• Tidak ada hasil yang ditemukan

PROFOSAL TA MENGANALISA KEBOCORAN MECHANICAL SEAL PADA POMPA GRUNDFOS Di PDAM INTAN BANJAR

N/A
N/A
Protected

Academic year: 2019

Membagikan "PROFOSAL TA MENGANALISA KEBOCORAN MECHANICAL SEAL PADA POMPA GRUNDFOS Di PDAM INTAN BANJAR"

Copied!
37
0
0

Teks penuh

(1)

PROFOSAL TA

MENGANALISA KEBOCORAN

MECHANICAL SEAL

PADA POMPA GRUNDFOS Di PDAM INTAN

BANJAR

Oleh :

Nama : Rizky Noor Fatharassukma

NIM

: H1F113222

PROGRAM STUDI TEKNIK MESIN

FAKULTAS TEKNIK

UNIVERSITAS LAMBUNG MANGKURAT

BANJARBARU

(2)

KATA PENGANTAR

Alhamdulillah, berkat rahmat dan karunia-Nya kami dapat menyelesaikan proposal ini sesuai dengan waktu yang ditentukan.Proposal ini merupakan salah satu tugas matakuliah Metodologi Penelitian Teknik Mesin Universitas Lambung Mangkurat.

Paparan dan data yang kami sajikan pada proposal ini merupakan hasil pengamatan lapangan, study literatur dan data lapangan, dengan materi baha san dalam lingkup bidang proses dan teknik. Dengan keterbatasan data dan waktu diharapkan tidak mengurangi maksud dan tujuan yang hendak disampaikan.

Dalam pembuatan proposal ini, penulis mengakui bahwa terdapat banyak kekurangan, baik dari segi ilmu maupun penulisannya. oleh sebab itu semua kritik dan saran yang bersifat membangun akan penulis terima dengan segala senang hati. Akhir kata penulis harapkan semoga laporan ini menjadi suatu hal yang bernilai, dan bermanfaat bagi pembaca maupun penulis sendiri. Amin.

Banjarbaru, 7 November 2016 Penulis

(3)

DAFTAR ISI

1.2 Rumusan Maasalah ... 1

1.3 Batasan Masalah... 2

1.4 Tujuan ... 2

BAB II TINJAUAN PUSTAKA 2.1 Rotating Equipment ... 3

2.2 TeoriDasarPompa... 3

2.3 PrinsipKerjaPompa ... 4

2.4 KlasifikasiPompa ... 5

2.5 TeoriDasarPompaSentrifugal... ..9

2.5.1 Klasifikasi Pompasentrifugal PDAM Intan Banjar... 10

2.5.2 Bagian-bagian Pompa Sentrifugal ... 12

2.5.3 Prinsip Kerja Pompa Sentrifugal... 15

2.5.4 Komponen - komponen Pompa Sentrifugal... 16

2.6 Mechanical Seal ... 18

2.6.1 Fungsi Mechanical Seal ... 18

2.6.2 Komponen - komponen Mechanical Seal ... 20

2.6.3 Cara Kerja Mechanical Seal... 22

BAB III METODOLOGI 3.1 Diagram Alir Penelitian ... 24

3.2 Waktu Dan Tempat... 24

3.3 Metode Penelitian... 25

(4)

3.5 Spesifikasi Pompa ... 25 3.6 Cara Kerja Pompa... 26 3.7 Prosedur Pompa... 27 3.8

(5)

DAFTAR GAMBAR

Gambar 2.1. a) Pemasukan dengan hisapan dan

b) Pemasukkan dengan dorongan/tekanan Gambar 2.2. a) Penampang impeler

b) Perubahan energi pompa Gambar 2.3. Klasifikasi Pompa

Gambar 2.4. Gear Pump

a) Pompa roda gigi luar b) Pompa roda gigi dalam Gambar 2.5.Vane Pump

Gambar 2.6.Screw Pump

Gambar 2.7Lobe pump

Gambar 2.8.Diaphragm Pump

Gambar 2.9 Pompa aliran radial Gambar 2.10 Pompa aliran aksial Gambar 2.11 Pompa aliran campur Gambar 2.12 Pompa Volut

Gambar 2.13 Pompa difuser

Gambar 2.14 Bagian-bagian Utama Pompa Sentrifugal Gambar 2.15 Mechanical Seal

Gambar 2.16 Bagian–bagian Mechanical Seal Gambar 2.17 Komponen Mechanical Seal Gambar 2.18 Point Mechanical Seal Gambar 3.1 SkemaPenelitian

Gambar 3.2 pompa sentrifugal GRUNDFOS Gambar 3.3 Mechanical Seal

(6)
(7)

BAB I PENDAHULUAN

1.1. LATAR BELAKANG

Pompa adalah suatu mesin konversi energi yang berfungsi memindahkan fluida zat cair dimana dalam prosesnya terjadi perubahan tekanan. Dalam konsep termodinamika pompa merupakan suatu sistem dimana fluida yang mengalir didalamnya mengalami tingkat keadaan berupa peningkatan tekanan,laju aliran dan temperature.

PDAM Intan Banjar dalam proses produksinya didukung oleh mesin pompa jenis sentrifugal yang berfungsi untuk memindahkan fluida (air) dari satu tempat ke tempat yang lain, jadi pompa sentrifugal digunakan untuk mensuplai air dari bak penampungan (reservoir) kemudian

didistribusikan ke pelanggan.

Sebab itu jika peralatan yang menunjang kegiatan untuk mendisribusikan air kepelanggan mengalami masalah, maka di perlukan perawatan terhadap mesin-mesin yang bekerja untuk mengurangi serta mencegah kerusakan fatal agar suplai air kepelanggan bekerja secara maksimal. Sehingga penulis tertarik mengambil judul proposal yang berjudul “Menganalisa Kebocoran Mechanical Seal Pada Pompa GRUNDFOS Di PDAM Intan Banjar

1.2 RUMUSAN MASALAH

Dari permasalahan yang akan dibahas, diberi batasan-batasan pada permasalahan tersebut, guna memperjelas bagian mana dari persoalan yang akan dikaji, agar tidak menyimpang dari topik permasalahan yang utama. Persoalan yang akan dibahas

a. Permasalahan pada Kebocoran Mechanical Seal pada pompa GRUNDFOS.

(8)

c. Bagaimana cara agar Mechanical Seal bertahan lama atau memperpanjang umur Mechanical Seal.

1.3 BATASAN MASALAH

Agar pembahasaan tidak meluas maka batasan masalah penelitian ini adalah menganalisa Kebocoran Mechanical Seal pada pompa GRUNDFOS dan bagaimana perawatan perawatan agarMechanical sealtidak cepat aus.

1.4 TUJUAN

a. Mengetahui kerusakan pompa GRUNDFOS, yaitu kebocoran pada Mechanical Seal pompa tersebut.

b. Mengetahui bagaimana mechanical seal dapat bertahan lama. c. Mencegah kerusakan fatal pompa akibat Mechanical Seal Aus

(9)

BAB II

TINJAUAN PUSTAKA 2.1. Rotating Equipment

Rotating Equipment adalah peralatan mekanis yang berfungsi untuk menambahkan energi kinetik pada suatu proses yang bekerja dengan cara berputar. Energi kinetik tersebut digunakan untuk memindahkan fluida dari suatu tempat ke tempat lain. Peralatan rotating banyak digunakan di

perindustrian. Secara umumRotating Equipmentterdiri atas :

a. Pompa b. Turbin c. Kompresor d. Blower

e. Dan lain–lain.

Didalam proposal ini hanya akan dijelaskan perihal Pompa khususnya tipe Pompa Sentrifugal sesuai dengan inti dari laporan ini.

2.2. Teori Dasar Pompa

Menurut Samsudin, dkk (2008) pompa adalah mesin konversi energy yang digunakan untuk memindahkan fluida dari suatu tempat yang rendah ke tempat yang lebih tinggi, atau dari suatu tempat yang bertekanan rendah ke tempat yang bertekanan lebih tinggi dengan melewatkan fluida tersebut pada sistem perpipaan. Dengan demikian dalam instalasi pompa, peralatan yang diperlukan adalah :

1. Pompa

2. Pipa hisap dan pipa tekan 3. Alat-alat bantu lainnya

(10)

tujuan agar kerugian head hisap dapat dikurangi sehingga kesulitan yang mungkin timbul pada waktu operasi dapat diminimalkan. Pada gambar 2.1. dibawah ini merupakan variasi instalasi pompa menurut tadah hisap.

(a) (b)

Gambar 2.1. a) Pemasukan dengan hisapan dan

b) Pemasukkan dengan dorongan/tekanan

Pada gambar 2.1.(a) diatas merupakan instalasi pompa dengan hisapan, dimana untuk operasi pompa ini agak sulit dipakai untuk operasi pompa secara otomatis disebabkan karena saluran hisapannya belum terisi fluida ataupun terjadi kebocoran pada sistem perpipaan di saluran hisap. kecuali dengan pompa vakum untuk memancing fluida. Sedangkan pada gambar 2.1.(b) merupakan kondisi kerja pompa dengan dorongan atau tekanan, dimana operasi pompa ini dapat beroperasi secara otomatis sebab saluran hisap selalu terisi dengan fluida yang dipompakan.

2.3. Prinsip Kerja Pompa

(11)

(a) (b)

Gambar 2.2. a) Penampang impeler b) Perubahan energi pompa

Pada pompa terdapat sudu-sudu impeler yang berfungsi mengangkat zat cair dari tempat yang lebih rendah ketempat yang lebih tinggi. Impeler dipasang pada poros pompa yang berhubungan dengan motor pengerak, biasanya motor listrik atau motor bakar.

Poros pompa akan berputar apabila pengeraknya berputar. Karena poros pompa berputar impeler dengan sudu-sudu impeler berputar zat cair yang ada didalamnya akan ikut berputar sehingga tekanan dan kecepatanya naik dan terlempar dari tengah pompa ke saluran yang berbentuk volut atau sepiral dan disalurkan keluar melalui nosel. Jadi fungsi impeler pompa adalah merubah energi mekanik yaitu putaran impeler menjadi energi fluida (zat cair). Jadi, zat cair yang masuk pompa akan mengalami pertambahan energi Pertambahan energi pada zat cair mengakibatkan pertambahan head tekan, head kecepatan dan head potensial. Jumlah dari ketiga bentuk head tersebut dinamakan head total. Head total pompa juga bisa didefinisikan sebagai selisih head total (energi persatuan berat) pada sisi isap pompa dengan sisi keluar pompa.

2.4. Klasifikasi pompa

Menurut Samsudin, dkk (2008) klasifikasi pompa dilihat berdasaran head atau berdasarkan debit. Untuk positif displacement pump, yang

diinginkan adalah debit dan untuk dynamic pump, yang diinginkan adalah

(12)

Pumps

1. Pompa Perpindahan Positif (Positive Displacement Pumps)

Pompa ini bekerja dengan mengalirkan fluida dimana fluida dimasukkan dalam sebuah rongga yang dapat mengekspansikan kemudian fluida tersebut dipaksa keluar (diekspansikan) melalui bagian outlet yang berukuran lebih kecil sehingga tekanan fluida menjadi tinggi.

Adapun kelebihan dari pompa perpindahan positif yaitu : a. Performance fleksibilitas yang tinggi.

b. Ukuran relative kecil.

c. Efisiensi volumetric yang tinggi.

d. Menghasilkan tekanan fluida yang tinggi.

Pompa perpindahan positif ini dapat diklasifikasikan menjadi dua bagian yaitu :

a. Rotary

(13)

mekanis ditransmisikan dari mesin penggerak kecairan dengan menggunakan elemen yang berputar (rotor) didalam rumah pompa (casing).

Adapun pembagian rotary yaitu :

1) Gear pumps

Cara kerja pompa ini secara umum adalah pertama tekanan atmosfir dalam tangki memaksa fluida masuk melalui port inlet dan masuk kedalam selah-selah roda gigi yang berputar kearah luar.Gambar gear pump dapat dilihat pada gambar 2.4. dibawah ini.

(a) (b)

Gambar 2.4.Gear Pumpa) Pompa roda gigi luar

b) Pompa roda gigi dalam

2) Vane pumps

Pada pompa vane ini, rotornya berupa elemen berputar yang dipasang eksentrik dengan rumah pompa. Pada keliling rotor terdapat alur-alur yang diisi bilah-bilah sudu yang dapat bergerak bebas. Ketika rotor diputar sudu-sudu bergerak dalam arah radial gaya sentrifugal sehingga salah satu ujung sudu selalu kontak dengan permukaan dalam rumah pompa membentuk sekat-sekat didalam pompa.Gambar vane pump dapat dilihat pada gambar

2.5. dibawah ini.

(14)

3) Screw pumps

Pompa skrup ini mempunyai satu, dua, tiga yang berputar dalam rumah pompa yang diam. Tersedia sejumlah besar desain untuk berbagai penggunaan.Gambar screw pump dapat dilihat pada gambar 2.6. dibawah ini.

Gambar 2.6.Screw Pump 4) Lobe pumps

Pompa cuping (lobe pumps) ini mirip dengan pompa jenis pompa roda gigi dalam hal aksinya dan mempunyai dua rotor atau lebih dengan dua, tiga, empat kuping atau lebih pada masing-masing rotor. Pompa ini biasa digunakan pada berbagai macam jenis aplikasi industry yang disebutkan tadi karena:

- Memberikan kualitas yang baik dalam kesehatan. - Efisiensi tinggi.

- Tahan uji.

- Tahan terhadap korosi. - Kebersihan ditempat baik.

Untuk gambarlobe pumpdapat dilihat pada gambar 2.7. dibawah ini.

(15)

b. Reciprotating.

Pompa reciprotating adalah pompa dimana energi mekanik dari penggerak pompa diubah menjadi energi aliran dari cairan yang dipompa dengan menggunakan elemen yang bergerak bolak-balik di dalam silinder.

1) Diaphragm Pump

Pompa diaphragm ini memiliki daya hisap yang baik, beberapa diantaranya merupakan pompa bertekanan rendah dengan laju aliran yang rendah pula, terdapat pula pompa yang memungkinkan untuk laju aliran yang tinggi, tergantung diameter kerja efektif diaghragm dan lebar langkah.Gambar diaphragm pump

dapat dilihat pada gambar 2.8. dibawah ini.

Gambar 2.8.Diaphragm Pump

2. Non Positive Displacement Pump(Dynamic Pump)

Pompa dinamik atau dynamic pumps merupakan pompa yang bekerja dengan cara memutar impeler yang akan merubah energi kinetik menjadi tekanan atau kecepatan yang diperlukan untuk memompa fluida. Pompa ini terdiri dari centrifugal pumps (pompa sentrifugal) dan special effect

(khusus).

2.5 Teori Dasar Pompa Sentrifugal

(16)

impeler oleh dorongan sudu-sudu ikut berputar. Karena timbulnya gaya sentrifugal maka fluida mengalir dari tengah impeler keluar melalui saluran di antara sudu-sudu. Disini head tekanan fluida menjadi lebih tinggi. Demikian juga head kecepatannya bertambah besar karena zat cair mengalami percepatan. Fluida yang keluar dari impeler dan disalurkan keluar pompa melalui nosel. Di dalam nosel ini sebagian head kecepatan aliran diubah menjadi head tekanan.

Pompa sentrifugal (gambar 2.1)dapat mengubah energi mekanik

dalam bentuk kerja poros menjadi energi fluida. Dalam hal ini pompa sentrifugal disebut juga mesin kerja sedangkan impeler pompa berfungsi memberikan kerja kepada fluida sehingga energi yang dikandungnya menjadi tambah besar. Selisih energi per satuan berat atau head total zat cair antara pipa hisap (suction) dan pipa keluar (discharge) pompa disebut head

total pompa.

2.5.1 Klasifikasi Pompa Sentrifugal 1. Berdasarkan bentuk impelernya

a. Pompa aliran radial

Pompa aliran radial mempunyai impeller yang membuang cairan ke dalam rumah spiral yang secara berangsur – angsur berkembang. Hal ini bertujuan untuk mengurangi kecepatan cairan sehingga dapat dirubah menjadi tekanan statis. Pompa radial mempunyai kontruksi yang mengakibatkan zat cair keluar dari impeler arah alirannya akan tegak lurus dengan poros pompa

(17)

b. Pompa aliran aksial

Pompa aliran aksial menghasilkan tekanan tinggi oleh propeller akibat aksi pengangkatan baling – baling pada cairan. Diameter sisi buang sama besar dengan diameter sisi masuk. Pompa aksial mempunyai kontruksi yang mengakibatkan zat cair keluar dari impeler arah alirannya akan sejajar dengan poros pompa.

Gambar 2.10 Pompa aliran aksial c. Pompa aliran radial dan axial ( aliran campur)

Pompa aliran campuran menghasilkan tinggi tekanan atau head sebagian oleh pengangkatan baling-baling pada cairan. Arah aliran berbetuk kerucut mengikuti bentuk impelernya. Diameter sisi buang baling-baling lebih besar dari diameter sisi masuk.

Gambar 2.11 Pompa aliran campur d. Peripheral

(18)

2. Berdasarkan bentuk rumah pompa

1. Pompa volut, pompa dengan rumah berbentuk volut

Pada pompa ini diperlihatkan sebuah impeller mengeluarkan cairan ke dalam rumah berbentuk spiral, untuk mengurangi secara proporsional kecepatan cairan. Dengan demikian, sebagian energi kecepatan cairan diubah ke bentuk energi tekanan.

Gambar 2.12 Pompa Volut Gambar 2.13 Pompa difuser

2. Pompa difuser, pompa dengan rumah berbentuk diffuser

Sudu-sudu pengaur stasioner mengelilingi impeler dalam pompa jenis diffuser. Saluran yang membesar bertahap ini mengubah arah aliran cairan dan mengubah energy kecepatan kepada head tekan.

2.5.2 Bagian-bagian Utama Pompa Sentrifugal

Secara umum bagian-bagian utama pompa sentrifugal dapat dilihat sepert gambar berikut :

(19)

A. Stuffing Box

Stuffing Box berfungsi untuk mencegah kebocoran pada daerah dimana poros pompa menembus casing.

B. Packing

Digunakan untuk mencegah dan mengurangi bocoran cairan dari casing pompa melalui poros. Biasanya terbuat dari asbes atau teflon.

C. Shaft(poros)

Poros adalah alat yang berfungsi untuk menyalurkan momen putar atau gaya putar dari penggerak pompa kepada impeler. Poros harus berukuran cukup guna menahan beraneka macam beban yang disalurkan oleh penggerak, impeler packing dan lain-lain. Sumbu pompa dibuat sebagai sumbu sambungan tunggal dan sambungan ganda. Sumbu sambungan ganda menjorok melalui kedua bantalannya melalui pompa rumah belah horizontal dan diputar dari salah satu penggerak utama.

D. Shaft sleeve

Shaft sleeve berfungsi untuk melindungi poros dari erosi, korosi dan keausan pada stuffing box. Pada pompa multi stage dapat sebagai leakage joint, internal bearing dan interstage atau distance sleever.

E. Vane

Sudu dari impeller sebagai tempat berlalunya cairan pada impeller.

F. Casing

(20)

stage). Rumah pompa biasanya terbuat dari besi tuang. Rumah pompa sentrifugal berupa terbelah horizontal (aksial), vertikal (radial). Rumah belah horizontal disebut juga rumah belah aksial. Kedua model pengeluaran dan hisapannya biasanya ada pada bodi rumah yang bawah. Belahan yang atas untuk memudahkan inspeksi. Rumah belah vertikal juga dinamakan rumah belah radial, digunakan pada pompa jenis sambungan tertutup juga pada rancangan bagian hisap yang dipasang pada rangka. Pompa rumah dinding diklasifikasikan sebagai rumah belah vertikal untuk pompa multi tingkat (multistage) yang digunakan untuk pompa tekanan

tinggi.

G. Eye of Impeller

Merupakan Bagian sisi masuk pada arah isap impeller.

H. Impeller

Impeler biasanya terbuat dari besi cor. Untuk fluida-fluida khusus, impeler ini dapat dibuat dari baja tahan karat, timah hitam, kaca atau bahan-bahan sesuai dengan keperluannya. Macam-macam impeler yaitu :

 Impeler terbuka yaitu impeler yang mempunyai baling-baling yang

dipasang pada pusat poros dengan dinding yang relatif kecil.

 Impeler semi terbuka, yaitu impeler yang mempunyai selubung atau

dinding pada satu sisi saja

 Impeler tertutup, yaitu impeler yang mempunyai selubung atau dinding

pada kedua sisinya untuk menutup aliran fluida

Disamping diklasifikasikan sesuai dengan kecepatan spesifik (analisis pompa), jenis impeler dan bagaimana fluida masuk, detail dari sudu-sudu

vanesdan kegunaannya. Impeler yang terbuka dilengkapi dengan sudu-sudu

(21)

I. Wear Ring

Wear ring berfungsi untuk memperkecil kebocoran cairan yang

melewati bagian depan impeller maupun bagian belakang impeller, dengan cara memperkecil celah antara casing dengan impeller.

J. Bearing

Bearing(bantalan) berfungsi untuk menumpu dan menahan beban dari

poros agar dapat berputar, baik berupa beban radial maupun beban axial. Bearing juga memungkinkan poros untuk dapat berputar dengan lancar dan tetap pada tempatnya, sehingga kerugian gesek menjadi kecil.

2.5.3 Prinsip Kerja Pompa Sentrifugal

Dalam aplikasinya digunakan tekanan atmosfer, atau tekanan lainnya, untuk memberi gaya pada fluida yang kemudian impeller akan mengeluarkan fluida dengan kecepatan keluar yang lebih tinggi. Kecepatan ini kemudian dikonversi ke energi tekanan. Pompa sentifugal meningkatkan tekanan dengan mempercepat fluida kerja lalu memperlambatnya.

Fluida masuk melalui suction pompa keimpeller, lalu terperangkap

di antara sudu impeller. Impeller yang berputar membuat fluida bergerak

cepat dan terjadi peningktan kecepatan. Dengan Hukum Bernoulli di mana

ketika kecepatan meningkat maka terjadi penurunan tekanan, dan dengan adanya daerah bertekanan-rendah di impeller, maka fluida yang

meninggalkan diameter luar impeller akan menghantam dinding dalam volute. Dengan begitu kecepatan akan menurun dan terjadi peningkatan

tekanan, yang berarti kecepatan kini dikonversi menjadi head atau tekanan

di discharge. Karena diameter impeller dan kelajuan motor cenderung

konstan maka pompa sentrifugal tergolong ke mesin denganhead (tekanan)

(22)

2.5.4 Komponen-komponen Pompa Sentrifugal 1. Impeller

Impeller mengkonversi putaran mekanis ke kecepatan fluida, yang

beroperasi seperti roda berputar. Impeller biasa dibentuk dengan proses casting, sangat jarang melalui proses fabrikasi dan pengelasan. Beberapa impeller dilengkapi balance hole dan back vane untuk mereduksi beban

aksial yang diakibatkan tekanan hidraulik. Untuk mereduksi losses akibat resirkulasi dan untuk meningkatkan efisiensi volumetrik maka ditambahkan

wearing ring.

Impeller dibedakan dalam tiga jenis, seperti yang sudah disebutkan,

closed, open, dan semi-open. Closed impeller terdiri dari radial vane yang tertutup dari kedua sisi oleh duadisk yang disebutshroud, di mana jenis ini memiliki wear ring pada suction eye dan bisa juga memilikinya pada discharge eye. Semi-open impeller merupakan yang paling efisien dilihat

dari pengeliminasian gesekan disk, namun beban aksial dari impeller ini

umumnya lebih besar dari closed impeller. Open impeller memiliki tiga

jenisshroud:fully-calloped,partially shroud, danvortex.

2. Poros (Shaft)

Pasangan rotor pompa meliputi poros, impeller, sleeve, seal, bearing¸dan coupling halve, di mana poros kemudian menjadi kunci utama

rotor pompa. Poros menjadi bagian yang terkena beban selama operasi yang dapat berupa tension, compression, bending, dan torsi, yang dapat

mengakibatkan kegagalan lelah (fatigue).

3. Rumah Pompa

Pada keluaran impeller kecepatan fluida dapat mencapai 30-40 m/s yang lalu akan direduksi hingga 3-7 m/s didischarge. Reduksi ini terjadi di

(23)

agar tidak banyak mempengaruhi efisiensi pompa. Berbagai jenis

recuperator adalah vaneless guide ring, concentric casing, volute casing, diffuser ring vanes,diagonal diffuser vanes, danaxial diffuser vane.

4. Bantalan (Bearing)

Fungsi bearing pada pompa sentrifugal adalah menahan poros atau rotor untuk tetap berada pada garis arah (alignment) yang benar terhadap bagianstationary di bawah beban radial dan aksial. Maka itu terdapat dua

bearing, yaitu radial bearing yang memposisikan secara radial dan thrust bearingyang memposisikan secara aksial.

5. Mechanical Seal

Mechanical sealdilengkapi oleh dua permukaan lekat yang sempurna,

satu diam (bagian stationary) dan lainnya bergerak (bagian rotary).

Ketahanan kebocoran, yang pada gland packing berada di sepanjang axis

dari poros, berada pada sumbu ortogonal. Permukaansealtidak dapat saling

bekerja tanpa adanya pelumas karena dapat mengakibatkan keausan dengan cepat dan malah dapat mengakibatkan kebocoran. Biasanya fluida sealant

akan diinjeksi ke seal housing pada tekanan tertentu, yang mana akan

melubrikasi dan mendinginkanface.

(24)

2.6 Mechanical Seal

Adalah suatu alat mekanis yang berfungsi untuk mencegah kebocoran fluida dari ruang/wadah yang memiliki poros berputar. Pengesilan terjadi karena alat mekanis tersebut memiliki 2 buah komponen muka akhir (end faces) pada posisi 90° terhadap sumbu poros yang senantiasa kontak satu dengan lainnya, karena adanya gaya axial dari pegas/spring. Mechanical seal umumnya terpasang pada bermacam jenis pompa seperti, centrifugal pump, gear pump, screw pump. Juga bisa dipasang pada peralatan mixer/agitator serta centrifugal/screw compressor. Dengan demikian bisa diambil simpulan definisi Mechanical Seal adalah Sebuah alat pengeblok cairan/gas pada suatu rotating equipment.

Mechanical Seal yang terpasang pada peralatan pompa desainnya disesuaikan dengan kondisi operasi pompa tersebut, biasanya tergantung dengan faktor–faktor berikut:

a. Tekanan cairan (Pressure) b. Suhu cairan (Temperatur) c. Jenis cairan, Vapour pressure d. Ukuran poros (Shaft size)

e. Kecepatan putaran (Spead atau RPM)

2.6.1 Fungsi Mechanical Seal

(25)

Seal facesadalah bagian paling penting, paling utama dan paling

kritis dari sebuah Mechanical Seal dan merupakan titik primary sealing. Terbuat dari bahan Carbon dengan serangkaian teknik pencampuran, atau keramik atau Ni-resist, atau Silicone Carbide atau Tungsten Carbide. Seal faces berarti ada 2 sealface. Yang satu diam dan melekat pada dinding pompa, dan yang lainnya berputar, melekat pada shaft. Yang berputar biasanya terbuat dari bahan yang lebih lunak. Kombinasinya bisa berupa carbon versus silicone carbide, carbon vs ceramic, carbon vs tungten carbide, silicone carbide vs silicone carbide, silicone carbide vs tungsten carbide.

Gambar 2.16 Bagian - bagianMechanical Seal

Setelah memahami bagian-bagian yang menyusun Mechanical Seal, maka bisa dilanjutkan bahwa MechanicalSeal adalah suatu sealing device yang merupakan kombinasi menyatu antara sealface yang melekat pada shaft yang berputar dan sealface yang diam dan melekat pada dinding statis casing/housing pompa/tangki/vessel/kipas.

(26)

Dengan demikian bisa diambil simpulan definisi Mechanical Seal adalah Sebuah alat pengeblok cairan/gas pada suatu rotating equipment, yang terdiri atas:

1. Dua buah sealface yang bisa aus, dimana salah satu diam dan satunya lagi berputar, membentuk titik pengeblokan primer (primary sealing).

2. Satu atau sekelompok o-ring/bellows/PTFE wedge yang merupakan titik pengeblokan sekunder (secondary sealing).

3. Alat pembeban mekanis untuk membuat sealface saling menekan. 4. Asesoris metal yang diperlukan untuk melengkapi rangkaian

Mechanical Seal.

2.6.2 Komponenkomponen Mechanical Seal

Gambar 2.17 Komponen Mechanical Seal

Komponen-komponenmechanical sealdikelompokkan menjadi dua bagian yaitu bagian yang berputar dan bagian yang stasioner.

1. KomponenBerputar

Bagian darimechanical sealyang berputar, terkoneksi secara

(27)

bellows(8). Tekanan dari pegas (6) yang diteruskan olehtorque transmission ring(7), menjaga agarrubber bellowsselalu menempel ke

sisishaftdan ikut berputar.

Pegas (6) berfungsi untuk mentransfer tekanan ketorque transmission ringsisi atas dan bawah (5 dan 7). Tekanan yang didistribusikan melaluitorque transmission ringsisi atas (5) akan diteruskan kerotating seal ring(4).Rotating seal ringadalah komponenmechanical sealyang terpasang dan ikut berputar bersamarubber bellows. Komponen ini bergesekan langsung dengan bagian yang stasioner.

Sifatrubber bellowsyang elastis dan fleksibel secara aksial, berfungsi

untuk mencegah kebocoran fluida kerja di antarashaft(9) denganrotating seal ring(4). Tekanan dari pegas serta sifatrubber bellowsyang dapat

berdeformasi secara aksial, akan menjaga semua komponen seal saling menekan sehingga tidak terjadi kebocoran pada saat pompa beroperasi maupun tidak.

2. KomponenStasioner

Komponen-komponenmechanical sealyang diam terkoneksi

dengancasing/housingpompa (1). Komponen tersebut terdiri atas sebuah

dudukan/stationery seat(3) dansecondary rubber seal(2).Secondary rubber sealberfungsi untuk mencegah terjadinya kebocoran di antara

dudukan dengancasingpompa. Sedangkanstationery seatmenjadi

komponen yang bergesekan langsung denganrotating seal ring. Oleh

karena itu,secondary rubber(karet)sealjuga berfungsi untuk menjagastationery seatagar tidak berputar mengikuti putaranrotating seal ringtersebut.

Pada saat pompa bekerja, di antara dua komponenmechanical sealyang saling bergesekan yaknistationery seatdanrotating sealdidesain terbentuk sebuah lapisan film. Lapisan ini terbentuk dari fluida kerja yang sangat sedikit jumlahnya keluar melalui sela-sela komponen-komponenmechanical seal. Lapisan film tersebut berfungsi sebagai

(28)

tinggi. Penguapan tersebut tidak kasat mata, dan karena jumlahnya yang sangat sedikit maka dapat diabaikan. Namun apabila komponen-komponenmechanical sealtidak bekerja dengan baik, maka dapat menimbulkan kebocoran yang lebih besar.

2.6.3 Cara Kerja Mechanical Seal

Titik utama pengeblokan dilakukan oleh dua sealfaces yang permukaannya sangat halus dan rata. Gesekan gerak berputar antara keduanya meminimalkan terjadinya kebocoran. Satu sealface berputar mengikuti putaran shaft, satu lagi diam menancap pada suatu dinding yang disebut denganGlandplate. Meterial dua sealfaces itu biasanya berbeda.

Yang satu biasanya bersifat lunak, biasanyacarbon-graphite, yang lainnya

terbuat dari material yang lebih keras sepertisilicone-carbide. Pembedaan

antara material yang digunakan padastationary sealfacedanrotating sealfaceadalah untuk mencegah terjadinyaadhesiantara dua buah sealfaces

tersebut. Pada sealface yang lebih lunak biasanya terdapat ujung yang lebih kecil sehingga sering dikenal sebagai wear-nose (ujung yang bisa habis atau aus tergesek).

(29)

Ada 4 (empat) titik sealing/pengeblokan, yang juga merupakan jalur kebocoran jika titik pengeblokan tersebut gagal.

(30)

Mulai

BAB III METODOLOGI

3.1 Diagram Alir Penelitian

Langkah-langkah yang dilakukan dalam melakukan penelitian adalah sebagai berikut :

Gambar 3.1 Skema Penelitian

3.2 Waktu Dan Tempat

Waktu : 5 Februari s.d 30 Februari 2016 Tempat : PDAM Intan Banjar

Studi Literatur

Tinjauan Lapangan

Identifikasi Masalah

Pengambilan Data

Pengolahan Data dan Analisa Data

Seminar

(31)

3.3 Metode Penelitian

Metode yang dipakai untuk mendapatkan data-data yang diperlukan dalam kerja praktek ini adalah sebagai berikut :

1. Mengamati dan melihat langsung proses pengoperasian instalasi pompa.

( mengamati alat ukur RPM pompa ,kinerja dan operasi pompa) 2. Wawancara langsung dengan operator dan Supervesior

pompa serta pihak-pihak lain yang berkepentingan.

3. Studi literature dari buku-buku yang terkait dengan kasus ini. 4. Membaca dan melakukan pengolahan data-data lapangan

maupun dari log sheet operator.

3.4 Metode Analisis Kasus

Studi lapangan dilakukan untuk mengamati secara langsung instalasi pompa. Pemasangan Mechanical Seal serta perawatan dan data-data lainnya dilakukan di lapangan PDAM Intan Banjar.

Adapun komponen yang perlu diperhatikan dalam pengambilan data yaitu pompa GRUNDFOS dan Mechanical Seal.

(32)

Gambar 3.2 pompa GRUNDFOS

Voltase = 380 V Arus Listrik = 220 A Daya motor = 200 Kw Bhp = V x I x Cosϕ

= 380 Volt x 220 A x 0,89

= 74404 watt, atau 74,404 kilo watt

3.6 Cara Kerja Pompa

Pada prinsipnya, pompa mengubah energi mekanik motor menjadi energi aliran fluida. Energi yang diterima oleh fluida akan digunakan untuk menaikkan tekanan dan mengatasi tahanan-tahanan yang terdapat pada saluran yang dilalui.

Pompa ini digerakkan oleh motor. Daya dari motor diberikan pada poros pompa untuk memutar impeler yang dipasangkan pada poros tersebut. Akibat dari putaran impeler yang menimbulkan gaya sentrifugal, maka zat cair akan mengalir dari tengah impeler keluar lewat saluran di antara sudu-sudu dan meninggalkan impeler dengan kecepatan yang tinggi.

Zat cair yang keluar dari impeler dengan kecepatan tinggi kemudian melalui saluran yang penampangnya semakin membesar yang disebut volute,

sehingga akan terjadi perubahan dari head kecepatan menjadi head tekanan. Jadi zat cair yang keluar dari flens keluar pompa head totalnya bertambah

besar. Sedangkan proses pengisapan terjadi karena setelah zat cair dilemparkan oleh impeller, ruang diantara sudu-sudu menjadi vakum, sehingga zat cair akan terisap masuk.

Selisih energi persatuan berat atau head total dari zat cair pada flens

keluar dan flens masuk disebut sebagai head total pompa. Sehingga dapat

(33)

motor menjadi energi aliran fluida. Energi inilah yang mengakibatkan pertambahan head kecepatan, head tekanan dan head potensial secara kontinu.

Keuntungan pompa sentrifugal dibandingkan jenis pompa lain :

1. Pada head dan kapasitas yang sama, dengan pemakaian pompa sentrifugal umumnya paling murah.

2. Operasional paling mudah 3. Aliran seragam dan halus. 4. Kehandalan dalam operasi. 5. Biaya pemeliharaan yang rendah.

Agar pompa berjalan dengan baik maka harus dilakukan perawatan dan pemeliharaan terhadap pompa. Pemeliharaan pompa sentrifugal adalah dengan melakukan pemeriksaan harian, bulanan, tahunan, pemeriksaan bagian aus dan penelusuran terhadap gangguan terutama pada bagian mechanical seal.

Gambar 3.3 Mechanical Seal

3.7 Prosedur Kerja

Penelitian ini dimulai dengan melakukan peninjauan di lapangan untuk mengetahui kondisi terkini dari pompa dan historisis kerusakan yang selama ini terjadi serta upaya perbaikan yang telah dilakukan. Metode yang digunakan adalah metode visual atau pengamatan langsung pada unit pompa sentrifugal Grundfos dan wawancara di lapangan.

(34)

pada pompa tersebut. Salah satu upaya preventive maintenance yang dilakukan pihak PDAM Intan Banjar adalah menganalisa kondisi motor dan pompa

(condition monitoring)dengan menggunakan pengamatan secara visual.

Pengamatan secara visual dilakukan pada komponen pompa atau motor yang mengalami kerusakan saat pembongkaran berlangsung. kerusakan-kerusakan yang terjadi pada pompa sentrifugal Grundfos diketahui, selanjutnya dilakukan Root Cause Faure Analysis (RCFA) dengan menngunakan konsep Ishikawa diagram. Konsep Ishikawa diagaram digunakan untuk menetukan akar penyebab dari kerusakan-kerusakan yang terjadi, seperti yang ditampilkan pada gambar dibawah .

Gambar 3.4Ishikawa diagram

Ishikawa diagram dibuat pada keseluruhan komponen yang ada pada pompa sentrifugal dan dianalisa pada komponen yang mengalami kerusakan. Komponen yang mengalami kerusakan ini nantinya akan dianalisa lagi dengan menggunakan Ishikawa diagram yang lebih mendalam pada jenis kerusakan yang terjadi. Langkah seperti ini dilakukan terus hingga didapat akar dari penyebab kerusakan dan gejala kerusakan yang paling dominan.

(35)

Dalam perumusan FMEA suatu objek, terdapat beberapa langkah-langkah yang harus dilakukan antara lain:

1. Menentukan objek atau sistem yang akan dianalisa . 2. Membuat hierarkiequipmentdari objek yang telah dipilih.

3. Merumuskan mode dan penyebab kegagalan. 4. Menganalisa dampak dari kerusakan yang terjadi. 5. Menentukan target yang akan dilindungi.

6. Menetapkan nilaiseverity.

7. Menetukan probabilitas kerusakan yang terjadi.

8. Menentukanrisk codedengan menggunakanrisk matrix.

(36)

DAFTAR PUSTAKA

Anis, Samsudin Dan Karnowo, 2008, Buku Ajar Dasar Pompa, PKUPT UNNES, Universitas Negeri Semarang,

Brennen, Christopher E, Hydrodynamics of Pumps, California Institute of Technology Pasadena,California

Priyahananda Onny. 2006. Bagian-bagian Pompa Sentrifugal, http://onnyapriyahanda.com/bagian- bagian-pompa-sentrifugal/ Dietzel, Fritz, 1986, Turbin Pompa dan Kompresor, Erlangga, Jakarta

Agus suswasono.“Teori dasar pompa sentrifugal”6 November 2016 http://www.agussuwasono.com/artikel/mechanical/65-teori-dasar-pompa-sentrifugal.html?showall=1

Pugh, M, 2000. EPRI Technical Report, Mechanical seal Maintenance and Appli- cation Guide. EPRI, Palo Alto, CA: 2000. 1000987.

Metallized Carbon Corp. 2013.Mechani- cal seal primary rings seal low-viscosity liquids.Sealing Technology Magazine, October 2013.

Editor: Simon Atkinson. Editorial Office: Elsevier Ltd, Langford Lane Kidlington, Oxford, UK.

Cundif, Jhon S,Fluid Power Circuit and Control Fundamentals Aplications, Boca Raton London New York Washington, D.C.

Brennen, Christopher E,Hydrodynamics of Pumps,California Institute of Technology Pasadena,California

(37)

Gambar

Gambar 2.1.a)  Pemasukan dengan hisapan danb)  Pemasukkan dengan dorongan/tekanan
Gambar 2.2. a)  Penampang impeler
Gambar 2.3. Klasifikasi Pompa
Gambar 2.5.Vane Pump
+7

Referensi

Dokumen terkait

Abstrak: Bencana alam baik yang disebabkan oleh gejala alamiah maupun akibat kelalaian manusia senantiasa menimbulkan akibat-akibat atau dampak yang tidak diinginkan,

NPV digunakan untuk menilai selisih nilai sekarang suatu investasi dengan nilai sekarang perolehan kas bersih di masa yang akan mendatang. Perhitungan net present

Pembelajaran yang menuntun pada penemuan konsep berdasarkan sejarah akan memberikan pemahaman yang berbeda tentang konsep dan mata kuliah sejarah kimia itu sendiri..

Hasil penelitian dalam disertasi Sularto (2007), dimana bertujuan untuk melakukan pengujian secara empiris pengaruh program periklanan melalui Internet serta pemasaran melalui

Oleh yang demikian, untuk mendapatkan proses pengajaran dan pembelajaran mata pelajaran Pendidikan Jasmani yang berkesan, perkara yang paling utama bagi seorang guru mata

DUSUN KAMPUNG BARU DUSUN KAMPUNG BARU DUSUN KAMPUNG BARU DUSUN KAMPUNG BARU DUSUN RANDOMAYANG 1 DUSUN RANDOMAYANG 1 DUSUN RANDOMAYANG 1 DUSUN SALUNGGALUKU DUSUN SALUNGGALUKU

Bandingkan jumlah penerimaan menurut klasifikasi penyumbang antara nilai yang tercantum dalam Daftar Laporan Penerimaan Sumbangan Dana Kampanye (DSPDKP) dengan nilai yang

Tingkat optimisme konsumen pada provinsi di Pulau Sulawesi juga diperkirakan meningkat, yang masing-masing ditunjukkan dengan perkiraan nilai ITK Triwulan III-2016