagikan "getdoc8953. 341KB Jun 04 2011 12:04:38 AM"

Copied!
42
0
0

Teks penuh

(1)

El e c t ro n ic

Jo ur

n a l o

f

P r

o

b a b il i t y

Vol. 15 (2010), Paper no. 17, pages 484–525.

Journal URL

http://www.math.washington.edu/~ejpecp/

Support theorem for a stochastic Cahn-Hilliard equation

Lijun Bo

1

Kehua Shi

2,†

and Yongjin Wang

3

1

Department of Mathematics, Xidian University, Xi’an 710071, China [email protected]

2

School of Mathematical Sciences, Xiamen University, Xiamen 361005, China [email protected]

3

School of Mathematical Sciences, Nankai University, Tianjin 300071, China [email protected]

Abstract

In this paper, we establish a Stroock-Varadhan support theorem for the global mild solution to a

d (d≤3)-dimensional stochastic Cahn-Hilliard partial differential equation driven by a space-time white noise.

Key words: Stochastic Cahn-Hilliard equation, Space-time white noise, Stroock-Varadhan sup-port theorem.

AMS 2000 Subject Classification:Primary 60H15, 60H05.

Submitted to EJP on November 7, 2009, final version accepted Aril 15, 2010.

The research of K. Shi and Y. Wang was supported by the LPMC at Nankai University and the NSF of China (No.

10871103). The research of L. Bo was supported by the Fundamental Research Fund for the Central Universities (No. JY10000970002).

(2)

1

Introduction and main result

In this paper, we consider the following stochastic Cahn-Hilliard equation:

  

∂u/∂t=∆∆u+f(u)+σ(u)W˙, in[0,T]×D,

u(0) =ψ,

∂u/∂n=[∆u]/∂n=0, on[0,T]×∂D,

(1.1)

where ∆ denotes the Laplace operator, the domain D= [0,π]d (d = 1, 2, 3), and f :RRis a polynomial of degree 3 with positive dominant coefficient (which is due to the background of the equation from material science). Assume thatσ:RRis a bounded and Lipschitzian function and

˙

W is a Gaussian space-time white noise on some complete probability space(Ω,F,P)satisfying

E”W˙(x,t)W˙(y,s)—=δ(|ts|)δ(|xy|), (t,x),(s,y)[0,T]×D.

Hereδ(·)is the Dirac delta function concentrated at the point zero.

The (deterministic) Cahn-Hilliard equation (i.e.,σ≡0 in (1.1)) has been extensively studied (see, e.g.,[2; 3; 4; 5; 10; 15; 18]) as a well-known model of the macro-phase separation that occurs in an isothermal binary fluid, when a spatially uniform mixture is quenched below a critical temperature at which it becomes unstable. A stochastic version of the Cahn-Hilliard equation (when σ ≡ 1 in (1.1)) was first proposed by Da Prato and Debussche [8], and the existence, uniqueness and regularity of the global mild solution were explored. In Cardon-Weber[6], the authors considered this type of stochastic equation in a general case onσ, which is equivalent to the following form:

u(t,x) =

Z

D

Gt(x,y)ψ(y)dy+

Z t

0

Z

D

Gt−s(x,y)f(u(s,y))dyds

+

Z t

0

Z

D

Gts(x,y)σ(u(s,y))W(dy, ds), (1.2)

(3)

In what follows, we introduce the main result of this paper. To do it, we define the following Cameron-Martin spaceH by

H =

¨

h(t,x) =

Z t

0

Z

Qd i=1[0,xi]

h(s,y)dyds; (t,x) = (t,(x1, . . . ,xd))∈[0,TD,

hL2([0,T]×D)

«

,

and the corresponding norm by

khkH =

sZ T

0

Z

D

|h(s,y)|2dyds, for all h∈ H.

LetHb represent the subset of H, in which the first-order derivative h ofh∈ H is bounded. For

h∈ H, consider the following skeleton equation:

S(h)(t,x) =

Z

D

Gt(x,y)ψ(y)dy+

Z t

0

Z

D

Gt−s(x,y)f(S(h)(s,y))dyds

+

Z t

0

Z

D

Gts(x,y)σ(S(h)(s,y))h(s,y)dyds. (1.3)

Recall Equations (1.1) and (1.2). We make the following assumptions throughout the paper:

(H1). Assume thatσ:RRis bounded and belongs to C3(R)with bounded first to third-order partial derivatives, and

(H2). The initial functionψLp(D)forp4, andψis̺∈]0, 1]–H¨older continuous.

Now we are at the position to state the main result of this paper.

Theorem 1.1. Under the assumptions (H1) and (H2), let u = (u(t,x))(t,x)[0,T]×D be the unique solution to Equation(1.2)in C([0,T],Lp(D)) with p4and Pu−1 denote the law (a probability measure)of the solution u. Recall the skeleton equation(1.3), and setSH ={S(h);h∈ H }. Then we have

(a) Let p>6. Then forα¯∈]0, min{12(1−d4),̺4}[andβ¯∈]0, min{2−d2,̺}[, the topological support

supp(Pu−1)in Cα¯, ¯β([0,T]×D)of the lawPu−1is the closure ofSH.

(b) Let p ≥ 4. Then for α¯ ∈]0, min{1 2(1−

d

4), ̺

4}[, the topological support supp(P◦u

−1) in

¯([0,T],Lp(D))of the lawPu−1is the closure ofSH.

(4)

2

Difference approximation to white noise

In this section, we give a difference approximation to the (d+1)-dimensional space-time white noise ˙

W, which is a space-time polygonal interpolation for ˙W.

LetnNandt∈[0,T], set

tn= max

j∈{0,1,...,2n}

¦

j T2−n;j T2−nt©, and tn=

”

tnT2−n—∨0.

Let k := (k1, . . . ,kd) ∈ Idn := {0, 1, . . . ,n−1}d. Define a partition (△j,k)j=0,1,...,2n−1,kId

n of OT :=

[0,T]×Dby

j,k=Dk×]j T2−n,(j+1)T2−n],

where Dk = Qdj=1]kjπn−1,(kj+1)πn−1]. For xj ]kjπn−1,(kj+1)πn−1]with j = 1, . . . ,d, we

set Dk(x) = Qd

j=1]kjπn−1,(kj +1)πn−1]. Further, for each (t,x) ∈ OT, we define the following

difference approximation to ˙W by

˙

Wn(x,t) =

( W(

j−1,k)

|△j−1,k| , (x,t)∈ △j,k, j=1, . . . , 2

n

−1, kIdn, 0, (x,t)∈ △0,k, kIdn,

(2.1)

where j,k= Tπd(nd2n)−1 is the volume of the partitionj,k for each j = 0, 1, . . . , 2n1 and kIdn.

Next we suppose that

(H3). the mappings F,H,K : RR are bounded, globally Lipschitzian and HC3(R) with bounded first to third-order derivatives.

We now consider the following equations forh∈ Hb,

Xn(t,x) = Gtψ(x)

+

Z t

0

Z

D

Gts(x,y)F(Xn(s,y))W(dy, ds) +H(Xn(s,y))Wn(dy, ds)

+

Z t

0

Z

D

Gts(x,y)

h

K(Xn(s,y))h(s,y)

H˙(Xn(s,y))[αn(s,y)F(Xn(s,y)) +βn(s,y)H(Xn(s,y))]

i

dyds

+

Z t

0

Z

D

yGts(x,y)f(Xn(s,y))dyds, (2.2)

and

X(t,x) = Gtψ(x) +

Z t

0

Z

D

Gts(x,y)[F+H](X(s,y))W(dy, ds)

+

Z t

0

Z

D

(5)

+

Z t

0

Z

D

yGts(x,y)f(X(s,y))dyds, (2.3)

where

Gtψ(x):=

Z

D

Gt(x,y)ψ(y)dy,

and for eachnN,

αn(t,x) := nd2n(Tπd)−1

Z tn

tn

Z

Dk(x)

Gt−s(x,y)dyds,

βn(t,x) := nd2n(Tπd)−1

Z t

tn

Z

Dk(x)

Gts(x,y)dyds.

Forαn(t,x)andβn(t,x), by virtue of (A.4) in Lemma A.1, we claim that

sup (t,x)∈OT

|αn(t,x)| ≤ C nd, and (2.4)

sup (t,x)∈OT

|βn(t,x)| ≤C nd. (2.5)

Indeed, using (A.4), we have for each t[0,T],

sup

xD|

αn(t,x)| ≤ C nd2nmax

kId n

(

1Dk(x)

Z tn

tn

Z

Dk

|Gt−s(x,y)|dyds

)

C nd2n|tntn|

C nd,

and

sup

xD|

βn(t,x)| ≤C nd2n|ttn| ≤C n d,

follows from the equality (A.19).

In the following, letF= (Ft)0tT be the natural filtration generated byW, i.e.,

Ft=σ{W(B×[0,s]);s∈[0,t], B∈ B(D)}.

Then for every t ∈ [0,T] and nN fixed, (W˙n(x,t))xD given by (2.1) is Ft-adapted. More

precisely, it isFtn-adapted and which is independent of the informationFtn.

Lemma 2.1. For each fixed nNand p≥1, we have

sup (t,x)∈OT

E”|W˙n(x,t)|p—Cpn d p

22

np

(6)

Proof. By virtue of the definition (2.1),

sup (t,x)∈OT

E”|W˙n(x,t)|p—

= sup

(t,x)∈OT

E

2Xn−1

j=1

X

kId n

W(j−1,k)

|△j−1,k| 1j

−1,k(x,t)

p

Cpmax

  E

W(j−1,k)

|△j−1,k|

p

; j=1, . . . , 2n−1, kIdn

  .

Note that for each j=1, . . . , 2n1 andkIdn,

W(j1,k)

|△j−1,k| ∼

N(0,|△j1,k|−1).

For any random variableZN(0,σ2), it holds that

E|Z|p= p1 π

p

22pΓ

p

2+ 1 2

,

whereΓdenotes the Gamma function. This yields that

sup (t,x)∈OT

E”|W˙n(x,t)|p—Cpmaxnp|△j−1,k|−p; j=1, . . . , 2n1, kIdno,

and which proves the lemma. ƒ

LetnNbe fixed. Forα >0 and t]0,T], we now define an event ¯Ωαn,t by

¯ Ωαn,t=

¨

ω∈Ω; sup (s,y)∈[0,tD

W˙(y,s;ω)αnd2n2

«

. (2.6)

For this event, we have

Lemma 2.2. If chooseα >2

q

log 2

Tπd, then

lim

n→∞P

h

¯ Ωαn,Tic

‹

=0.

Proof. Let ZN(0, 1) be a standard normal random variable. Then according to the definition

(2.1) for ˙Wn(x,t),

PhΩ¯αn,Tic

‹

= P

‚

max (j,k)∈{1,...,2n1Id

n

¨

W(j1,k) |△j−1,k|

«

αnd22n

Œ

nd2nP



|Z| ≥α

p

(7)

= nd2nP

‚

|Z|2

4 ≥

α2Tπd

4 n

d

Œ

nd2nexp

–

α 2Tπd

4 n

d

™

E

–

exp

‚

|Z|2 4

Ϊ

. (2.7)

Note thatE

h

exp

|Z|2 4

i

=p2. Then (2.7) further yields that

0≤P

h

¯ Ωαn,Tic

‹

≤ p2ndexp

–

nlog 2− α 2Tπd

4 n

d

™

≤ p2ndexp

–

nd

‚

log 2−α 2Tπd

4

Ϊ

→ 0, as n→ ∞, (2.8)

ifα >2

q

log 2

Tπd. Thus the proof of the lemma is complete. ƒ

3

Localization framework

In this section, we adopt a localization method used in[7]to deal with Equation (1.1). In addition, we will prove a key proposition, which is useful in the proof of Theorem 1.1.

Proposition 3.1. Under the assumptions (H1) and(H2), let X = (X(t,x))(t,x)[0,T]×D (resp. Xn) be the unique solution to Equation(2.3)(resp.(2.2))in C([0,T],Lp(D))with p≥4. Recall the skeleton equation(1.3), and setSH ={S(h);h∈ H }. Then we have

(i) Let p > 6. Then for α¯ ∈]0, min{12(1− d4),̺4}[ and β¯ ∈]0, min{2− d2,̺}[, the sequence Xn

converges in probability to X in Cα¯, ¯β([0,T]×D).

(ii) Let p4. Then forα¯∈]0, min{1 2(1−

d

4), ̺

4}[, the sequence Xn converges in probability to X in

¯([0,T],Lp(D)).

Next we give a sketch for the proof of the conclusion(ii)in Proposition 3.1. The similar argument can also be used to prove the part(i). For(t,x)∈ OT, set

Yn(t,x):=Xn(t,x)X(t,x).

From (2.2) and (2.3), it follows that

Yn(t,x) =

3

X

i=1

Γin(t,x) + Λn(t,x), (3.1)

where

Γ1n(t,x) :=

Z t

0

Z

D

Gt−s(x,y)(F+H)(Xn(s,y))(F+H)(X(s,y))W(dy, ds),

Γ2n(t,x) :=

Z t

0

Z

D

(8)

Γ3n(t,x) :=

Z t

0

Z

D

yGts(x,y)

f(Xn(s,y))− f(X(s,y))

dyds,

and

Λn(t,x) :=

Z t

0

Z

D

Gt−s(x,y)H(Xn(s,y))Wn(dy, ds)W(dy, ds)

Z t

0

Z

D

Gts(x,y)H˙(Xn(s,y))

×αn(s,y)F(Xn(s,y)) +βn(s,y)H(Xn(s,y))

dyds. (3.2)

Introduce an auxiliaryFtn-adapted process

Xn−(t,x):=Gtt

n x,Xn(tn,·)

, for (t,x)∈ OT. (3.3)

Recall the localization argument adopted in[7]. Forγ∈(0, 1)andp≥4, define

Φpn,γ(t):= sup

s∈[0,t]k

Yn(t,·)kp+ sup s6=s[0,t]

kYn(s,·)Yn(s′,·)kp |ss|γ ,

wherek · kp corresponds to the norm ofLp(D)and forδ >0,

τnδ:=inf¦t>0; Φnp,γ(t)δ©∧T.

ForM> δ, define the following events

At(Mδ) :=

¨

ω∈Ω; sup

s∈[0,t]k

X(s,·)kpMδ

«

, (3.4)

AMn(t) :=

¨

ω∈Ω; sup

s∈[0,t]k

Xn(s,·)kp sup

s∈[0,t]k

X(s,·)kpM

«

. (3.5)

Then fort]0,T],

At(Mδ)∩ {tτδn} ⊆AMn(t). (3.6)

In fact, from the inequality|y| ≤ |xy|+|x|, it follows that

At(Mδ)∩ {tτδn}

¨

sup

s∈[0,t]k

X(s,·)kpMδ

«

¨

sup

s∈[0,t]k

Xn(s,·)X(s,·)kpδ

«

¨

sup

s∈[0,t]k

X(s,·)kpM

«

¨

sup

s∈[0,t]k

Xn(s,·)kpM

«

= AMn(t).

Recall the event ¯Ωαn,t defined by (2.6) in Section 2 and thatα >2

q

log 2

Tπd. For each fixedδ >0 and V([0,T];Lp(D)), set

kV,p,τδ

n := sup

s∈[0,Tτδ n]

kV(s,·)kp+ sup

s6=s[0,Tτδ n]

(9)

Then forq1,

P€Φpn,γ(T)δŠ

PΦpn,γ(T)δ, AT(Mδ)∩Ω¯αn,T+P€AcT(Mδ)Š+P

h

¯ Ωαn,Tic

‹

= PkYn,p,τδ

nδ, AT(Mδ)

¯

αn,T+P€AcT(Mδ)Š+P

h

¯ Ωαn,Tic

‹

δ−qE

•

1A

T(Mδ)∩Ω¯αn,TkYnk q

γ,p,τδ n

˜

+P€AcT(Mδ)Š+PhΩ¯αn,Tic

‹

,

However, Lemma 2.2 and Lemma 3.1 (the latter will be proved below) yield that

P€AcT(Mδ)Š+PhΩ¯αn,Tic

‹

→0, asM → ∞, n→ ∞.

Therefore, by Lemma A.1 in[7]and (3.6), in order to prove

Φpn,γ(T)0, in probability, asn→ ∞, (3.7)

it suffices to check that there existqpandθ >qα¯(we have setγ=α¯, where ¯αis the exponent presented in Proposition 3.1) such that

(C1) t[0,T], lim

n→∞E

h

AM

n(t)kYn(t,·)k q p

i

=0;

(C2) s<t[0,T], EhAM

n(t)kYn(t,·)−Yn(s,·)k q p

i

C|ts|1+θ.

Here the event ¯AMn(t)is defined by

¯

AMn (t) =AMn(t)Ω¯αn,t, t[0,T], (3.8)

and which satisfies the order relation:

¯

AMn (t)A¯Mn(r), ifrt.

Lemma 3.1. Let the event AT(M)be defined by(3.4). Then

lim

M→∞P

€

AT(M)cŠ=0.

Proof. Note that forp≥4,β∈[p,[andβ∈]p, 6p/(6p)+[(ifd=3),

P€AT(M)cŠ=P

‚

sup

t∈[0,T]k

X(t,·)kpM

Œ

MβE

–

sup

t∈[0,T]k

X(t,·)kβp

™

.

Therefore, it remains to prove

E

‚

sup

t∈[0,T]k

X(t,·)kβp

Œ

<∞. (3.9)

Define for(t,x)∈ OT,

L1(u)(t,x) :=

Z t

0

Z

D

(10)

L2(u)(t,x) :=

Z t

0

Z

D

Gts(x,y)K(u(s,y))h(s,y)dyds,

and setZ=XL(X)withL=L1+L2. Then

  

∂Z

∂t + ∆

2Z

−∆f([Z+L(X)]) =0,

Z(0) =ψ,

∂Z/∂n=[∆Z]/∂n=0, on∂D.

(3.10)

Further, the Garsia-Rodemich-Rumsey lemma (see, e.g., Theorem B.1.1 and Theorem B.1.5 in[9]) yields that, if for anyq,δ∈]1,∞[and someγ′,γ′′∈]0, 1],

(a) sup

(t,x)∈OT

E”|L(u)(t,x)|2—<∞,

(b) E”|L(u)(t,x)L(u)(t′,x′)|2q—C”|tt′|γ′′+|xx′|γ′—q, q>1,

then (3.9) holds. So we only need to prove (a) and (b). Note thatKis bounded andd≤3. Then in light of (A.4),

sup (t,x)∈OT

EhL2(u)(t,x)2i ≤ kKk2 sup (t,x)∈OT

Z t

0

Z

D

|Gts(x,y)h(s,y)|dyds

2

≤ kKk2khkHqδT(1−d4)qδ<∞.

If sett>t′, then by (A.7)–(A.9) in Lemma A.2, we have forγ′∈[0, 1d/4[andγ′′∈[0, 2(4d)[,

E”|L2(u)(t,x)−L2(u)(t′,x′)|2q

—

C”|tt′|γ′′+|xx′|γ′—q.

The estimate ofL1is similar to that of L2 (or see[6]). Thus the proof the lemma is complete. ƒ

4

Auxiliary lemmas

In this section, we present a sequence of auxiliary lemmas for checking the conditions (C1) and (C2) under (H1)–(H3) given in Section 1 and 2. Throughout Sections 4–6, (H1)–(H3) are assumed to be satisfied.

The following lemma tells us that, to check(C1), it suffices to show(C1)holds withΛn(t,x)instead ofYn(t,x).

Lemma 4.1. Assume p4, and q p if d=1, 2, and q]p, 6p/(6p)+[if d =3. Then for each nN,

sup

t∈[0,T] EhAM

n(t)kYn(t,·)k q p

i

C sup

t∈[0,T] Eh1A¯M

n(t)kΛn(t,·)k q p

i

, (4.1)

(11)

Proof. Note that for eacht[0,T],

Similarly, we have

(12)

ku3(s,·)v3(s,·) Cku(s,·)v(s,·)kp

×hku(s,·)k2p+kv(s,·)kp2+ku(s,·)kpkv(s,·)kpi.

Hence from (4.2), it follows that

EhAM n(t)kΓ

3

n(t,·)k q p

i

CE

–Z t

0 (ts)

d

4r2d+2

4 1 ¯

AM

n(s)kYn(s,·)kpds

™q

C

–Z t

0

(ts)

d

4r2d+2

4 ds

™q−1–Z t

0 (ts)

d

4r2d+2

4 sup

r∈[0,s] Eh1A¯M

n(r)kYn(r,·)k q p

i

ds

™

.

Note that the following equivalent relations holds:

d

4rd

2+1>0 ⇔ 1

q >

1

p

1 6,

d

4r2−

d+2

4 +1>0 ⇔ 1

q >

1

p +

1 2−

2

d.

Then the desired result follows from the Gronwall’s lemma. ƒ

Recall theFt

n-adapted processX

n(t,x)defined by (3.3). Then we have

Lemma 4.2. Let qp≥6. Then there exists a constant C:=CM>0such that

sup (t,x)∈OT

EhAM

n(t)|Xn(t,x)−Xn(t,x)|

qi

C2−nqι, (4.3)

whereι:= 12(1 d4).

Proof. Recall (2.2) and (3.3), and we get

Xn(t,x)Xn(t,x) = 4

X

k=1

Tnk(t,x),

where

Tn1(t,x) :=

Z t

tn

Z

D

Gts(x,y)F(Xn(s,y))W(dy, ds),

Tn2(t,x) :=

Z t

tn

Z

D

Gts(x,y)H(Xn(s,y))Wn(dy, ds),

Tn3(t,x) :=

Z t

tn

Z

D

yGt−s(x,y)f(Xn(s,y))dyds,

Tn4(t,x) :=

Z t

tn

Z

D

(13)

and

On the other hand, using (A.4) and the boundedness ofF,

E”|Tn1(t,x)|q— = E

Further, the Hölder inequality, Lemma 2.1 and the boundedness ofH jointly imply that

(14)

= E

Thanks to (4.4), we conclude that

E”|Tn4(t,x)|q— = E

Thus the estimate (4.3) follows from (4.5)–(4.8). ƒ

(15)

Lemma 4.3. Let V :Ω× OT Rbe anF-predictable process. If for each p[1,[, there exist some

Proof. As in (4.10), define

λkn(V)(t,x,y):= by (4.13) and Lemma 2.1,

(16)

C nd p+2ap2np−2npαˆ−n

Next we turn to the time increment. Set

λkn(V)(t,s,x):=

with the definition

Ak2,n(V)(t,s,x) =0, whenever [(k+1)T2−nt]<[kT2−ns].

Then from (A.4) and the Hölder inequality, it follows that

(17)

C nd+2a2−n(2αˆ−1+ 1

p)

  

Z T

2n(k+1)∧t

T k

2ns

(tr)−d4(γβ−1)dr

  

2

γβ

C nd+2a2−n(2αˆ−1+ 1

p)2n(

2

γβ−1)

–Z t

s

(tr)−d4(γβ−1)dr

™

C nd+2a2−n(2αˆ−2+ 1

p+

2

γβ)|ts|d4(γβ−1)+1. (4.22)

Thus from (4.17), (4.20) and (4.22), we get (4.14). Hence the proof of the lemma is complete. ƒ

Remark 4.2. From the proof of Lemma 4.3, the conclusion of the lemma still holds if we replace

λk

n(V)(t,s,x,y)byE

•

λk

n(V)(t,s,x,y)|F(k−1)T

2n

˜

.

Lemma 4.4. For(s,y)∈ OT, it holds that

E

W˙n(y,s)

Z s

sn

Z

D

Gsr(y,z)F(Xn(r,z))W(dz, dr)|Fsn

 

= (Tπd)−1nd2n

Z sn

sn

Z

Dk(y)

Gsr(y,z)F(Xn−(r,z))dzdr.

Proof. Forusn, set

Nu(s,y) := (Tπd)−1nd2nW(Dk(y)×]sn,u]),

Mu(s,y) :=

Z u

sn

Z

D

Gsr(y,z)F(Xn−(r,z))W(dz, dr).

Then the martingale property of{Mu(s,y);usn}and Itô formula jointly imply that

E

W˙n(y,s)

Z s

sn

Z

D

Gsr(y,z)F(Xn(r,z))W(dz, dr)|Fsn

 

= (Tπd)−1nd2nE

h

Nsn(s,y)Ms(s,y)|Fsn

i

= (Tπd)−1nd2nEhEhNs

n(s,y)Ms(s,y)|Fsn

i

Fsn

i

= (Tπd)−1nd2nEhNs

n(s,y)E[Ms(s,y)|Fsn]Fsn

i

= (Tπd)−1nd2nE

h

Ns

n(s,y)Msn(s,y)|Fsn

i

= (Tπd)−1nd2n

Z sn

sn

Z

Dk(y)

Gsr(y,z)F(Xn−(r,z))dzdr,

follows from the fact thatF(Xn(r,z))isFsn-measurable whenrs. This proves the lemma. ƒ

(18)

Lemma 4.5. Let q p 6. Then for α¯ ∈]0, min{12(1 d4),̺4}[ andβ¯ ∈]0, min{2 d2,̺}[, there exists a C>0such that

Eh1A¯M

n(t)∩A¯Mn(s)

Xn(t,x)−Xn(s,y)

qi

C ndq

h

|ts|α¯+|xy|β¯iq,

with(t,x),(s,y)∈ OT. In addition, if q p 4, then forα¯ ∈]0, min{1 2(1−

d

4), ̺

4}[, there exists a

C >0such that

E

h

1A¯M

n(t)∩A¯Mn(s)

Xn(t,·)−Xn(s,·)

q

p

i

C ndq|ts|α¯q.

Proof. Recall (2.2), (4.11) and (4.12). We have for(t,x),(s,y)∈ OT,

Xn(t,x)Xn(s,y) = 5

X

i=1

Ji(s,t,x,y),

where

J1(t,s,x,y) := Gtψ(x)Gsψ(y),

J2(t,s,x,y) :=

Z t

0

Z

D

[η(t,s,x,y)](r,z)hF(Xn(r,z))W(dz, dr)

+H(Xn−(r,z))Wn(dz, dr)i,

J3(t,s,x,y) :=

Z t

0

Z

D

[η(t,s,x,y)](r,z)h(H(Xn(r,z))−H(Xn−(r,z)))Wn(dz, dr)

H˙(Xn(r,z))αn(r,z)F(Xn(r,z)) +βn(r,z)H(Xn(r,z))

dzdri,

J4(t,s,x,y) :=

Z t

0

Z

D

[η(t,s,x,y)](r,z)K(Xn(r,z))˙h(r,z)dzdr,

J5(t,s,x,y) :=

Z t

0

Z

D

˜

η(t,s,x,y)(r,z)f(Xn(r,z))dzdr.

Note that the initial functionψ(x)is̺-Hölder continuous inx Rd. Then by Lemma 2.2 in[6],

E”J1(s,t,x,y)

q—

C”|ts|̺/4+|xy|̺—q. (4.23)

SinceF,H are bounded, by Burkhölder’s inequality and Lemma A.2, there existγ′∈]0, 4d[,γ′≤2 andγ′′∈]0, 1−d/4[such that

E|J2(t,s,x,y)|qC”|xy|γ′+|ts|γ′′— q

2. (4.24)

On the other hand, sinceK is bounded, the Schwarz’s inequality yields that forh∈ Hb,

E|J4(t,s,x,y)|qC”|xy|γ′+|ts|γ′′— q

2, (4.25)

where γ′,γ′′ are presented in (4.24). Similar as in the proof of (4.7), by (A.14) and (A.15) with 1

r =

1

∞−

3

p+1∈[0, 1], we have forα∈]0, 1/2−

3d

4p[andβ∈]0, min{2−

3d p ,

2

d, 1}],

EhAM

n(t)∩A¯Mn(s)|J5(t,s,x,y)| qi

(19)

and using (A.14) withκ= 1

p

3

p+1=1−

2

p∈[0, 1], forα∈]0, 1/2− d

2p[,

Eh1A¯M

n(t)∩A¯Mn(s)kJ5(t,s,·,·)k q p

i

C[|ts|α]q. (4.27)

In the following, we are going to estimateJ3(t,s,x,y). Using the Taylor expansion of H at point

Xn(t,x),

H(Xn(t,x))−H(Xn−(t,x)) =H˙(Xn−(t,x))

”

Xn(t,x)−Xn(t,x)

—

+ρn(t,x), (4.28)

and

ρn(t,x)≤C|Xn(t,x)−Xn−(t,x)|

2.

Recall the aboveJ3, and we have

J3(t,s,x,y) = 5

X

i=1

J3i(t,s,x,y),

where

J31(t,s,x,y) :=

Z t

0

Z

D

[η(t,s,x,y)](r,z)hTn1(r,z)H˙(Xn−(r,z))W˙n(z,r)

H˙(Xn(r,z))αn(r,z)F(Xn(r,z))idzdr,

J32(t,s,x,y) :=

Z t

0

Z

D

[η(t,s,x,y)](r,z)hTn2(r,z)H˙(Xn−(r,z))W˙n(z,r)

H˙(Xn(r,z))βn(r,z)F(Xn(r,z))

i

dzdr,

J33(t,s,x,y) :=

Z t

0

Z

D

[η(t,s,x,y)](r,z)H˙(Xn−(r,z))Tn3(r,z)W˙n(z,r)dzdr,

J34(t,s,x,y) :=

Z t

0

Z

D

[η(t,s,x,y)](r,z)H˙(Xn−(r,z))Tn4(r,z)W˙n(z,r)dzdr,

J35(t,s,x,y) :=

Z t

0

Z

D

[η(t,s,x,y)](r,zn(r,z)W˙n(z,r)dzdr.

Next we decomposeJ31(t,s,x,y)as follows:

J31(t,s,x,y) = 5

X

j=1

J31,j(t,s,x,y),

with

J31,1(t,s,x,y) =

Z t

0

Z

D

[η(t,s,x,y)](r,z)H˙(Xn−(r,z))W˙n(z,r)

×

 

Z r

rn

Z

D

Gru(z,v)

”

F(Xn(u,v))−F(Xn−(u,v))

—

W(dv, du)

(20)

J31,2(t,s,x,y) =

Z t

0

Z

D

[η(t,s,x,y)](r,z)H˙(Xn−(r,z))

×

– Z r

rn

Z

D

Gru(z,v)F(Xn−(r,z))W(dv, du)W˙n(z,r)

E

 

Z r

rn

Z

D

Gru(z,v)F(Xn−(u,v))W(dv, du)W˙n(z,r)|Frn

 

™

dzdr

J31,3(t,s,x,y) =

Z t

0

Z

D

[η(t,s,x,y)](r,z)H˙(Xn−(r,z))

×

–

E

 

Z r

rn

Z

D

Gr−u(z,v)F(Xn(u,v))W(dv, du)W˙n(z,r)|Fr

n

 

−2nn−dT−1π−d

Z rn

rn

Z

Dk(z)

Gru(z,v)F(Xn−(u,v))dvdu

™

dzdr,

J31,4(t,s,x,y) = 2nT−1n−dπ−d

Z t

0

Z

D

[η(t,s,x,y)](r,z)H˙(Xn−(r,z))

×

 

Z rn

rn

Z

Dk(z)

Gr−u(z,v)F(Xn−(u,v))dvduαn(r,z)F(Xn(r,z))

 dzdr,

J31,5(t,s,x,y) =

Z t

0

Z

D

[η(t,s,x,y)](r,zH˙(Xn−(r,z))H˙(Xn(r,x))—

×αn(r,z)F(Xn(r,z))dzdr.

We first estimate the termJ31,1. Define

V(r,z) = AM n(r)

˙

H(Xn−(r,z))

×

Z r

rn

Z

D

Gr−u(z,vF(Xn(u,v))F(Xn−(u,v))—W(dv, du). (4.29)

Then

J31,1(t,s,x,y) =

Z t

0

Z

D

[η(t,s,x,y)](r,z)V(r,z)W˙n(dz, dr)

=

[2nt/T]1

X

k=0

λkn(V)(t,s,x,y), (4.30)

where λkn(V)(t,s,x,y) is defined by (4.12). By virtue of the Burkhölder inequality, (A.16) with κ= 2

q

2

q+1=1 and Lemma 4.2,

EhkV(r,·)kqqi C2−nq(1−d4) sup

r∈[0,T] Eh1A¯M

n(r)kXn(r,·)−Xn(r,·)k

q q

i

(21)

Then using Lemma 4.3, there existθ<4dandθ′≤2,θ <1d4 such that

Applying the discrete Burkhölder inequality and Jensen’s inequality to conclude that

E”|J31,2(t,s,x,y)|q—

Also using Lemma 4.3,

E

γβ >0. On the other hand, Lemma 4.4 yields that

(22)

= 2nT−1ndπd

Z rn

rn

Z

Dk(z)

Gru(z,v)F(Xn(u,v))dvdu.

This implies that

J31,3(t,s,x,y)0.

Since ˙H andF are bounded, from (2.4), (A.4) and (A.7)–(A.9), it follows that

J31,4(t,s,x,y)

q

C ndq

–Z t

0

Z

D

[η(t,s,x,y)](r,z)dzdr

™q

×

2n sup (r,z)∈OT

Z rn

rn

Z

Dk(z)

|Gru(z,v)|dvdu

 

q

C ndq”|ts|γ′′+|xy|γ′—q, (4.37)

where 0< γ< 2 d2 and 0 < γ′′ < 12(1 d4). From (2.4), Lemma 4.2 and (A.11)–(A.12) with

κ= 1

∞−

1

p+1=1∈[0, 1], we conclude that there existα∈]0, 1− d

4p[andβ∈]0, 1[such that

E

•

AM

n(t)∩A¯Mn(s)

J31,5(t,s,x,y)

q˜

C ndq”|ts|α+|x y|β—q sup

r∈[0,T] Eh1A¯M

n(r)kXn(r,·)−Xn(r,·)k

q q

i

C ndq2−nqσ”|ts|α+|x y|β—q. (4.38)

From the above estimations, it follows that there exist ¯α ∈]0, min{12 − 34dp,21(1− d4),ρ4}[and ¯β

]0, min{2−3pd, 2−d2,2d,ρ}[such that for(t,x),(s,y)∈ OT,

Eh1A¯M

n(t)∩A¯Mn(s)

J31(t,s,x,y)qiC ndqh|ts|α¯+|xy|β¯iq. (4.39)

Now we turn to estimate the term J32(t,s,x,y). The procedure is similar to that of J31(t,s,x,y). Replace F(Xn(r,z)) by H(Xn(r,z)), F(Xn−(r,z)) by H(Xn−(r,z)), W(dz, dr) by Wn(dz, dr), and αn(r,z,Xn(r,z)) by βn(r,z,Xn(r,z)), respectively. Then there exist ¯α, ¯β presented in (4.39) such

that

E

h

1A¯M

n(t)∩A¯Mn(s)

J32(t,s,x,y)qi C nq

h

|ts|α¯+|xy|β¯iq. (4.40)

As for the termJ33(t,s,x,y), we have

E

h

1A¯M

n(t)∩A¯Mn(s)

J33(t,s,x,y)qi

= E

 1A¯M

n(t)∩A¯Mn(s)

Z t

0

Z

D

[η(t,s,x,y)](r,z)H˙(Xn(r,z))Tn3(r,z)W˙n(z,r)dzdr

q

= B1n(t,s,x,y) +B2n(t,s,x,y), (4.41)

where

Bn1(t,s,x,y) = E

–

AM

n(t)∩A¯Mn(s)

Z t

0

Z

D

(23)

×

Using the B-D-G inequality

B2n(t,s,x,y)E

By virtue of (4.7),

(24)

withδ′= ια2′. Finally we considerJ34(t,s,x,y) andJ35(t,s,x,y). From (A.11) and (A.12) with κ:= 1

∞−

1

p+1∈[0, 1]and (4.8), it follows that forα∈]0, 1− d

4p[andβ∈]0, 1[,

EhAM

n(t)∩A¯Mn(s)

J34(t,s,x,y)qi

C ndq212nq”|ts|α+|xy|β—q sup

r∈[0,T] Eh1A¯M

n(r)kT

4

n(r,·)k q p

i

C n2dq2−12nq”|ts|α+|xy|β—q. (4.48)

As forJ35(t,s,x,y), using (A.11) and (A.12) withκ:= 1

∞−

2

p+1 :=1−

2

p∈[0, 1]and Lemma 4.2,

we get forα∈]0, 1−2dp[andβ∈]0, min{4−2pd, 1}[,

Eh1A¯M

n(t)∩A¯Mn(s)

J35(t,s,x,y)qi

= E

 1A¯M

n(t)∩A¯Mn(s)

Z t

0

Z

D

[η(t,s,x,y)](r,zn(r,z)W˙n(z,r)dzdr

q

E

 1A¯M

n(t)∩A¯Mn(s)

Z t

0

Z

D

[η(t,s,x,y)](r,z)|Xn(r,z)Xn−(r,z)|2W˙n(z,r)dzdr

q

C ndq22( 1 2−

d

4)nq”|ts|α+|xy|β—q.

When d = 3, we can obtain a more precise estimate than the cases of d = 1, 2, which will be

concluded in Lemma 6.1 of Section 6. Thus we complete the proof of the lemma. ƒ

5

The proof of (C1)

The condition (C1) presented by Section 3 shall be verified in this section. By Lemma 4.1, to check (C1), we only need to prove the right hand side of (4.1) approaches 0, whenn→ ∞. Note that for each fixednN,

  

1j,k(x,t)

Æ

j,k ; j=0, 1, . . . , 2

n

−1, kIdn

  

forms a CONS of L2([0,T]×D). Letπn be the orthogonal projection of above basis and for any

mappingg:RR, define

τng(s) = g

€

(s+T2−n)TŠ, s[0,T].

Then for eacht[0,T]andF-predictable process(ψ(t,x);x D)0≤t≤T,

Z t

0

Z

D

ψ(s,y)Wn(dy, ds) =

Z T

0

Z

D

πn

”

τn

€

(25)

RecallΛn(t,x)defined by (3.2) and we have

Then by the Hölder inequality and Burkhölder’s inequality, and note thatπn is an orthogonal

(26)

1[0,t](s)Gts(,y)H(Xn(s,y))

Take the boundedness of the mappingHinto account, from (A.8) and (A.9) in Lemma A.2, it follows that forγ′′<1d4,

sup

t∈[0,T]

”

|Λ˜1,1,1n (t)|+|Λ˜1,1,3n (t)|—C2−12γ′′nq. (5.1)

On the other hand, applying (A.16) withκ= 2

q

2

q+1=1, the H¨older inequality, Lemma 4.2, and

Lemma 6.1 (in Section 6) to conclude that

(27)

+C sup

Then the B-D-G inequality yields that forqp,

(28)

×

Then from Lemma 4.2, and Lemma 6.1 (in Section 6), it follows that

(29)

and hence forqp>32d,

sup

t∈[0,T] Eh1A¯M

n(t)

Λ˜1

n(t,·)

q

p

i

→0, n→ ∞. (5.7)

Finally, we turn to the estimation of the term ˜Λ2n(t,x). In light of the B-D-G inequality and (A.16) withκ= 2p2p+1=1,

Eh1A¯M n(t)

Λ˜2

n(t,·)

q

p

i

CE

1A¯Mn(t)

–Z t

0

Z

D

G2ts(·,y)|H(Xn(s,y))H(Xn−(s,y))|2dyds

™

q

2

p

2

CE

–Z t

0

(ts)−d4kXn(s,·)−X

n(s,·)k p qds

™

C2−ιnq. (5.8)

Observe that

˜

Λ3n(t,x) =J3(t, 0,x, 0), (5.9)

for the termJ3(t,s,x,y)defined in Lemma 4.5. Then there exists aλ >0 such that forqp>32d,

sup

t∈[0,T] E

h

1A¯M n(t)

Λ˜3n(t,·)qpiC2−λnq. (5.10)

Thus we prove that the condition (C1) holds. ƒ

6

The proof of (C2)

The aim of this section is to check the validity of the condition (C2) presented in Section 3. Note that for alls<t [0,T], we have forqp> 32d,

Eh1A¯M

n(t)∩A¯Mn(s)

Yn(t,·)Yn(s,·)qpi

CEhAM

n(t)∩A¯Mn(s)

Xn(t,·)Xn(s,·)qpi+CEh1A¯M

n(t)∩A¯Mn(s)kX(t,·)−X(s,·)k q p

i

.

Observe the forms of Equations (2.2) and (2.3),X is a particular case ofXn. Hence in order to prove

that (C2) holds, it suffices to check that for all 0s< t T, there existq p andθ >qα¯( ¯α is presented in Theorem 1.1) such that for eachnN,

(C2)′ E

h

1A¯M

n(t)∩A¯Mn(s)

Xn(t,·)−Xn(s,·)

q

p

i

C|ts|1+θ.

From (2.2), it follows that for(s,y),(t,x)∈ OT,

Referensi

Dokumen terkait

[r]

Penulis menetapkan hipotesis dalam penelitian ini adalah diduga likuiditas yang dihitung dengan menggunakan quick ratio dan pertumbuhan penjualan berpengaruh

: Peningkatan Jalan Kabupaten Ruas Sungai Kali - Simpang Paring Agung. : Kecamatan Sungai Raya Kabupaten

Menurut penuturan bagian promosi kesehatan puskesmas ngampilan, program- program dan SOP yang dilakukan puskesmas untuk memberikan informasi tentang bahaya kanker serviks belum

Dari hasil pengujian jarak konektiftas dengan ada penghalang yang dilakukan seperti yang terlihat pada Tabel 4.3 dapat dianalisa bahwa dalam proses pembacaan jarak

INTANSI : DINAS PU DAN PERUMAHAN KOTA BANJARBARU KEGIATAN : PEMBANGUNAN JALAN.. PEKERJAAN : PENGGANTIAN PAGAR DAN BANGUNAN DI JALAN KARANGANYAR LOKASI

Demikian Berita Acara Pembukaan Penawaran ( BAPP ) ini dibuat dengan. sebenarnya, ditandatangani bersama oleh Panitia Pokja VI Unit Layanan Pengadaan (

Pada hari ini, Selasa tanggal Lima belas bulan September tahun Dua Ribu Sembilan telah dilaksanakan seluruh proses evaluasi penawaran dan kualifikasi pekerjaan Rehab SMPN 3