El e c t ro n ic
Jo ur
n a l o
f
P r
o
b a b il i t y
Vol. 15 (2010), Paper no. 17, pages 484–525.
Journal URL
http://www.math.washington.edu/~ejpecp/
Support theorem for a stochastic Cahn-Hilliard equation
∗
Lijun Bo
1Kehua Shi
2,†and Yongjin Wang
31
Department of Mathematics, Xidian University, Xi’an 710071, China [email protected]
2
School of Mathematical Sciences, Xiamen University, Xiamen 361005, China [email protected]
3
School of Mathematical Sciences, Nankai University, Tianjin 300071, China [email protected]
Abstract
In this paper, we establish a Stroock-Varadhan support theorem for the global mild solution to a
d (d≤3)-dimensional stochastic Cahn-Hilliard partial differential equation driven by a space-time white noise.
Key words: Stochastic Cahn-Hilliard equation, Space-time white noise, Stroock-Varadhan sup-port theorem.
AMS 2000 Subject Classification:Primary 60H15, 60H05.
Submitted to EJP on November 7, 2009, final version accepted Aril 15, 2010.
∗The research of K. Shi and Y. Wang was supported by the LPMC at Nankai University and the NSF of China (No.
10871103). The research of L. Bo was supported by the Fundamental Research Fund for the Central Universities (No. JY10000970002).
1
Introduction and main result
In this paper, we consider the following stochastic Cahn-Hilliard equation:
∂u/∂t=−∆∆u+f(u)+σ(u)W˙, in[0,T]×D,
u(0) =ψ,
∂u/∂n=∂[∆u]/∂n=0, on[0,T]×∂D,
(1.1)
where ∆ denotes the Laplace operator, the domain D= [0,π]d (d = 1, 2, 3), and f :R→Ris a polynomial of degree 3 with positive dominant coefficient (which is due to the background of the equation from material science). Assume thatσ:R→Ris a bounded and Lipschitzian function and
˙
W is a Gaussian space-time white noise on some complete probability space(Ω,F,P)satisfying
EW˙(x,t)W˙(y,s)=δ(|t−s|)δ(|x−y|), (t,x),(s,y)∈[0,T]×D.
Hereδ(·)is the Dirac delta function concentrated at the point zero.
The (deterministic) Cahn-Hilliard equation (i.e.,σ≡0 in (1.1)) has been extensively studied (see, e.g.,[2; 3; 4; 5; 10; 15; 18]) as a well-known model of the macro-phase separation that occurs in an isothermal binary fluid, when a spatially uniform mixture is quenched below a critical temperature at which it becomes unstable. A stochastic version of the Cahn-Hilliard equation (when σ ≡ 1 in (1.1)) was first proposed by Da Prato and Debussche [8], and the existence, uniqueness and regularity of the global mild solution were explored. In Cardon-Weber[6], the authors considered this type of stochastic equation in a general case onσ, which is equivalent to the following form:
u(t,x) =
Z
D
Gt(x,y)ψ(y)dy+
Z t
0
Z
D
∆Gt−s(x,y)f(u(s,y))dyds
+
Z t
0
Z
D
Gt−s(x,y)σ(u(s,y))W(dy, ds), (1.2)
In what follows, we introduce the main result of this paper. To do it, we define the following Cameron-Martin spaceH by
H =
¨
h(t,x) =
Z t
0
Z
Qd i=1[0,xi]
h(s,y)dyds; (t,x) = (t,(x1, . . . ,xd))∈[0,T]×D,
h∈L2([0,T]×D)
«
,
and the corresponding norm by
khkH =
sZ T
0
Z
D
|h(s,y)|2dyds, for all h∈ H.
LetHb represent the subset of H, in which the first-order derivative h ofh∈ H is bounded. For
h∈ H, consider the following skeleton equation:
S(h)(t,x) =
Z
D
Gt(x,y)ψ(y)dy+
Z t
0
Z
D
∆Gt−s(x,y)f(S(h)(s,y))dyds
+
Z t
0
Z
D
Gt−s(x,y)σ(S(h)(s,y))h(s,y)dyds. (1.3)
Recall Equations (1.1) and (1.2). We make the following assumptions throughout the paper:
(H1). Assume thatσ:R→Ris bounded and belongs to C3(R)with bounded first to third-order partial derivatives, and
(H2). The initial functionψ∈Lp(D)forp≥4, andψis̺∈]0, 1]–H¨older continuous.
Now we are at the position to state the main result of this paper.
Theorem 1.1. Under the assumptions (H1) and (H2), let u = (u(t,x))(t,x)∈[0,T]×D be the unique solution to Equation(1.2)in C([0,T],Lp(D)) with p≥4and P◦u−1 denote the law (a probability measure)of the solution u. Recall the skeleton equation(1.3), and setSH ={S(h);h∈ H }. Then we have
(a) Let p>6. Then forα¯∈]0, min{12(1−d4),̺4}[andβ¯∈]0, min{2−d2,̺}[, the topological support
supp(P◦u−1)in Cα¯, ¯β([0,T]×D)of the lawP◦u−1is the closure ofSH.
(b) Let p ≥ 4. Then for α¯ ∈]0, min{1 2(1−
d
4), ̺
4}[, the topological support supp(P◦u
−1) in
Cα¯([0,T],Lp(D))of the lawP◦u−1is the closure ofSH.
2
Difference approximation to white noise
In this section, we give a difference approximation to the (d+1)-dimensional space-time white noise ˙
W, which is a space-time polygonal interpolation for ˙W.
Letn∈Nandt∈[0,T], set
tn= max
j∈{0,1,...,2n}
¦
j T2−n;j T2−n≤t©, and tn=
tn−T2−n∨0.
Let k := (k1, . . . ,kd) ∈ Idn := {0, 1, . . . ,n−1}d. Define a partition (△j,k)j=0,1,...,2n−1,k∈Id
n of OT :=
[0,T]×Dby
△j,k=Dk×]j T2−n,(j+1)T2−n],
where Dk = Qdj=1]kjπn−1,(kj+1)πn−1]. For xj ∈]kjπn−1,(kj+1)πn−1]with j = 1, . . . ,d, we
set Dk(x) = Qd
j=1]kjπn−1,(kj +1)πn−1]. Further, for each (t,x) ∈ OT, we define the following
difference approximation to ˙W by
˙
Wn(x,t) =
( W(△
j−1,k)
|△j−1,k| , (x,t)∈ △j,k, j=1, . . . , 2
n
−1, k∈Idn, 0, (x,t)∈ △0,k, k∈Idn,
(2.1)
where △j,k= Tπd(nd2n)−1 is the volume of the partition△j,k for each j = 0, 1, . . . , 2n−1 and k∈Idn.
Next we suppose that
(H3). the mappings F,H,K : R → R are bounded, globally Lipschitzian and H ∈ C3(R) with bounded first to third-order derivatives.
We now consider the following equations forh∈ Hb,
Xn(t,x) = Gt∗ψ(x)
+
Z t
0
Z
D
Gt−s(x,y)F(Xn(s,y))W(dy, ds) +H(Xn(s,y))Wn(dy, ds)
+
Z t
0
Z
D
Gt−s(x,y)
h
K(Xn(s,y))h(s,y)
−H˙(Xn(s,y))[αn(s,y)F(Xn(s,y)) +βn(s,y)H(Xn(s,y))]
i
dyds
+
Z t
0
Z
D
∆yGt−s(x,y)f(Xn(s,y))dyds, (2.2)
and
X(t,x) = Gt∗ψ(x) +
Z t
0
Z
D
Gt−s(x,y)[F+H](X(s,y))W(dy, ds)
+
Z t
0
Z
D
+
Z t
0
Z
D
∆yGt−s(x,y)f(X(s,y))dyds, (2.3)
where
Gt∗ψ(x):=
Z
D
Gt(x,y)ψ(y)dy,
and for eachn∈N,
αn(t,x) := nd2n(Tπd)−1
Z tn
tn
Z
Dk(x)
Gt−s(x,y)dyds,
βn(t,x) := nd2n(Tπd)−1
Z t
tn
Z
Dk(x)
Gt−s(x,y)dyds.
Forαn(t,x)andβn(t,x), by virtue of (A.4) in Lemma A.1, we claim that
sup (t,x)∈OT
|αn(t,x)| ≤ C nd, and (2.4)
sup (t,x)∈OT
|βn(t,x)| ≤C nd. (2.5)
Indeed, using (A.4), we have for each t∈[0,T],
sup
x∈D|
αn(t,x)| ≤ C nd2nmax
k∈Id n
(
1Dk(x)
Z tn
tn
Z
Dk
|Gt−s(x,y)|dyds
)
≤ C nd2n|tn−tn|
≤ C nd,
and
sup
x∈D|
βn(t,x)| ≤C nd2n|t−tn| ≤C n d,
follows from the equality (A.19).
In the following, letF= (Ft)0≤t≤T be the natural filtration generated byW, i.e.,
Ft=σ{W(B×[0,s]);s∈[0,t], B∈ B(D)}.
Then for every t ∈ [0,T] and n ∈ N fixed, (W˙n(x,t))x∈D given by (2.1) is Ft-adapted. More
precisely, it isFtn-adapted and which is independent of the informationFtn.
Lemma 2.1. For each fixed n∈Nand p≥1, we have
sup (t,x)∈OT
E|W˙n(x,t)|p≤Cpn d p
22
np
Proof. By virtue of the definition (2.1),
sup (t,x)∈OT
E|W˙n(x,t)|p
= sup
(t,x)∈OT
E
2Xn−1
j=1
X
k∈Id n
W(△j−1,k)
|△j−1,k| 1△j
−1,k(x,t)
p
≤ Cpmax
E
W(△j−1,k)
|△j−1,k|
p
; j=1, . . . , 2n−1, k∈Idn
.
Note that for each j=1, . . . , 2n−1 andk∈Idn,
W(△j−1,k)
|△j−1,k| ∼
N(0,|△j−1,k|−1).
For any random variableZ∼N(0,σ2), it holds that
E|Z|p= p1 π
p
2pσ2pΓ
p
2+ 1 2
,
whereΓdenotes the Gamma function. This yields that
sup (t,x)∈OT
E|W˙n(x,t)|p≤Cpmaxnp|△j−1,k|−p; j=1, . . . , 2n−1, k∈Idno,
and which proves the lemma.
Letn∈Nbe fixed. Forα >0 and t∈]0,T], we now define an event ¯Ωαn,t by
¯ Ωαn,t=
¨
ω∈Ω; sup (s,y)∈[0,t]×D
W˙(y,s;ω)≤αnd2n2
«
. (2.6)
For this event, we have
Lemma 2.2. If chooseα >2
q
log 2
Tπd, then
lim
n→∞P
h
¯ Ωαn,Tic
=0.
Proof. Let Z ∼ N(0, 1) be a standard normal random variable. Then according to the definition
(2.1) for ˙Wn(x,t),
PhΩ¯αn,Tic
= P
max (j,k)∈{1,...,2n−1}×Id
n
¨
W(△j−1,k) |△j−1,k|
«
≥αnd22n
≤ nd2nP
|Z| ≥α
p
= nd2nP
|Z|2
4 ≥
α2Tπd
4 n
d
≤ nd2nexp
−α 2Tπd
4 n
d
E
exp
|Z|2 4
. (2.7)
Note thatE
h
exp
|Z|2 4
i
=p2. Then (2.7) further yields that
0≤P
h
¯ Ωαn,Tic
≤ p2ndexp
nlog 2− α 2Tπd
4 n
d
≤ p2ndexp
nd
log 2−α 2Tπd
4
→ 0, as n→ ∞, (2.8)
ifα >2
q
log 2
Tπd. Thus the proof of the lemma is complete.
3
Localization framework
In this section, we adopt a localization method used in[7]to deal with Equation (1.1). In addition, we will prove a key proposition, which is useful in the proof of Theorem 1.1.
Proposition 3.1. Under the assumptions (H1) and(H2), let X = (X(t,x))(t,x)∈[0,T]×D (resp. Xn) be the unique solution to Equation(2.3)(resp.(2.2))in C([0,T],Lp(D))with p≥4. Recall the skeleton equation(1.3), and setSH ={S(h);h∈ H }. Then we have
(i) Let p > 6. Then for α¯ ∈]0, min{12(1− d4),̺4}[ and β¯ ∈]0, min{2− d2,̺}[, the sequence Xn
converges in probability to X in Cα¯, ¯β([0,T]×D).
(ii) Let p≥4. Then forα¯∈]0, min{1 2(1−
d
4), ̺
4}[, the sequence Xn converges in probability to X in
Cα¯([0,T],Lp(D)).
Next we give a sketch for the proof of the conclusion(ii)in Proposition 3.1. The similar argument can also be used to prove the part(i). For(t,x)∈ OT, set
Yn(t,x):=Xn(t,x)−X(t,x).
From (2.2) and (2.3), it follows that
Yn(t,x) =
3
X
i=1
Γin(t,x) + Λn(t,x), (3.1)
where
Γ1n(t,x) :=
Z t
0
Z
D
Gt−s(x,y)(F+H)(Xn(s,y))−(F+H)(X(s,y))W(dy, ds),
Γ2n(t,x) :=
Z t
0
Z
D
Γ3n(t,x) :=
Z t
0
Z
D
∆yGt−s(x,y)
f(Xn(s,y))− f(X(s,y))
dyds,
and
Λn(t,x) :=
Z t
0
Z
D
Gt−s(x,y)H(Xn(s,y))Wn(dy, ds)−W(dy, ds)
−
Z t
0
Z
D
Gt−s(x,y)H˙(Xn(s,y))
×αn(s,y)F(Xn(s,y)) +βn(s,y)H(Xn(s,y))
dyds. (3.2)
Introduce an auxiliaryFtn-adapted process
Xn−(t,x):=Gt−t
n x,Xn(tn,·)
, for (t,x)∈ OT. (3.3)
Recall the localization argument adopted in[7]. Forγ∈(0, 1)andp≥4, define
Φpn,γ(t):= sup
s∈[0,t]k
Yn(t,·)kp+ sup s6=s′∈[0,t]
kYn(s,·)−Yn(s′,·)kp |s−s′|γ ,
wherek · kp corresponds to the norm ofLp(D)and forδ >0,
τnδ:=inf¦t>0; Φnp,γ(t)≥δ©∧T.
ForM> δ, define the following events
At(M−δ) :=
¨
ω∈Ω; sup
s∈[0,t]k
X(s,·)kp≤M−δ
«
, (3.4)
AMn(t) :=
¨
ω∈Ω; sup
s∈[0,t]k
Xn(s,·)kp∨ sup
s∈[0,t]k
X(s,·)kp≤M
«
. (3.5)
Then fort∈]0,T],
At(M−δ)∩ {t≤τδn} ⊆AMn(t). (3.6)
In fact, from the inequality|y| ≤ |x−y|+|x|, it follows that
At(M−δ)∩ {t≤τδn}
⊆
¨
sup
s∈[0,t]k
X(s,·)kp≤M−δ
«
∩
¨
sup
s∈[0,t]k
Xn(s,·)−X(s,·)kp≤δ
«
⊆
¨
sup
s∈[0,t]k
X(s,·)kp≤M
«
∩
¨
sup
s∈[0,t]k
Xn(s,·)kp≤M
«
= AMn(t).
Recall the event ¯Ωαn,t defined by (2.6) in Section 2 and thatα >2
q
log 2
Tπd. For each fixedδ >0 and V ∈Cγ([0,T];Lp(D)), set
kVkγ,p,τδ
n := sup
s∈[0,T∧τδ n]
kV(s,·)kp+ sup
s6=s′∈[0,T∧τδ n]
Then forq≥1,
PΦpn,γ(T)≥δ
≤ PΦpn,γ(T)≥δ, AT(M−δ)∩Ω¯αn,T+PAcT(M−δ)+P
h
¯ Ωαn,Tic
= PkYnkγ,p,τδ
n≥δ, AT(M−δ)∩
¯
Ωαn,T+PAcT(M−δ)+P
h
¯ Ωαn,Tic
≤ δ−qE
1A
T(M−δ)∩Ω¯αn,TkYnk q
γ,p,τδ n
+PAcT(M−δ)+PhΩ¯αn,Tic
,
However, Lemma 2.2 and Lemma 3.1 (the latter will be proved below) yield that
PAcT(M−δ)+PhΩ¯αn,Tic
→0, asM → ∞, n→ ∞.
Therefore, by Lemma A.1 in[7]and (3.6), in order to prove
Φpn,γ(T)→0, in probability, asn→ ∞, (3.7)
it suffices to check that there existq≥ pandθ >qα¯(we have setγ=α¯, where ¯αis the exponent presented in Proposition 3.1) such that
(C1) ∀t∈[0,T], lim
n→∞E
h
1¯AM
n(t)kYn(t,·)k q p
i
=0;
(C2) ∀s<t∈[0,T], Eh1¯AM
n(t)kYn(t,·)−Yn(s,·)k q p
i
≤C|t−s|1+θ.
Here the event ¯AMn(t)is defined by
¯
AMn (t) =AMn(t)∩Ω¯αn,t, t∈[0,T], (3.8)
and which satisfies the order relation:
¯
AMn (t)⊂A¯Mn(r), ifr≤t.
Lemma 3.1. Let the event AT(M)be defined by(3.4). Then
lim
M→∞P
AT(M)c=0.
Proof. Note that forp≥4,β∈[p,∞[andβ∈]p, 6p/(6−p)+[(ifd=3),
PAT(M)c=P
sup
t∈[0,T]k
X(t,·)kp≥M
≤M−βE
sup
t∈[0,T]k
X(t,·)kβp
.
Therefore, it remains to prove
E
sup
t∈[0,T]k
X(t,·)kβp
<∞. (3.9)
Define for(t,x)∈ OT,
L1(u)(t,x) :=
Z t
0
Z
D
L2(u)(t,x) :=
Z t
0
Z
D
Gt−s(x,y)K(u(s,y))h(s,y)dyds,
and setZ=X−L(X)withL=L1+L2. Then
∂Z
∂t + ∆
2Z
−∆f([Z+L(X)]) =0,
Z(0) =ψ,
∂Z/∂n=∂[∆Z]/∂n=0, on∂D.
(3.10)
Further, the Garsia-Rodemich-Rumsey lemma (see, e.g., Theorem B.1.1 and Theorem B.1.5 in[9]) yields that, if for anyq,δ∈]1,∞[and someγ′,γ′′∈]0, 1],
(a) sup
(t,x)∈OT
E|L(u)(t,x)|2qδ<∞,
(b) E|L(u)(t,x)−L(u)(t′,x′)|2q≤C|t−t′|γ′′+|x−x′|γ′q, q>1,
then (3.9) holds. So we only need to prove (a) and (b). Note thatKis bounded andd≤3. Then in light of (A.4),
sup (t,x)∈OT
EhL2(u)(t,x)2qδi ≤ kKk2∞qδ sup (t,x)∈OT
Z t
0
Z
D
|Gt−s(x,y)h(s,y)|dyds
2qδ
≤ kKk2∞qδkhkHqδT(1−d4)qδ<∞.
If sett>t′, then by (A.7)–(A.9) in Lemma A.2, we have forγ′∈[0, 1−d/4[andγ′′∈[0, 2∧(4−d)[,
E|L2(u)(t,x)−L2(u)(t′,x′)|2q
≤ C|t−t′|γ′′+|x−x′|γ′q.
The estimate ofL1is similar to that of L2 (or see[6]). Thus the proof the lemma is complete.
4
Auxiliary lemmas
In this section, we present a sequence of auxiliary lemmas for checking the conditions (C1) and (C2) under (H1)–(H3) given in Section 1 and 2. Throughout Sections 4–6, (H1)–(H3) are assumed to be satisfied.
The following lemma tells us that, to check(C1), it suffices to show(C1)holds withΛn(t,x)instead ofYn(t,x).
Lemma 4.1. Assume p≥4, and q≥ p if d=1, 2, and q∈]p, 6p/(6−p)+[if d =3. Then for each n∈N,
sup
t∈[0,T] Eh1¯AM
n(t)kYn(t,·)k q p
i
≤C sup
t∈[0,T] Eh1A¯M
n(t)kΛn(t,·)k q p
i
, (4.1)
Proof. Note that for eacht∈[0,T],
Similarly, we have
ku3(s,·)−v3(s,·)kρ ≤ Cku(s,·)−v(s,·)kp
×hku(s,·)k2p+kv(s,·)kp2+ku(s,·)kpkv(s,·)kpi.
Hence from (4.2), it follows that
Eh1¯AM n(t)kΓ
3
n(t,·)k q p
i
≤ CE
Z t
0 (t−s)
d
4r2− d+2
4 1 ¯
AM
n(s)kYn(s,·)kpds
q
≤ C
Z t
0
(t−s)
d
4r2− d+2
4 ds
q−1Z t
0 (t−s)
d
4r2− d+2
4 sup
r∈[0,s] Eh1A¯M
n(r)kYn(r,·)k q p
i
ds
.
Note that the following equivalent relations holds:
d
4r − d
2+1>0 ⇔ 1
q >
1
p −
1 6,
d
4r2−
d+2
4 +1>0 ⇔ 1
q >
1
p +
1 2−
2
d.
Then the desired result follows from the Gronwall’s lemma.
Recall theFt
n-adapted processX −
n(t,x)defined by (3.3). Then we have
Lemma 4.2. Let q≥p≥6. Then there exists a constant C:=CM>0such that
sup (t,x)∈OT
Eh1¯AM
n(t)|Xn(t,x)−X − n(t,x)|
qi
≤C2−nqι, (4.3)
whereι:= 12(1− d4).
Proof. Recall (2.2) and (3.3), and we get
Xn(t,x)−X−n(t,x) = 4
X
k=1
Tnk(t,x),
where
Tn1(t,x) :=
Z t
tn
Z
D
Gt−s(x,y)F(Xn(s,y))W(dy, ds),
Tn2(t,x) :=
Z t
tn
Z
D
Gt−s(x,y)H(Xn(s,y))Wn(dy, ds),
Tn3(t,x) :=
Z t
tn
Z
D
∆yGt−s(x,y)f(Xn(s,y))dyds,
Tn4(t,x) :=
Z t
tn
Z
D
and
On the other hand, using (A.4) and the boundedness ofF,
E|Tn1(t,x)|q = E
Further, the Hölder inequality, Lemma 2.1 and the boundedness ofH jointly imply that
= E
Thanks to (4.4), we conclude that
E|Tn4(t,x)|q = E
Thus the estimate (4.3) follows from (4.5)–(4.8).
Lemma 4.3. Let V :Ω× OT →Rbe anF-predictable process. If for each p∈[1,∞[, there exist some
Proof. As in (4.10), define
λkn(V)(t,x,y):= by (4.13) and Lemma 2.1,
≤ C nd p+2ap2np−2npαˆ−n
Next we turn to the time increment. Set
λkn(V)(t,s,x):=
with the definition
Ak2,n(V)(t,s,x) =0, whenever [(k+1)T2−n∧t]<[kT2−n∨s].
Then from (A.4) and the Hölder inequality, it follows that
≤ C nd+2a2−n(2αˆ−1+ 1
p)
Z T
2n(k+1)∧t
T k
2n∨s
(t−r)−d4(γβ−1)dr
2
γβ
≤ C nd+2a2−n(2αˆ−1+ 1
p)2−n(
2
γβ−1)
Z t
s
(t−r)−d4(γβ−1)dr
≤ C nd+2a2−n(2αˆ−2+ 1
p+
2
γβ)|t−s|−d4(γβ−1)+1. (4.22)
Thus from (4.17), (4.20) and (4.22), we get (4.14). Hence the proof of the lemma is complete.
Remark 4.2. From the proof of Lemma 4.3, the conclusion of the lemma still holds if we replace
λk
n(V)(t,s,x,y)byE
λk
n(V)(t,s,x,y)|F(k−1)T
2n
.
Lemma 4.4. For(s,y)∈ OT, it holds that
E
W˙n(y,s)
Z s
sn
Z
D
Gs−r(y,z)F(X−n(r,z))W(dz, dr)|Fsn
= (Tπd)−1nd2n
Z sn
sn
Z
Dk(y)
Gs−r(y,z)F(Xn−(r,z))dzdr.
Proof. Foru≥sn, set
Nu(s,y) := (Tπd)−1nd2nW(Dk(y)×]sn,u]),
Mu(s,y) :=
Z u
sn
Z
D
Gs−r(y,z)F(Xn−(r,z))W(dz, dr).
Then the martingale property of{Mu(s,y);u≥sn}and Itô formula jointly imply that
E
W˙n(y,s)
Z s
sn
Z
D
Gs−r(y,z)F(X−n(r,z))W(dz, dr)|Fsn
= (Tπd)−1nd2nE
h
Nsn(s,y)Ms(s,y)|Fsn
i
= (Tπd)−1nd2nEhEhNs
n(s,y)Ms(s,y)|Fsn
i
Fsn
i
= (Tπd)−1nd2nEhNs
n(s,y)E[Ms(s,y)|Fsn]Fsn
i
= (Tπd)−1nd2nE
h
Ns
n(s,y)Msn(s,y)|Fsn
i
= (Tπd)−1nd2n
Z sn
sn
Z
Dk(y)
Gs−r(y,z)F(Xn−(r,z))dzdr,
follows from the fact thatF(X−n(r,z))isFsn-measurable whenr≤s. This proves the lemma.
Lemma 4.5. Let q ≥ p ≥6. Then for α¯ ∈]0, min{12(1− d4),̺4}[ andβ¯ ∈]0, min{2− d2,̺}[, there exists a C>0such that
Eh1A¯M
n(t)∩A¯Mn(s)
Xn(t,x)−Xn(s,y)
qi
≤C ndq
h
|t−s|α¯+|x−y|β¯iq,
with(t,x),(s,y)∈ OT. In addition, if q ≥ p≥ 4, then forα¯ ∈]0, min{1 2(1−
d
4), ̺
4}[, there exists a
C >0such that
E
h
1A¯M
n(t)∩A¯Mn(s)
Xn(t,·)−Xn(s,·)
q
p
i
≤C ndq|t−s|α¯q.
Proof. Recall (2.2), (4.11) and (4.12). We have for(t,x),(s,y)∈ OT,
Xn(t,x)−Xn(s,y) = 5
X
i=1
Ji(s,t,x,y),
where
J1(t,s,x,y) := Gt∗ψ(x)−Gs∗ψ(y),
J2(t,s,x,y) :=
Z t
0
Z
D
[η(t,s,x,y)](r,z)hF(Xn(r,z))W(dz, dr)
+H(Xn−(r,z))Wn(dz, dr)i,
J3(t,s,x,y) :=
Z t
0
Z
D
[η(t,s,x,y)](r,z)h(H(Xn(r,z))−H(Xn−(r,z)))Wn(dz, dr)
−H˙(Xn(r,z))αn(r,z)F(Xn(r,z)) +βn(r,z)H(Xn(r,z))
dzdri,
J4(t,s,x,y) :=
Z t
0
Z
D
[η(t,s,x,y)](r,z)K(Xn(r,z))˙h(r,z)dzdr,
J5(t,s,x,y) :=
Z t
0
Z
D
˜
η(t,s,x,y)(r,z)f(Xn(r,z))dzdr.
Note that the initial functionψ(x)is̺-Hölder continuous inx ∈Rd. Then by Lemma 2.2 in[6],
EJ1(s,t,x,y)
q
≤C|t−s|̺/4+|x−y|̺q. (4.23)
SinceF,H are bounded, by Burkhölder’s inequality and Lemma A.2, there existγ′∈]0, 4−d[,γ′≤2 andγ′′∈]0, 1−d/4[such that
E|J2(t,s,x,y)|q≤C|x−y|γ′+|t−s|γ′′ q
2. (4.24)
On the other hand, sinceK is bounded, the Schwarz’s inequality yields that forh∈ Hb,
E|J4(t,s,x,y)|q≤C|x−y|γ′+|t−s|γ′′ q
2, (4.25)
where γ′,γ′′ are presented in (4.24). Similar as in the proof of (4.7), by (A.14) and (A.15) with 1
r =
1
∞−
3
p+1∈[0, 1], we have forα∈]0, 1/2−
3d
4p[andβ∈]0, min{2−
3d p ,
2
d, 1}],
Eh1¯AM
n(t)∩A¯Mn(s)|J5(t,s,x,y)| qi
and using (A.14) withκ= 1
p−
3
p+1=1−
2
p∈[0, 1], forα∈]0, 1/2− d
2p[,
Eh1A¯M
n(t)∩A¯Mn(s)kJ5(t,s,·,·)k q p
i
≤C[|t−s|α]q. (4.27)
In the following, we are going to estimateJ3(t,s,x,y). Using the Taylor expansion of H at point
X−n(t,x),
H(Xn(t,x))−H(Xn−(t,x)) =H˙(Xn−(t,x))
Xn(t,x)−X−n(t,x)
+ρn(t,x), (4.28)
and
ρn(t,x)≤C|Xn(t,x)−Xn−(t,x)|
2.
Recall the aboveJ3, and we have
J3(t,s,x,y) = 5
X
i=1
J3i(t,s,x,y),
where
J31(t,s,x,y) :=
Z t
0
Z
D
[η(t,s,x,y)](r,z)hTn1(r,z)H˙(Xn−(r,z))W˙n(z,r)
−H˙(Xn(r,z))αn(r,z)F(Xn(r,z))idzdr,
J32(t,s,x,y) :=
Z t
0
Z
D
[η(t,s,x,y)](r,z)hTn2(r,z)H˙(Xn−(r,z))W˙n(z,r)
−H˙(Xn(r,z))βn(r,z)F(Xn(r,z))
i
dzdr,
J33(t,s,x,y) :=
Z t
0
Z
D
[η(t,s,x,y)](r,z)H˙(Xn−(r,z))Tn3(r,z)W˙n(z,r)dzdr,
J34(t,s,x,y) :=
Z t
0
Z
D
[η(t,s,x,y)](r,z)H˙(Xn−(r,z))Tn4(r,z)W˙n(z,r)dzdr,
J35(t,s,x,y) :=
Z t
0
Z
D
[η(t,s,x,y)](r,z)ρn(r,z)W˙n(z,r)dzdr.
Next we decomposeJ31(t,s,x,y)as follows:
J31(t,s,x,y) = 5
X
j=1
J31,j(t,s,x,y),
with
J31,1(t,s,x,y) =
Z t
0
Z
D
[η(t,s,x,y)](r,z)H˙(Xn−(r,z))W˙n(z,r)
×
Z r
rn
Z
D
Gr−u(z,v)
F(Xn(u,v))−F(Xn−(u,v))
W(dv, du)
J31,2(t,s,x,y) =
Z t
0
Z
D
[η(t,s,x,y)](r,z)H˙(Xn−(r,z))
×
Z r
rn
Z
D
Gr−u(z,v)F(Xn−(r,z))W(dv, du)W˙n(z,r)
−E
Z r
rn
Z
D
Gr−u(z,v)F(Xn−(u,v))W(dv, du)W˙n(z,r)|Frn
dzdr
J31,3(t,s,x,y) =
Z t
0
Z
D
[η(t,s,x,y)](r,z)H˙(Xn−(r,z))
×
E
Z r
rn
Z
D
Gr−u(z,v)F(X−n(u,v))W(dv, du)W˙n(z,r)|Fr
n
−2nn−dT−1π−d
Z rn
rn
Z
Dk(z)
Gr−u(z,v)F(Xn−(u,v))dvdu
dzdr,
J31,4(t,s,x,y) = 2nT−1n−dπ−d
Z t
0
Z
D
[η(t,s,x,y)](r,z)H˙(Xn−(r,z))
×
Z rn
rn
Z
Dk(z)
Gr−u(z,v)F(Xn−(u,v))dvdu−αn(r,z)F(Xn(r,z))
dzdr,
J31,5(t,s,x,y) =
Z t
0
Z
D
[η(t,s,x,y)](r,z)H˙(Xn−(r,z))−H˙(Xn(r,x))
×αn(r,z)F(Xn(r,z))dzdr.
We first estimate the termJ31,1. Define
V(r,z) = 1¯AM n(r)
˙
H(Xn−(r,z))
×
Z r
rn
Z
D
Gr−u(z,v)F(Xn(u,v))−F(Xn−(u,v))W(dv, du). (4.29)
Then
J31,1(t,s,x,y) =
Z t
0
Z
D
[η(t,s,x,y)](r,z)V(r,z)W˙n(dz, dr)
=
[2nt/T]−1
X
k=0
λkn(V)(t,s,x,y), (4.30)
where λkn(V)(t,s,x,y) is defined by (4.12). By virtue of the Burkhölder inequality, (A.16) with κ= 2
q−
2
q+1=1 and Lemma 4.2,
EhkV(r,·)kqqi ≤ C2−nq(1−d4) sup
r∈[0,T] Eh1A¯M
n(r)kXn(r,·)−X − n(r,·)k
q q
i
Then using Lemma 4.3, there existθ′<4−dandθ′≤2,θ <1−d4 such that
Applying the discrete Burkhölder inequality and Jensen’s inequality to conclude that
E|J31,2(t,s,x,y)|q
Also using Lemma 4.3,
E
γβ >0. On the other hand, Lemma 4.4 yields that
= 2nT−1ndπ−d
Z rn
rn
Z
Dk(z)
Gr−u(z,v)F(X−n(u,v))dvdu.
This implies that
J31,3(t,s,x,y)≡0.
Since ˙H andF are bounded, from (2.4), (A.4) and (A.7)–(A.9), it follows that
J31,4(t,s,x,y)
q
≤ C ndq
Z t
0
Z
D
[η(t,s,x,y)](r,z)dzdr
q
×
2n sup (r,z)∈OT
Z rn
rn
Z
Dk(z)
|Gr−u(z,v)|dvdu
q
≤ C ndq|t−s|γ′′+|x−y|γ′q, (4.37)
where 0< γ′ < 2− d2 and 0 < γ′′ < 12(1− d4). From (2.4), Lemma 4.2 and (A.11)–(A.12) with
κ= 1
∞−
1
p+1=1∈[0, 1], we conclude that there existα∈]0, 1− d
4p[andβ∈]0, 1[such that
E
1¯AM
n(t)∩A¯Mn(s)
J31,5(t,s,x,y)
q
≤ C ndq|t−s|α+|x− y|βq sup
r∈[0,T] Eh1A¯M
n(r)kXn(r,·)−X − n(r,·)k
q q
i
≤ C ndq2−nqσ|t−s|α+|x− y|βq. (4.38)
From the above estimations, it follows that there exist ¯α ∈]0, min{12 − 34dp,21(1− d4),ρ4}[and ¯β ∈
]0, min{2−3pd, 2−d2,2d,ρ}[such that for(t,x),(s,y)∈ OT,
Eh1A¯M
n(t)∩A¯Mn(s)
J31(t,s,x,y)qi≤C ndqh|t−s|α¯+|x−y|β¯iq. (4.39)
Now we turn to estimate the term J32(t,s,x,y). The procedure is similar to that of J31(t,s,x,y). Replace F(Xn(r,z)) by H(Xn(r,z)), F(Xn−(r,z)) by H(Xn−(r,z)), W(dz, dr) by Wn(dz, dr), and αn(r,z,Xn(r,z)) by βn(r,z,Xn(r,z)), respectively. Then there exist ¯α, ¯β presented in (4.39) such
that
E
h
1A¯M
n(t)∩A¯Mn(s)
J32(t,s,x,y)qi ≤ C nq
h
|t−s|α¯+|x−y|β¯iq. (4.40)
As for the termJ33(t,s,x,y), we have
E
h
1A¯M
n(t)∩A¯Mn(s)
J33(t,s,x,y)qi
= E
1A¯M
n(t)∩A¯Mn(s)
Z t
0
Z
D
[η(t,s,x,y)](r,z)H˙(X−n(r,z))Tn3(r,z)W˙n(z,r)dzdr
q
= B1n(t,s,x,y) +B2n(t,s,x,y), (4.41)
where
Bn1(t,s,x,y) = E
1¯AM
n(t)∩A¯Mn(s)
Z t
0
Z
D
×
Using the B-D-G inequality
B2n(t,s,x,y)≤E
By virtue of (4.7),
withδ′= ι∧α2′. Finally we considerJ34(t,s,x,y) andJ35(t,s,x,y). From (A.11) and (A.12) with κ:= 1
∞−
1
p+1∈[0, 1]and (4.8), it follows that forα∈]0, 1− d
4p[andβ∈]0, 1[,
Eh1¯AM
n(t)∩A¯Mn(s)
J34(t,s,x,y)qi
≤ C ndq212nq|t−s|α+|x−y|βq sup
r∈[0,T] Eh1A¯M
n(r)kT
4
n(r,·)k q p
i
≤ C n2dq2−12nq|t−s|α+|x−y|βq. (4.48)
As forJ35(t,s,x,y), using (A.11) and (A.12) withκ:= 1
∞−
2
p+1 :=1−
2
p∈[0, 1]and Lemma 4.2,
we get forα∈]0, 1−2dp[andβ∈]0, min{4−2pd, 1}[,
Eh1A¯M
n(t)∩A¯Mn(s)
J35(t,s,x,y)qi
= E
1A¯M
n(t)∩A¯Mn(s)
Z t
0
Z
D
[η(t,s,x,y)](r,z)ρn(r,z)W˙n(z,r)dzdr
q
≤ E
1A¯M
n(t)∩A¯Mn(s)
Z t
0
Z
D
[η(t,s,x,y)](r,z)|Xn(r,z)−Xn−(r,z)|2W˙n(z,r)dzdr
q
≤ C ndq22( 1 2−
d
4)nq|t−s|α+|x−y|βq.
When d = 3, we can obtain a more precise estimate than the cases of d = 1, 2, which will be
concluded in Lemma 6.1 of Section 6. Thus we complete the proof of the lemma.
5
The proof of (C1)
The condition (C1) presented by Section 3 shall be verified in this section. By Lemma 4.1, to check (C1), we only need to prove the right hand side of (4.1) approaches 0, whenn→ ∞. Note that for each fixedn∈N,
1△j,k(x,t)
Æ
△j,k ; j=0, 1, . . . , 2
n
−1, k∈Idn
forms a CONS of L2([0,T]×D). Letπn be the orthogonal projection of above basis and for any
mappingg:R→R, define
τng(s) = g
(s+T2−n)∧T, s∈[0,T].
Then for eacht∈[0,T]andF-predictable process(ψ(t,x);x ∈D)0≤t≤T,
Z t
0
Z
D
ψ(s,y)Wn(dy, ds) =
Z T
0
Z
D
πn
τn
RecallΛn(t,x)defined by (3.2) and we have
Then by the Hölder inequality and Burkhölder’s inequality, and note thatπn is an orthogonal
−1[0,t](s)Gt−s(•,y)H(X−n(s,y))
Take the boundedness of the mappingHinto account, from (A.8) and (A.9) in Lemma A.2, it follows that forγ′′<1−d4,
sup
t∈[0,T]
|Λ˜1,1,1n (t)|+|Λ˜1,1,3n (t)|≤C2−12γ′′nq. (5.1)
On the other hand, applying (A.16) withκ= 2
q−
2
q+1=1, the H¨older inequality, Lemma 4.2, and
Lemma 6.1 (in Section 6) to conclude that
+C sup
Then the B-D-G inequality yields that forq≥p,
×
Then from Lemma 4.2, and Lemma 6.1 (in Section 6), it follows that
and hence forq≥p>32d,
sup
t∈[0,T] Eh1A¯M
n(t)
Λ˜1
n(t,·)
q
p
i
→0, n→ ∞. (5.7)
Finally, we turn to the estimation of the term ˜Λ2n(t,x). In light of the B-D-G inequality and (A.16) withκ= 2p−2p+1=1,
Eh1A¯M n(t)
Λ˜2
n(t,·)
q
p
i
≤ CE
1A¯Mn(t)
Z t
0
Z
D
G2t−s(·,y)|H(Xn(s,y))−H(Xn−(s,y))|2dyds
q
2
p
2
≤ CE
Z t
0
(t−s)−d4kXn(s,·)−X−
n(s,·)k p qds
≤ C2−ιnq. (5.8)
Observe that
˜
Λ3n(t,x) =J3(t, 0,x, 0), (5.9)
for the termJ3(t,s,x,y)defined in Lemma 4.5. Then there exists aλ >0 such that forq≥p>32d,
sup
t∈[0,T] E
h
1A¯M n(t)
Λ˜3n(t,·)qpi≤C2−λnq. (5.10)
Thus we prove that the condition (C1) holds.
6
The proof of (C2)
The aim of this section is to check the validity of the condition (C2) presented in Section 3. Note that for alls<t ∈[0,T], we have forq≥p> 32d,
Eh1A¯M
n(t)∩A¯Mn(s)
Yn(t,·)−Yn(s,·)qpi
≤ CEh1¯AM
n(t)∩A¯Mn(s)
Xn(t,·)−Xn(s,·)qpi+CEh1A¯M
n(t)∩A¯Mn(s)kX(t,·)−X(s,·)k q p
i
.
Observe the forms of Equations (2.2) and (2.3),X is a particular case ofXn. Hence in order to prove
that (C2) holds, it suffices to check that for all 0≤s< t ≤ T, there existq ≥p andθ >qα¯( ¯α is presented in Theorem 1.1) such that for eachn∈N,
(C2)′ E
h
1A¯M
n(t)∩A¯Mn(s)
Xn(t,·)−Xn(s,·)
q
p
i
≤C|t−s|1+θ.
From (2.2), it follows that for(s,y),(t,x)∈ OT,