• Tidak ada hasil yang ditemukan

Paper-03-22-2010. 118KB Jun 04 2011 12:03:08 AM

N/A
N/A
Protected

Academic year: 2017

Membagikan "Paper-03-22-2010. 118KB Jun 04 2011 12:03:08 AM"

Copied!
10
0
0

Teks penuh

(1)

SUBORDINATION PROPERTIES FOR CERTAIN CLASS OF ANALYTIC FUNCTIONS DEFINED BY AN EXTENDED

MULTIPLIER TRANSFORMATION

M. K. Aouf and M. M. Hidan

Abstract. In this paper we derive several subordination results for certain class of analytic functions defined by an extended multiplier transformation.

2000Mathematics Subject Classification: 30C45. 1. Introduction

LetA denote the class of functions of the form:

f(z) =z+ ∞ X

k=2

akzk

which are analytic in the open unit disc U ={z:|z|<1}. We also denote byK the class of functions f(z)∈A that are convex inU.

Many essentially equivalent definitions of multiplier transformation have been given in literature(see [5], [6], and [10]). In [4] Catas defined the operator Im(λ, ℓ) as follows:

Definition 1 . [4] Let the function f(z) ∈ A. For m ∈ No = N∪ {0}, where N={1,2,3, ...}, λ≥0, ℓ≥0. The extended multiplier transformationIm(λ, ℓ) on

A is defined by the following infinite series:

Im(λ, ℓ)f(z) =z+ ∞ X

k=2

1 +λ(k−1) +ℓ

1 +ℓ

m

akzk. (1)

It follows form(1.1) that Io(λ, ℓ)f(z) =f(z),

λzIm((λ, ℓ)f(z))´= (1 +ℓ)Im+1(λ, ℓ)f(z)−(1−λ+ℓ)Im(λ, ℓ)f(z) (λ >0) (2)

and

Im1(λ, ℓ)(Im2(λ, ℓ))f(z)) =Im1+m2(λ, ℓ)f(z) =Im2(λ, ℓ)(Im1(λ, ℓ)f(z)). (3)

(2)

We note that:

(i) Im(1,0)f(z) =Dmf(z) (see[8]); (ii)Im(λ,0)f(z) =Dm

λ f(z) (see [1]);

(iii) Im(1, ℓ)f(z) =Im(ℓ)f(z) (see [5] and [6]); (iv)Im(1,1)f(z) =Imf(z) (see[10])..

Also if f(z)∈A, then we can write

Im(λ, ℓ)f(z) = f ∗ϕmλ,ℓ (z),

where

ϕmλ,ℓ(z) =z+ ∞ X

k=2

1 +λ(k−1) +ℓ

1 +ℓ

m

zk. (4)

LetGm(λ, ℓ, µ, b) denote the subclass ofAconsisting of functionsf(z) which satisfy: Re

1 +1

b

(1−µ)I

m(λ, ℓ)f(z)

z +µ(I

m(λ, ℓ)f(z))1

>0 (5) or which satisfy the following inequality:

(1−µ)Im(λ,ℓz)f(z)+µ(Im(λ, ℓ)f(z))′−1 (1−µ)Im(λ,ℓz)f(z) +µ(Im(λ, ℓ)f(z))1 + 2b

<1 (6)

where z∈U;µ≥0;λ >0;ℓ≥0;m∈No;bC∗=C\{0}.

We note that:

(1)Gm(1,0, µ, b) =Gm(µ, b) (see Aouf [2]); =

f ∈A: Re

1 +1

b

(1−µ)D mf(z)

z +µ(D

mf(z))1>0; zU (7)

(2)Gm(λ,0, µ, b) =Gm(λ, µ, b) =

f ∈A: Re

1 +1

b

(1−µ)D m λ f(z)

z +µ(D

m

λf(z))′−1

>0; z∈U

; (8) (3)Gm(1, ℓ, µ, b) =Gm(ℓ, µ, b)

=

f ∈A: Re

1 +1

b

(1−µ)I

m()f(z)

z +µ(I

m()f(z))1>0;zU; (9) (4)Gm(1,1, µ, b) =Gm(µ, b)

=

f ∈A: Re

1 +1

b

(1−µ)I mf(z)

z +µ(I

(3)

(5)Gm(λ, ℓ,0, b) =Gm(λ, ℓ, b) =

f ∈A: Re

1 +1

b

Im(λ, ℓ)f(z)

z −1

>0; z∈U

; (11)

(6) Gm(λ, ℓ,1, b) =Rm(λ, ℓ, b) =

f ∈A: Re

1 +1

b

(Im(λ, ℓ)f(z))′−1

>0; z∈U

. (12)

Definition 2 (Hadamard Product or Convolution). Given two functions f and g in the class A, where f(z) is given by (1.1) and g(z) is given by

g(z) =z+ ∞ X

k=2

bkzk (13)

the Hadamard product (or Convolution) f ∗g is defined (as usual)by

(f∗g) (z) =z+ ∞ X

k=2

akbkzk= (g∗f) (z) (z∈U).

Definition 3 (Subordination Principal). For two functions f and g, analytic in U, we say that the function f(z) is subordinate to g(z) in U, and write f(z) ≺

g(z) (z∈U), if there exists a Schwarz function ω(z), which (by definition) is ana-lytic in U with ω(0) = 0 and |ω(z)|< 1, such that f(z) = g(ω(z)) (z∈U). Indeed it is known that

f(z)≺g(z) (z∈U)⇒f(0) =g(0)and f(U)⊂g(U).

Furthermore, if the function g is univalent in U, then we have the following equiva-lence [7,p.4]

f(z)≺g(z) (z∈U)⇔f(0) =g(0)and f(U)⊂g(U).

Definition 4 (Subordinatiry Factor Sequence). A sequence{bk}∞k=1of complex

num-bers is said to be a subordinating factor sequence if, whereverf(z) of the form (1.1) is analytic, univalent and convex in U, we have the subordination given by

∞ X

k=1

(4)

2.main result

To prove our main result we need the following lemmas.

Lemma 1 [11]. The sequence {bk}∞k=1 is a subordinating factor sequence if

Re (

1 + 2 ∞ X

k=1

bkzk )

>0 (z∈U).

Now, we prove the following lemma which gives a sufficient condition for functions belonging to the class Gm(λ, ℓ, µ, b).

Lemma 2 Let the function f(z) which is defined by (1.1) satisfies the following condition:

∞ X

k=2

[1 +µ(k−1)]

1 +λ(k−1) +ℓ

1 +ℓ

m

|ak| ≤ |b| (µ≥0;λ >0;ℓ≥0;m∈No;b∈C∗), (15)

then f(z)∈Gm(λ, ℓ, µ, b).

Proof. Suppose that the inequality (2.1) holds. Then we have for z∈U,

(1−µ)I

m(λ, ℓ)f(z)

z +µ(I

m(λ, ℓ)f(z))1

(1−µ)I

m(λ, ℓ)f(z)

z +µ(I

m(λ, ℓ)f(z))+ 2b1 = ∞ X k=2

[1 +µ(k−1)]

1 +λ(k−1) +ℓ

1 +ℓ

m

akzk−1 −

2b+ ∞ X

k=2

[1 +µ(k−1)]

1 +λ(k−1) +ℓ

1 +ℓ

m

akzk−1 ≤ ∞ X k=2

[1 +µ(k−1)]

1 +λ(k−1) +ℓ

1 +ℓ

m

|ak| |z|k−1

− (

2|b| − ∞ X

k=2

[1 +µ(k−1)]

1 +λ(k−1) +ℓ

1 +ℓ

m

|ak| |z|k−1 )

≤2 (

X

k=2

[1 +µ(k−1)]

1 +λ(k−1) +ℓ

1 +ℓ

m

|ak| − |b| )

(5)

which shows that f(z) belongs to the classGm(λ, ℓ, µ, b).

LetGm (λ, ℓ, µ, b) denote the class of functionsf(z)∈Awhose coefficients satisfy the condition(2.1). We note thatGm (λ, ℓ, µ, b)⊆Gm(λ, ℓ, µ, b).

Employing the technique used earlier by Attiya [3] and Srivastava and Attiya [9], we prove

Theorem 3 Let f(z)∈Gm (λ, ℓ, µ, b). Then

(1 +µ)1+1+λ+ℓm 2h(1 +µ)1+1+λ+ℓm+|b|i

(f ∗g) (z)≺g(z) (z∈U) (16)

for every function g in K, and

Re (f(z))>− h

(1 +µ)1+λ+ℓ 1+ℓ

m +|b|i (1 +µ)1+1+λ+ℓm

(z∈U). (17)

The constant factor (1+µ)(

1+λ+ℓ 1+ℓ )

m

2[(1+µ)(1+λ+ℓ 1+ℓ )

m

+|b|] in the subordination result (2.2) cannot be

replaced by a larger one.

Proof. Let f(z)∈Gm(λ, ℓ, µ, b) and letg(z) =z+ ∞ X

k=2

ckzk∈K. Then we have

(1 +µ)1+λ+ℓ 1+ℓ

m

2h(1 +µ)1+1+λ+ℓm+|b|i

(f∗g) (z) =

(1 +µ)1+λ+ℓ 1+ℓ

m

2h(1 +µ)1+1+λ+ℓm+|b|i

z+ ∞ X

k=2

akckzk !

.

(18) Thus, by Definition 3, the subordination result (2.2) will hold true if the sequence

 

(1 +µ)1+λ+ℓ 1+ℓ

m

2h(1 +µ)1+1+λ+ℓm+|b|i

ak  

 ∞

k=1

(19)

is a subordinating factor sequence with a1 = 1.

In view of Lemma 1, this is equivalent to the following inequality:

Re  

 1 +

∞ X

k=1

(1 +µ)1+1+λ+ℓm (1 +µ)1+1+λ+ℓm+|b|

akzk  

(6)

Now, since

Φ(k) = [1 +µ(k−1)]

1 +λ(k−1) +ℓ

1 +ℓ

m

is an increasing function of k(k≥2), we have

Re    1 + ∞ X k=1

(1 +µ)1+λ+ℓ 1+ℓ

m

(1 +µ)1+1+λ+ℓm+|b|

akzk    = Re    1 +

(1 +µ)1+λ+ℓ 1+ℓ

m

(1 +µ)1+1+λ+ℓm+|b|

z

+ 1

(1 +µ)1+λ+ℓ 1+ℓ

m +|b|

∞ X

k=2

(1 +µ)

1 +λ+ℓ

1 +ℓ

m

akzk  

≥1−

(1 +µ)1+λ+ℓ 1+ℓ

m

(1 +µ)1+1+λ+ℓm+|b|

r

− 1

(1 +µ)1+λ+ℓ 1+ℓ

m +|b|

∞ X

k=2

[1 +µ(k−1)]

1 +λ(k−1) +ℓ

1 +ℓ

m |ak|rk

>1−

(1 +µ)1+λ+ℓ 1+ℓ

m

(1 +µ)1+1+λ+ℓm+|b|

r− |b|

(1 +µ)1+1+λ+ℓm+|b|

r= 1−r >0 (|z|=r <1),

where we have also made use of the assertion (2.1) of Lemma 2. Thus (2.6) holds true in U. This proves the inequality (2.2). The inequality (2.3) follows from (2.2) by taking the convex function g(z) = 1−zz = z+ P∞

k=2

zk. To prove the sharpness of the constant (1+µ)(

1+λ+ℓ 1+ℓ )

m

2[(1+µ)(1+λ+ℓ 1+ℓ )

m

+|b|], we consider the function fo(z) ∈ Gm∗ (λ, ℓ, µ, b) given by

fo(z) =z−

|b| (1 +µ)1+λ+ℓ

1+ℓ mz

2. (21)

Thus from (2.2), we have

(1 +µ)1+1+λ+ℓm 2h(1 +µ)1+λ+ℓ

1+ℓ m

+|b|i

fo(z)≺

z

(7)

Morover, it can easily be verified for the function fo(z) given by (2.7) that

min |z|≤r

 

 Re

(1 +µ)1+λ+ℓ 1+ℓ

m

2h(1 +µ)1+1+λ+ℓm+|b|i

fo(z)  

 =−1

2. (23)

This shows that the constant (1+µ)(

1+λ+ℓ 1+ℓ )

m

2[(1+µ)(1+λ+ℓ 1+ℓ )

m

+|b|]is the best possible. Puttingℓ= 0 in Theorem 1, we have

Corollary 4 Let the function f(z) defined by (1.1) be in the class Gm

∗ (λ, µ, b) and

suppose that g(z)∈K. Then

(1 +µ) (1 +λ)m

2 [(1 +µ)(1 +λ)m+|b|](f ∗g) (z)≺g(z) (z∈U) (24)

and

Re (f(z))>−[(1 +µ)(1 +λ)

m+|b|]

(1 +µ) (1 +λ)m (z∈U). (25)

The constant factor (1+µ)(1+λ)

m

2[(1+µ)(1+λ)m

+|b|] in the subordination result (2.10) cannot be

replaced by a larger one.

Puttingλ= 1 in Theorem 1, we have

Corollary 5 Let the function f(z) defined by (1.1) be in the class Gm (ℓ, µ, b) and suppose that g(z)∈K.Then

(1 +µ)2+1+m 2h(1 +µ)2+ℓ

1+ℓ m

+|b|i

(f∗g) (z)≺g(z) (z∈U) (26)

for every function g in K, and

Re (f(z))>− h

(1 +µ)2+1+m+|b|i (1 +µ)2+ℓ

1+ℓ

m (z∈U). (27)

The constsnt factor (1+µ)(

2+ℓ 1+ℓ)

m

2[(1+µ)(2+ℓ 1+ℓ)

m

+|b|] in the subordination result (2.12) cannot be

replaced by a larger one.

(8)

Corollary 6 Let the function f(z) defined by (1.1) be in the class Gm (µ, b) and suppose that g(z)∈K. Then

(1 +µ) 32m 2

(1 +µ) 32m

+|b|(f∗g) (z)≺g(z) (z∈U) (28)

for every function g in K and

Re (f(z))>−(1 +µ) 3 2

m +|b|

(1 +µ) 32m (z∈U). (29)

The constant factor (1+µ)(

3 2)

m

2[(1+µ)(3 2)

m

+|b|] in the subordination result (2.14) cannot be

re-placed by a larger one.

Puttingµ= 0 in Theorem 1, we have

Corollary 7 Let the function f(z) defined by (1.1) be in the class Gm (λ, ℓ, b) and suppose that g(z)∈K. Then

1+λ+ℓ

1+ℓ m

2h1+λ+ℓ 1+ℓ

m +|b|i

(f∗g) (z)≺g(z) (z∈U) (30)

for every function g in K, and

Re (f(z))>− h

1+λ+ℓ 1+ℓ

m +|b|i

1+λ+ℓ 1+ℓ

m (z∈U). (31)

The constant factor (

1+λ+ℓ 1+ℓ )

m

2[(1+λ+ℓ 1+ℓ )

m

+|b|] in the subordination result (2.16) cannot be

re-placed by a larger one.

Puttingµ= 1 in Theorem 1, we have Corollary 8 Let f(z)∈Rm

∗ (λ, ℓ, b). Then

1+λ+ℓ 1+ℓ

m

21+1+λ+ℓm+|b|

(9)

for every function g in K, and

Re (f(z))>− h

21+λ+ℓ 1+ℓ

m +|b|i 21+1+λ+ℓm

(z∈U). (33)

The constant factor (

1+λ+ℓ 1+ℓ )

m

2(1+λ+ℓ 1+ℓ )

m

+|b| in the subordination result (2.18) cannot be

re-placed by a larger one.

Remark 1 Putting λ = 1 and ℓ = 0 in the above results we obtain the results obtained by Aouf [2].

References

[1] F. M. Al-Oboudi, On univalent functions defined by a generalized Salagean operator, Internat. J. Math. Math. Sci. 27(2004), 1429-1436.

[2] M. K. Aouf, Subordination properties for certain class of analytic functions defined by Salagean operator, Applid. Math. Letters 22(2009), 1581-1585.

[3] A. A. Attiya, On some application of a subordination theorems, J. Math. Anal. Appl. 311(2005), 489-494.

[4] A. Catas, A note on a certain subclass of analytic functions defined by mul-tiplier transformations, in Proceedings of the Internat. Symposium on Geometric function theory and Applications, Istanbul, Turkey, August 2007.

[5] N. E. Cho and H. M. Srivastava,Argument estimates of certain analytic func-tions defined by a class of multiplier transformafunc-tions, Math. Comput. Modelling, 37(1-2)(2003), 39-49.

[6] N. E. Cho and T. H. Kim, Multiplier transformations and strongly close-to-convex functions, Bull. Korean Math. Soc. 40(2003), no. 3, 399-410.

[7] S. S. Miller and P. T. Mocanu, Differentied subordinations: Theory and Ap-plications, Series on Monographs and Textbook in Pure and Appl. Math. no. 255 Marcel Dekker, Inc. New York, 2000.

[8] G. S. Salagean,Subclasses of univalent functions, Lecture Notes in Math.(Springer-Verlag), 1013(1983), 362-372.

[9] H. M. Srivastava and A. A. Attiya,Some subordination rsults associated with certain subclass of analytic functions, J. Inequal. Pure Appl. Math. 5(2004), Art. 82,1-6.

(10)

[11] H. S. Wilf,Subordinating factor sequence for convex maps of the unit circle, Proc. Amer. Math. Soc. 12(1961), 689-693.

M. K. Aouf

Department of Mathematics Faculty of Science

Mansoura University Mansoura 35516, Egypt. email: mkaouf127@yahoo.com

M. M. Hidan Abha, Box 1065, Saudi Arabia.

Referensi

Dokumen terkait

Produk perusahaan adalah furniture dengan menggunakan bahan dari kayu terutama kayu jati. Produk perusahaan tetap, tidak mengalami perubahan, hanya saja pihak

Analisa Lingkungan Internal pada Fungsi Keuangan Secara umum, fungsi manajemen yaitu Planning, Organizing, Directing, dan Controlling yang dijalankan dalam fungsi Keuangan

Dengan ini diberitahukan bahwa setelah diadakan penelitian oleh panitia pengadaan barang / jasa konsultansi Bidang Pengairan Dinas Pekerjaan Umum Kab..

Berdasarkan pada hasil analisis SWOT dan melakukan formulasi strategi pengembangan bisnis terhadap usaha Artharaga fitness center, maka pengembangan bisnis yang

Ridho Bersama Tidak Memenuhi syarat Gugur. Batulicin, 30

Hal ini menunjukan bahwa karyawan operator alat berat CV Haragon Surabaya kurang mempunyai motivasi kerja yang baik, karena sikap karyawan dalam bekerja tidak

KUPANG JAYA ELEKTRIK Tidak memenuhi syarat Gugur.

Pokja lll ULP pada Pemerintah Kabupaten Hulu Sungai Selatan akan melaksanakan Pelelangan Umum dengan pascakualifikasi paket pekerjaan konstruks..