• Tidak ada hasil yang ditemukan

Paper-4-20-2009. 129KB Jun 04 2011 12:03:14 AM

N/A
N/A
Protected

Academic year: 2017

Membagikan "Paper-4-20-2009. 129KB Jun 04 2011 12:03:14 AM"

Copied!
12
0
0

Teks penuh

(1)

INTEGRAL MEANS FOR CERTAIN SUBCLASSES OF UNIFORMLY STARLIKE AND CONVEX FUNCTIONS DEFINED

BY CONVOLUTION

M. K. Aouf, R. M. El-Ashwah and S. M. El-Deeb

Abstract. We introduce some generalized subclasses T Sγ(f, g;α, β) of

uni-formly starlike and convex functions, we settle the Silverman’s conjecture for the integral means inequality. In particular, we obtain integral means inequalities for various classes of uniformly β−starlike and uniformly β−convex functions in the unit disc.

2000Mathematics Subject Classification: 30C45. 1.Introduction

LetS denote the class of functions of the form:

f(z) =z+ ∞

X

k=2

akzk (1.1)

that are analytic and univalent in the open unit disk U ={z:|z|<1}.Letf(z)∈

S be given by (1.1) and Φ(z)∈S be given by

Φ(z) =z+ ∞

X

k=2

ckzk, (1.2)

then for analytic functions f and Φ with f(0) = Φ(0), f is said to be subordinate to Φ, denoted by f ≺Φ,if there exists an analytic function w such that w(0) = 0,

|w(z)|<1 andf(z) = Φ(w(z)),for all z∈U.

The Hadamard product (or convolution)f ∗Φ of f and Φ is defined (as usual) by

(f∗Φ)(z) =z+ ∞

X

k=2

(2)

Following Goodman ([7] and [8]), Ronning ([17] and [18]) introduced and studied the following subclasses:

(i) A functionf(z) of the form (1.1) is said to be in the classSp(α, β) of uniformly

β−starlike functions if it satisfies the condition:

Re

(

zf′(z) f(z) −α

)

> β

zf′(z) f(z) −1

(z∈U), (1.4)

where −1≤α <1 andβ ≥0.

(ii) A function f(z) of the form (1.1) is said to be in the class U CV(α, β) of uniformly β−convex functions if it satisfies the condition:

Re

(

1 +zf

′′

(z) f′

(z) −α

)

> β

zf′′(z) f′

(z)

(z∈U), (1.5)

where −1≤α <1 andβ ≥0.We also observe that

Sp(α,0) =T∗(α), U CV(α,0) =C(α)

are, respectively, well-known subclasses of starlike functions of order α and convex functions of orderα. Indeed it follows from (1.4) and (1.5) that

f(z)∈U CV(α, β) ⇐⇒zf′(z)∈Sp(α, β). (1.6)

For−1≤α <1,0≤γ ≤1 and β ≥0,we let Sγ(f, g;α, β) be the subclass of S

consisting of functions f(z) of the form (1.1) and functionsg(z) given by

g(z) =z+ ∞

X

k=2

bkzk (bk≥0), (1.7)

and satisfying the analytic criterion:

Re

(

z(f ∗g)′(z) +γz2(f ∗g)′′(z) (1−γ) (f ∗g)(z) +γz(f ∗g)′

(z) −α

)

> β

z(f ∗g)′(z) +γz2(f ∗g)′′(z) (1−γ) (f ∗g)(z) +γz(f ∗g)′(z) −1

. (1.8) LetT denote the subclass ofS consisting of functions of the form:

f(z) =z−

X

k=2

(3)

Further, we define the class T Sγ(f, g;α, β) by

T Sγ(f, g;α, β) =Sγ(f, g;α, β)∩T. (1.10)

We note that:

(i) T S0(f,(1−zz);α,1) =SpT(α) and T S0(f,

z

(1−z)2;α,1) =

T S1(f,(1−zz);α,1) =U CT(α) (−1≤α <1) (see Bharati et al. [4]); (ii)T S1(f,(1−zz); 0, β) =U CT(β) (β ≥0) (see Subramanian et al. [24]); (iii) T S0(f, z+

P

k=2 (a)k1

(c)k1zk;α, β) =T S(α, β) (−1≤α <1, β ≥0, c6= 0,−1,−2, ...) (see Murugusundaramoorthy and Magesh [12] and [13]); (iv) T S0(f, z+

P

k=2

knzk;α, β) = T S(n, α, β) (−1 ≤ α < 1, β ≥ 0, n ∈ N0 = N ∪ {0}, N ={1,2, ...}) (see Rosy and Murugusundaramoorthy [19]);

(v) T S0(f, z+ ∞

P

k=2

k+λ−1 λ

zk;α, β) =D(α, β, λ) (−1≤α <1, β≥0, λ >−1) (see Shams et al. [23]);

(vi)T S0(f, z+ ∞

P

k=2

[1 +λ(k−1)]nzk;α, β) =T Sλ(n, α, β) (−1≤α <1,

β ≥0, λ≥0, n∈N0) (see Aouf and Mostafa [2]); (vii) T Sγ(f, z+

P

k=2 (a)k−1

(c)k−1z

k;α, β) =T S(γ, α, β) (1α <1, β 0,

0≤γ ≤1, c6= 0,−1,−2, ...) (see Murugusundaramoorthy et al. [14]);

(viii) T S0(f, g;α, β) =HT(g, α, β) (−1 ≤α < 1, β≥0) (see Raina and Bansal

[16]);

(viii)T Sγ(f, z+

P

k=2

Γkzk;α, β) =T Sqs(γ, α, β) (see Ahuja et al. [1]), where

Γk=

(α1)k−1...(αq)k−1 (β1)k−1...(βs)k−1

1

(k−1)! (1.11)

(αi>0, i= 1, ..., q; βj >0, j = 1, ..., s; q≤s+ 1; q, s∈N0). Also we note that

(i) T Sγ(f, z+

P

k=2

knzk;α, β) =T Sγ(n, α, β)

=

(

f ∈T : Re

(

(1−γ)z(Dnf(z))′ +γz(Dn+1f(z))′ (1−γ)Dnf(z) +γDn+1f(z) −α

(4)

> β

(1−γ)z(Dnf(z))

+γz(Dn+1f(z))

(1−γ)Dnf(z) +γDn+1f(z) −1

,(−1≤α <1, β≥0, n∈N0, z ∈U)

)

(1.12) (ii)T Sγ(f, z+

P

k=2

c+1

c+k

zk;α, β) =

=T Sγ(c, α, β) =

(

f ∈T : Re

(

z(Jcf(z)) ′

+γz2(Jcf(z)) ′′

(1−γ)Jcf(z) +γz(Jcf(z))′ −α ) > β

z(Jcf(z)) ′

+γz2(Jcf(z)) ′′

(1−γ)Jcf(z) +γz(Jcf(z))′ −1

,0≤γ ≤1,−1≤α <1, β≥0, c >−1, z∈U

)

; (1.13) whereJc is a Bernardi operator [3], defined by

Jcf(z) =

c+ 1 zc

z

Z

0 tc−1

f(t)dt=z+ ∞

X

k=2

c+ 1 c+k

akzk.

Note that the operator J1f(z) was studied earlier by Libera [9] and Livingston [11];

(iii) T Sγ(f, z+

P

k=2 (µ)k−1

(λ+1)k−1z

k;α, β) =T S

γ(µ, λ;α, β)

=

f ∈T : Re

z(Iλ,µf(z))

+γz2(I λ,µf(z))

′′

(1−γ)Iλ,µf(z)+γz(Iλ,µf(z))′ −α

> β

z(Iλ,µf(z)) ′

+γz2(Iλ,µf(z)) ′′

(1−γ)Iλ,µf(z) +γz(Iλ,µf(z))′ −1 ,

(0≤γ ≤1, −1≤α <1, β ≥0, λ >−1, µ >0, z∈U)

; (1.14)

where Iλ,µ is a Choi-Saigo-Srivastava operator [6], defined by

Iλ,µf(z) =z+

X

k=2

(µ)k−1 (λ+ 1)k−1

(5)

(iv) T Sγ(f, z+

P

k=2 (c)k−1

(a)k−1

(λ+1)k−1

(1)k−1 z

k;α, β) =T S

γ(a, c, λ;α, β)

=

f ∈T : Re

z(Iλ(a,c)f(z))

+γz2(Iλ(a,c)f(z))′′

(1−γ)Iλ(a,c)f(z)+γz(Iλ(a,c)f(z))′ −α

> β

z(Iλ(a, c)f(z))

+γz2(Iλ(a, c)f(z))′′

(1−γ)Iλ(a, c)f(z) +γz(Iλ(a, c)f(z))′ −1

,

0≤γ ≤1, −1≤α <1, β≥0, a, c∈R\Z−

0 , λ >−1, z ∈U

; (1.15)

where Iλ(a, c) is a Cho-Kwon-Srivastava operator [5], defined by

Iλ(a, c)f(z) =z+ ∞

X

k=2 (c)k−1 (a)k−1

(λ+ 1)k−1 (1)k−1

akzk;

(v) T Sγ(f, z+

P

k=2 (2)k−1

(n+1)k−1z

k;α, β) =T S

γ(n;α, β)

=

(

f ∈T : Re

(

z(Inf(z)) ′

+γz2(Inf(z)) ′′

(1−γ)Inf(z) +γz(Inf(z))′ −α ) > β

z(Inf(z)) ′

+γz2(Inf(z)) ′′

(1−γ)Inf(z) +γz(Inf(z))′ −1

,0≤γ ≤1,−1≤α <1, β≥0, n >−1, z∈U

)

; (1.16) where In is a Noor integral operator [15], defined by

Inf(z) =z+

X

k=2

(2)k−1 (n+ 1)k−1

akzk (n >−1).

In [20], Silverman found that the function f2(z) = z − z

2

2 is often extremal over the family T. He applied this function to resolve his integral means inequality, conjectured in [21] and settled in [22], that

(6)

for all f ∈ T, η > 0 and 0< r < 1. In [22], he also proved his conjecture for the subclasses T∗

(α) and C(α) ofT.

In this paper, we prove Silverman’s conjecture for the functions in the class T Sγ(f, g;α, β). By taking appropriate choises of the function g, we obtain the

in-tegral means inequalities for several known as well as new subclasses of uniformly convex and uniformly starlike functions in U. In fact, these results also settle the Silverman’s conjecture for several other subclasses of T.

2.Lemmas and their proofs

To prove our main results, we need the following lemmas.

Lemma 1. A function f(z) of the form (1.1) is in the class T Sγ(f, g;α, β) if

X

k=2

[k(1 +β)−(α+β)] [1 +γ(k−1)]|ak|bk≤1−α, (2.1)

where −1≤α <1, β ≥0 and 0≤γ ≤1. Proof. It suffices to show that

β

z(f∗g)′(z) +γz2(f∗g)′′(z) (1−γ)(f ∗g)(z) +γz(f ∗g)′

(z) −1

−Re

(

z(f ∗g)′(z) +γz2(f ∗g)′′(z) (1−γ)(f∗g)(z) +γz(f∗g)′

(z)−1

)

≤1−α. We have

β

z(f∗g)′(z) +γz2(f∗g)′′(z) (1−γ)(f ∗g)(z) +γz(f ∗g)′(z) −1

−Re

(

z(f ∗g)′(z) +γz2(f ∗g)′′(z) (1−γ)(f∗g)(z) +γz(f∗g)′(z) −1

)

≤(1+β)

z(f∗g)′(z) +γz2(f∗g)′′(z) (1−γ)(f ∗g)(z) +γz(f ∗g)′

(z)−1

(1 +β) ∞

P

k=2

(k−1) [1 +γ(k−1)]|ak|bk

1−

P

k=2

[1 +γ(k−1)]|ak|bk

.

This last expression is bounded above by (1−α) if ∞

X

k=2

(7)

and hence the proof is completed.

Lemma 2. A necessary and sufficient condition for f(z) of the form (1.9) to be in the class T Sγ(f, g;α, β) is that

X

k=2

[k(1 +β)−(α+β)] [1 +γ(k−1)]akbk≤1−α, (2.2)

Proof.In view of Lemma 1, we need only to prove the necessity. Iff(z)∈T Sγ(f, g;α, β)

and z is real, then

1−

P

k=2

k[1 +γ(k−1)]akbkzk−1

1−

P

k=2

[1 +γ(k−1)]akbkzk−1

−α≥β

P

k=2

(k−1) [1 +γ(k−1)]akbkzk−1

1−

P

k=2

[1 +γ(k−1)]akbkzk−1

.

Letting z→1−

along the real axis, we obtain the desired inequality ∞

X

k=2

[k(1 +β)−(α+β)] [1 +γ(k−1)]akbk≤1−α.

Corollary 1.Let the functionf(z)be defined by (1.9) be in the class T Sγ(f, g;α, β).

Then

ak≤

1−α

[k(1 +β)−(α+β)] [1 +γ(k−1)]bk

(k≥2). (2.3)

The result is sharp for the function

f(z) =z− 1−α

[k(1 +β)−(α+β)] [1 +γ(k−1)]bk

zk (k≥2). (2.4)

Lemma 3. The extreme points of T Sγ(f, g;α, β) are

f1(z) =z and fk(z) =z−

1−α

[k(1 +β)−(α+β)] [1 +γ(k−1)]bk

zk, fork= 2,3,... . (2.5) The proof of Lemma 3 is similar to the proof of the theorem on extreme points given in [20] and therefore are omit it.

In 1925, Littlewood [10] proved the following subordination theorem.

(8)

2π Z 0 g(re iθ) η dθ≤ 2π Z 0 f(re iθ) η dθ. (2.6) 3.Main theorem

Applying Lemma 4, Lemma 2 and Lemma 3, we prove the following result. Theorem 1. Suppose f ∈ T Sγ(f, g;α, β), η > 0, −1 ≤ α < 1, 0 ≤ γ ≤ 1, β ≥ 0

and f2(z) is defined by

f2(z) =z−

1−α

(2 +β−α)(1 +γ)b2 z2.

Then for z=reiθ, 0< r <1, we have

Z

0

|f(z)|ηdθ≤

Z

0

|f2(z)|ηdθ. (3.1)

Proof. Forf(z) =z−

P

k=2

akzk (ak≥0),(3.1) is equivalent to proving that

2π Z 0 1− ∞ X k=2

akzk−1

η dθ≤ 2π Z 0

1− 1−α

(2 +β−α)(1 +γ)b2 z η dθ.

By Lemma 4, it suffices to show that

1−

X

k=2

akzk−1 ≺1−

1−α

(2 +β−α)(1 +γ)b2 z. Setting 1− ∞ X k=2

akzk−1 = 1−

1−α

(2 +β−α)(1 +γ)b2

w(z), (3.2) and using (2.2), we obtain

|w(z)|=

∞ X k=2

(2 +β−α)(1 +γ)b2 1−α akz

k−1

≤ |z|

X

k=2

(2 +β−α)(1 +γ)b2

1−α ak≤ |z|. This completes the proof of Theorem 1.

(9)

the following integral means results for various subclasses. Remarks. (i) Takingg(z) =z+

P

k=2

Γkzk,where Γk is given by (1.11) in Theorem

1, we obtain the result obtained by Ahuja et al. [1, Theorem 3.1];

(ii) Taking g(z) = 1−zz and γ = 0 in Theorem 1, we obtain the result obtained by Ahuja et al. [1, Corollary 3.2];

(iii) Taking g(z) = 1−zz and γ = 1 in Theorem 1, we obtain the result obtained by Ahuja et al. [1, Corollary 3.4];

(iv) Takingg(z) =z+ ∞

P

k=2

k+λ−1 λ

zk(λ >−1) andγ = 0 in Theorem 1, we obtain the result obtained by Ahuja et al. [1, Corollary 3.6];

(v) Takingg(z) =z+ ∞

P

k=2

c+1

c+k

zk (c >1) andγ = 0 in Theorem 1, we obtain

the result obtained by Ahuja et al. [1, Corollary 3.7]; (vi) Taking g(z) =z+

P

k=2 (a)k1

(c)k1zk (a >0; c >0) and γ = 0 in Theorem 1, we obtain the result obtained by Ahuja et al. [1, Corollary 3.8].

Corollary 2. If f ∈T S0(f, z+ ∞

P

k=2

knzk;α, β) =T S(n, α, β) (−1≤α <1, β≥0, n∈N0 and η >0), then the assertion (3.1) holds true, where

f2(z) =z−

(1−α) 2n(2 +βα)z

2.

Corollary 3. If f ∈T S0(f, z+ ∞

P

k=2

[1 +λ(k−1)]nzk;α, β) = T Sλ(n, α, β) (−1 ≤

α <1, β≥0, λ≥0, n∈N0 and η >0),then the assertion (3.1) holds true, where

f2(z) =z−

(1−α)

(2 +β−α) (1 +λ)nz 2.

Corollary 4. If f ∈ T Sγ(f, z +

P

k=2 (a)k1

(c)k1zk;α, β) = T S(γ, α, β) (0 ≤ γ ≤ 1,

−1 ≤ α <1, β ≥ 0, a > 0, c > 0 and η > 0), then the assertion (3.1) holds true, where

f2(z) =z−

c(1−α) a(2 +β−α)(1 +γ)z

2.

Corollary 5. If f ∈ T S0(f, g(z);α, β) = HT (g, α, β) (−1 ≤ α < 1, β ≥ 0 and

η >0),then the assertion (3.1) holds true, where f2(z) =z−

(1−α) (2 +β−α)b2

(10)

Corollary 6. If f ∈ T Sγ(f, z+

P

k=2

knzk;α, β) = T Sγ(n, α, β) (0 ≤γ ≤1, −1 ≤

α <1, β≥0, n∈N0 and η >0),then the assertion (3.1) holds true, where f2(z) =z− (1−α)

2n(2 +βα)(1 +γ)z

2.

Corollary 7. If f ∈ T Sγ(f, z +

P

k=2

c+1

c+k

zk;α, β) = T Sγ(c, α, β) (0 ≤ γ ≤ 1, −1≤α <1, β≥0, c >−1 and η >0), then the assertion (3.1) holds true, where

f2(z) =z−

(1−α) (c+ 2) (2 +β−α)(1 +γ)(c+ 1)z

2.

Corollary 8. If f ∈T Sγ(f, z+

P

k=2 (µ)k−1

(λ+1)k−1z

k;α, β) =T S

γ(µ, λ;α, β) (0≤γ ≤1, −1≤α <1, β≥0, λ >−1, µ >0 and η >0), then the assertion (3.1) holds true, where

f2(z) =z− (1−α) (λ+ 1)

(2 +β−α)(1 +γ)µz 2.

Corollary 9. If f ∈ T Sγ(f, z +

P

k=2 (c)k−1

(a)k−1

(λ+1)k−1

(1)k−1 z

k;α, β) = T S

γ(a, c, λ;α, β)

(0≤γ ≤1,−1≤α <1, β ≥0, a, c∈R\Z−

0 , λ >−1andη >0),then the assertion (3.1) holds true, where

f2(z) =z−

a(1−α)

c(2 +β−α)(1 +γ)(λ+ 1)z 2.

Corollary 10. If f ∈T Sγ(f, z+

P

k=2 (2)k1

(n+1)k1zk;α, β) =T Sγ(n, α, β) (0 ≤γ ≤1,

−1≤α <1, β≥0, n >−1 and η >0),then the assertion (3.1) holds true, where f2(z) =z− (1−α) (n+ 1)

2(2 +β−α)(1 +γ)z 2.

References

(11)

[2] M. K. Aouf and A. O. Mostafa, Some properties of a subclass of uniformly convex functions with negative coefficients, Demonstratio Math., 2 (2008), 353-370. [3] S. D. Bernardi,Convex and starlike univalent functions, Trans. Amer. Math. Soc., 135(1969), 429-446.

[4] R. Bharati, R. Parvatham and A. Swaminathan, On subclasses of uniformly convex functions and corresponding class of starlike functions, Tamakang J. Math. 28(1997), 17-32.

[5] N. E. Cho, O. S. Kwon and H. M. Srivastava, Inclusion relationships and argument properties for certain subclasses of multivalent functions associated with a family of linear operators, J. Math. Anal. Appl. 292(2004), 470-483.

[6] J. H. Choi, M. Saigo, H. M. Srivastava,Some inclusion properties of a certain family of integral operators, J. Math. Anal. Appl. 276(2002), 432-445.

7] A. W. Goodman,On uniformly convex functions, Ann. Polon. Math. 56(1991), 87-92.

[8] A. W. Goodman, On uniformly starlike functions, J. Math. Anal. Appl. 155(1991), 364-370.

[9] R. J. Libera,Some classes of regular univalent functions, Proc. Amer. Math. Soc. 16(1965), 755-758.

[10] J. E. Littlewood,On inequalities in theory of functions, Proc. London Math. Soc. 23(1925), 481-519.

[11] A. E. Livingston,On the radius of univalence of certain analytic functions, Proc. Amer. Math. Soc. 17(1966), 352-357.

[12] G. Murugusundaramoorthy and N. Magesh, A new subclass of uniformly convex functions and corresponding subclass of starlike functions with fixed second coefficient, J. Inequal. Pure Appl. Math. 5(2004), no. 4, Art. 85, 1-10.

[13] G. Murugusundaramoorthy and N. Magesh,Linear operators associated with a subclass of uniformly convex functions, Internat. J. Pure Appl. Math. Sci. 3(2006), no. 2, 113-125.

[14] G. Murugusundaramoorthy, T. Rosy and K. Muthunagai, Carlson-Shaffer operator and their applications to certain subclass of uniformly convex function, General Math. 15(2007), no. 4, 131-143.

[15] K. I. Noor,On new classes of integral operators, J. Natur. Geem. 16(1999), 71-80.

[16] R. K. Raina and D. Bansal, Some properties of a new class of analytic functions defined in terms of a Hadamard product, J. Inequal. Pure Appl. Math. 9(2008), no. 1, Art. 22, 1-9.

[17] F. Ronning, On starlike functions associated with parabolic regions, Ann. Univ. Mariae-Curie-Sklodowska, Sect. A 45(1991), 117-122.

(12)

functions, Proc. Amer. Math. Soc. 118(1993), 189-196.

[19] T. Rosy and G. Murugusundaramoorthy, Fractional calculus and their ap-plications to certain subclass of uniformly convex functions, Far East J. Math. Sci. (FJMS), 115(2004), no. 2, 231-242.

[20] H. Silverman, Univalent functions with negative coefficients, Proc. Amer. Math. Soc. 51(1975), 109-116.

[21] H. Silverman, A survey with open problems on univalent functions whose coefficients are negative, Rocky Mountain J. Math. 21(1991), 1099-1125.

[22] H. Silverman, Integral means for univalent functions with negative coeffi-cients, Houston J. Math. 23(1997), 169-174.

[23] S. Shams, S.R. Kulkarni and J. M. Jahangiri, Classes of Ruscheweyh-type analytic univalent functions, Southwest J. Pure Appl. Math., 2(2003), 105-110.

[24] K. G. Subramanian, G. Murugusundaramoorthy, P. Balasubrahma and H. Silverman, Subclasses of uniformly convex and uniformly starlike functions, Math. Japon. 42(1995), no. 3, 517-522.

M. K. Aouf

Department of Mathematics Faculty of Science

University of Mansoura Mansoura 33516, Egypt e-mail: [email protected]

R. M. El-Ashwah Department of Mathematics Faculty of Science at Damietta

University of Mansoura New Damietta 34517, Egypt e-mail: r [email protected]

S. M. El-Deeb Department of Mathematics Faculty of Science at Damietta

Referensi

Dokumen terkait

Dengan ini diumumkan Pemenang Seleksi Sedehana dengan metode evaluasi biaya terendah untuk paket pekerjaan sebagaimana tersebut diatas sebagai

Selanjutnya bagi pihak-pihak yang merasa berkeberatan atas penetapan pemenang lelang diberi kesempatan untuk menyampaikan sanggahan kepada Pokja Konstruksi ULP

Demikian pengumuman ini, atas perhatian dan partisipasi Saudara – saudara dalam pelelangan paket pekerjaan konstruksi di atas kami ucapkan

Berdasarkan Berita Acara Hasil Pelelangan (BAHP) Pekerjaan Pembangunan Drainase Lingkungan Desa Karang Indah Kec. VII Desa Batuah Kecamatan Kusan Hilir Kabupaten

Berdasarkan Tabel 3.4 di atas, dapat diketahui bahwa dapat diketahui bahwa nilai korelasi variabel leader member exchange (X 1 ) dan kepuasan terhadap bonus (X 2 )

Pada indikator kualitas, persentase terbanyak terdapat pada item perubahan dalam pengembangan kualitas yaitu 42.2% dengan frekuensi 35 orang dalam kategori sering yang

Dan metode pelatihan terkahir yang digunakan oleh pabrik kecap Wie Sin adalah sesuai dengan metode yang dikemukakan oleh (Dessler, 2003, p.222) yaitu on the job

Dari daftar panjang tersebut diambil 3 (tiga) perusahaan dengan nilai terbaik untuk dimasukkan ke dalam daftar pendek konsultan yang diundang untuk mengikuti