• Tidak ada hasil yang ditemukan

APPLICATIONS OF CERTAIN FUNCTIONS ASSOCIATED WITH LEMNISCATE BERNOULLI | Halim | Journal of the Indonesian Mathematical Society 115 317 2 PB

N/A
N/A
Protected

Academic year: 2017

Membagikan "APPLICATIONS OF CERTAIN FUNCTIONS ASSOCIATED WITH LEMNISCATE BERNOULLI | Halim | Journal of the Indonesian Mathematical Society 115 317 2 PB"

Copied!
7
0
0

Teks penuh

(1)

J. Indones. Math. Soc.

Vol. 18, No. 2 (2012), pp. 93–99.

APPLICATIONS OF CERTAIN FUNCTIONS

ASSOCIATED WITH LEMNISCATE BERNOULLI

Suzeini Abdul Halim

1

and Rashidah Omar

2

1,2Institute of Mathematical Sciences,

Faculty of Science, University of Malaya, Malaysia, [email protected]

2Faculty of Computer and Mathematical Sciences,

MARA University of Technology Malaysia,

[email protected]

Abstract.ForJ(α, f(z)) = (1−α)zff(z(z))+α[1 +zff′′′((zz))

]

0), denoteSL(α) and SLc as classes of α-convex and convex functions which respectively satisfy

conditions|[J(α, f(z))]2−1|<1 and

[

1 +zff′′′((zz))

]2 −1

<1. Using established

results, namely 1 +βzp′(z) 1+Dz

1+Ez ,1 + βzp′(z)

p(z) ≺ 1+Dz

1+Ez and 1 + βzp′(z)

p2(z) ≺ 1+Dz

1+Ez

implyp(z)≺√1 +z wherep(z) is an analytic function defined on the open unit diskDwithp(0) = 1. This article obtains conditions so that analytic functionsf

belong to the classesSL(α) andSLc.

Key words: Convex functions, differential subordination, lemniscate Bernoulli.

Abstrak. Untuk J(α, f(z)) = (1−α)zff((zz)) +α [

1 +zff′′′((zz))

]

(α ≥ 0), ny-atakanSL(α) dan SLc sebagai kelas-kelas dari konveks-α and fungsi-fungsi

kon-veks yang secaraberturut-turut memenuhi kondisi |[J(α, f(z))]2 −1| < 1 dan

[

1 +zff′′′((zz))

]2 −1

<1. Dengan menggunakan hasil-hasil yang telah diperoleh

se-belumnya, yaitu 1 +βzp′(z)1+Dz

1+Ez ,1 + βzp′(z)

p(z) ≺ 1+Dz

1+Ez dan 1 + βzp′(z)

p2(z) ≺ 1+Dz

1+Ez

mengakibatkan p(z) ≺ √1 +z dimana p(z) adalah sebuah fungsi analitis yang didefinisikan pada cakram bukaDdenganp(0) = 1. Artikel ini memperoleh kondisi-kondisi sehingga fungsi-fungsi analitisf berada dalam kelas-kelasSL(α) danSLc.

Kata kunci: Fungsi Konveks, subordinasi diferensial, lemniscate Bernoulli.

2000 Mathematics Subject Classification: 30C45, 30C50. Received: 25-10-2011, revised: 25-07-2012, accepted: 26-07-2012.

(2)

1. Introduction

LetAdenote the class of all analytic functionsf in the open unit diskD:=

{z∈C:|z|<1} and normalised byf(0) = 0, f′(0) = 1. An analytic functionf is subordinate to an analytic function g, writtenf(z)≺g(z)(z∈D), if there exists an analytic function w in D such that w(0) = 0 and |w(z)| < 1 for |z| < 1 and f(z) =g(w(z)). In particular, ifgis univalent inD, thenf(z)≺g(z) is equivalent tof(0) =g(0) andf(D)⊂g(D). Forf inAandz∈D, the classes of starlikeS⋆, convexCandα-convex functions are defined respectively by the conditions

S⋆= {

z∈D:Rezf ′(z)

f(z) >0 }

C= {

z∈D:Rezf ′′(z)

f′(z) >−1

}

Mα={z∈D:Re[J(α, f(z))]>0} whereJ(α, f(z)) = (1−α)zff(z)′(z)+α[1 + zff′′′(z)(z)

]

, α≥0. Note thatM0=S⋆and M1=C.

Sok´ol and Stankiewicz [5] introduced the class SL⋆ consisting of normalised

analytic functions f in D satisfying the condition [

zf′(z)

f(z) ]2

−1

<1 for z ∈ D.

Geometrically, a function f SL⋆ if zf′(z)

f(z) is in the interior of the right half of the lemniscate of Bernoulli (x2+y2)22(x2y2) = 0. A function in the class SL⋆is called a Sok´ol-Stankiewicz starlike function. Alternatively, we can also write f SL⋆ zf′(z)

f(z) ≺ √

1 +z .Some properties of functions in classSL⋆ have been studied by [1], [4], [6], [7], [8] and [9]. Next, we denote S⋆[A, B] as the class of Janowski starlike functions defined in Janowski [2] consisting of functions f ∈ A satisfying zff(z)′(z)≺ 1+Az

1+Bz (−1≤B < A≤1).

Let SL(α) and SLc denote the classes of α-convex and convex functions

which respectively satisfy|[J(α, f(z))]2−1|<1 and [

1 + zff′′′(z)(z)

]2 −1

<1 (z∈

D). It is obvious that f ∈ SL(α) ⇔ J(α, f(z)) ≺ √1 +z and f ∈ SLc 1 + zff′′′(z)(z) ≺

1 +z . Recently in [4] the authors determined condition on β so

that 1 +βzp′(z),1 +βzp′(z)

p(z) and 1 + βzp′(z)

p2(z) are subordinated to 1+Dz

1+Ez imply p(z) is subordinated to √1 +z where p(z) is analytic inD with p(0) = 1. Properties of functions in the classSL(α) andSLc are obtained using results given in [4]. In proving the lemmas, the following proposition is needed.

(3)

Applications of Certain Functions 95

With appropriate choices of ϕ in Proposition 1.1, and using similar approach as above Lemma 1.3 and Lemma 1.4 is easily verified. Details of proving these lemmas can be found in [4].

(4)

Corollary 2.2. Let β0 = 2√2(1−||DE|E|) , |E| < 1 , |D| ≤ 1 , D ̸= E , β ≥ β0

andf A. Iff satisfies

1 +βzf

′′(z)

f′(z)

{

z[f′′(z)]′

f′′(z)

zf′′(z) f′(z) + 1

}

≺1 +Dz

1 +Ez

thenf ∈ SLc.

Proof. Withp(z) = 1 +zf′′(z)

f′(z) , it follows that

zp′(z) =z

2[f′′(z)]

f′(z) +

zf′′(z) f′(z)

z2[f′′(z)]2 [f′(z)]2

=zf

′′(z)

f′(z)

{

z[f′′(z)]′

f′′(z) + 1−

zf′′(z) f′(z)

} ,

and applying Lemma 1.2 gives 1 +zff′′′(z)(z) ≺ 1+Dz

1+Ez, hencef ∈ SL c.

Theorem 2.3. Let β0= (14|D−|EE|)| andββ0. Suppose f Aand

1+β    

  

(1−α)zf′(z)

[

1−zff(z)′(z)+ zf′′(z)

f′(z) ]

(1−α)zf′(z) +αf(z)[1 + zf′′(z)

f′(z) ] +

αzf′′(z)[1−zff′′′(z)(z)+ z[f′′(z)]

f′′(z) ]

(1−α)f′(z)zf′(z)

f(z) +α[f′(z) +zf′′(z)]    

  

≺1 +1 +Dz Ez

(5)
(6)

and based on Lemma 1.3,f ∈ SLc.

Theorem 2.5. Let β0= 4√(12−||DE|)E| , β≥β0 andf ∈A.

1+βz    

  

(1−α)[f′(z)]3f(z) [

zf′′(z) f′(z) + 1−

zf′(z)

f(z) ]

+α[f(z)]2f(z)f′′(z)[z[f′′(z)]

f′′(z) + 1−

zf′′(z)

f′(z)

]

[(1−α)f′(z)zf(z) +αf(z)[f(z) +zf′′(z)]]2

   

  

≺1 +1 +Dz

Ez ⇒f ∈ SL(α).

Proof. Using Lemma 1.4 withp(z) = (1α)[zf′(z)

f(z) ]

+α[1 +zff′′′(z)(z)

]

gives the desired result.

Corollary 2.6. Let β0= 4

2|D−E|

(1−|E|) , β ≥β0 andf ∈A.

1 +β zf

(z)f′′(z)

[f′(z) +zf′′(z)]2

{z[f′′(z)]

f′′(z) + 1−

zf′′(z)

f′(z)

}

≺ 1 +1 +Dz

Ez ⇒f ∈ SL c

.

Proof. Setp(z) = 1 +zf′′(z)

f′(z) and in a similar manner the result is easily obtained.

3. Concluding Remark

Forα= 0, Theorem 2.1, Theorem 2.3 and Theorem 2.5 reduce to the results forf SL⋆.

AcknowledgementThis research was supported by University of Malaya grants: UMRG108/10APR.

References

[1] Ali, R.M., Chu, N.E., Ravichandran, V. and Sivaprasad Kumar, S. First order differential subordination for functions associated with the lemniscate of Bernoulli,Taiwanese Journal of Mathematics,16(3) (2012) 1017-1026.

[2] Janowski, W., Some extremal problems for certain families of analytic functions I, Ann. Polon. Math.,28(1973) 297-326.

[3] Miller, S.S. and Mocanu, P.T., Differential subordination, theory and application, Marcel Dekker, Inc., New York, Basel, 2000.

(7)

Applications of Certain Functions 99

[5] Sok´ol, J. and Stankiewicz, J. Radius of convexity of some subclasses of strongly starlike functions,Folia Scient. Univ. Tech. Resoviensis,19(1996) 101-105.

[6] Sok´ol, J., Radius problems in the classSL⋆,Applied Mathematics and Computation,214

(2009) 569-573.

[7] Sok´ol, J., Coefficient estimates in a class of strongly starlike functions,Kyungpook Math. J.,

49(2009) 349-353.

[8] Sok´ol, J., On application of certain sufficient condition for starlikeness,J. Math. Appl.,30

(2008) 46-53.

Referensi

Dokumen terkait

Dengan ini diumumkan Pemenang Seleksi Sedehana dengan metode evaluasi biaya terendah untuk paket pekerjaan sebagaimana tersebut diatas sebagai

Bagi peserta yang keberatan atas pengumuman pemenang lelang tersebut di atas dapat mengajukan sanggahan secara tertulis kepada Pokja Pengadaan Jasa Konstruksi

Pengadaan Pos Pantau Portable/C ontainer Pelelangan 1 (satu) paket Kab.. Tanah

Ada juga beberapa pendukung dari masyarakat, salah satunya bernama Thabita berumur 25 tahun merasa perlu untuk menjaga kesehatan mata anaknya terutama melarang membaca

terbanyak yang sama lebih dari 1 (satu) calon pada desa dengan TPS lebih dari 1 (satu), calon terpilih ditetapkan berdasarkan suara terbanyak pada TPS dengan jumlah

[r]

Contoh seni hanya untuk seni tidak untuk masyarakat maka itu hanyalah separuh dunia dan bersifat analitik a priori; contoh yang lain dari analitik a priori

( p =0,020) terdapat perbedaan kepatuhan pengaturan diet sebelum dan sesudah diberikan edukasi diabetes antara kelompok intervensi dan kelompok kontrol.. Disimpulkan