• Tidak ada hasil yang ditemukan

Paper-19-20-2009. 117KB Jun 04 2011 12:03:11 AM

N/A
N/A
Protected

Academic year: 2017

Membagikan "Paper-19-20-2009. 117KB Jun 04 2011 12:03:11 AM"

Copied!
10
0
0

Teks penuh

(1)

CONVERGENCE THEOREMS FOR UNIFORMLY L-LIPSCHITZIAN ASYMPTOTICALLY NONEXPANSIVE MAPPINGS

Arif Rafiq

Abstract. LetKbe a nonempty closed convex subset of a real Banach spaceE, T :K → K a uniformly L-Lipschitzian asymptotically pseudocontractive mapping with sequence {kn}n≥0 ⊂[1,∞), lim

n→∞kn= 1 such that p∈F(T) ={x∈K :T x= x}. Let{an}n≥0,{bn}n≥0,{cn}n≥0 be real sequences in [0,1] satisfying the following

conditions: (i)an+bn+cn= 1; (ii)Pn≥0bn=∞; (iii)cn=o(bn); (iv) lim

n→∞bn= 0. For arbitraryx0∈K let {xn}n≥0 be iteratively defined by

xn+1 =anxn+bnTnxn+cnun, n≥0,

where {un}n≥0 is a bounded sequence of error terms in K. Suppose there exists a

strictly increasing function ψ: [0,∞)→[0,∞), ψ(0) = 0 such that

hTnx−p, j(x−p)i ≤kn||x−p||2−ψ(||x−p||), ∀x∈K.

Then {xn}n≥0 converges strongly to p∈F(T).

The results proved in this paper significantly improve the results of Ofoedu [11]. The remark 3 is important.

2000 Mathematics Subject Classification: Primary 47H10, 47H17: Secondary 54H25.

1.Introduction

LetE be a real normed space andK be a nonempty convex subset of E. LetJ denote the normalized duality mapping fromE to 2E∗

defined by J(x) ={f∗ ∈E∗ :hx, f∗i=||x||2 and ||f∗||=||x||},

where E∗ denotes the dual space of E and ,·i denotes the generalized duality pairing. We shall denote the single-valued duality map by j.

(2)

Definition 1 The mapping T is said to be uniformly L-Lipschitzian if there exists

L >0 such that for all x, y∈D(T)

kTnx−Tnyk ≤Lkx−yk.

Definition 2 T is said to be nonexpansive if for all x, y ∈ D(T), the following inequality holds:

kT x−T yk ≤ kx−y k for all x, y∈D(T).

Definition 3 T is said to be asymptotically nonexpansive [6], if there exists a se-quence {kn}n≥0 ⊂[1,∞) with lim

n→∞kn= 1 such that

kTnx−Tnyk ≤knkx−y k for all x, y∈D(T), n≥1.

Definition 4 T is said to be asymptotically pseudocontractive if there exists a se-quence {kn}n≥0 ⊂[1,∞) with lim

n→∞kn= 1 and there exists j(x−y)∈J(x−y) such

that

hTnx−Tny, j(x−y)i ≤knkx−y k 2

for allx, y∈D(T), n≥1.

Remark 1 1. It is easy to see that every asymptotically nonexpansive mapping is uniformly L-Lipschitzian.

2. If T is asymptotically nonexpansive mapping then for all x, y ∈ D(T) there exists j(x−y)∈J(x−y) such that

hTnx−Tny, j(x−y)i ≤ kTnx−Tnyk kx−y k ≤ knkx−y k

2

, n≥1.

Hence every asymptotically nonexpansive mapping is asymptotically pseudocontrac-tive.

3. Rhoades in [12] showed that the class of asymptotically pseudocontractive mappings properly contains the class of asymptotically nonexpansive mappings.

The asymptotically pseudocontractive mappings were introduced by Schu [13] who proved the following theorem:

Theorem 1 LetKbe a nonempty bounded closed convex subset of a Hilbert spaceH, T : K → K a completely continuous, uniformly L-Lipschitzian and asymptotically pseudocontractive with sequence {kn} ⊂[1,∞);qn= 2kn−1,∀n∈N;P(qn2−1)< ∞; {αn},{βn} ⊂ [0,1]; ǫ < αn < βn ≤ b, ∀n ∈ N, and some ǫ > 0 and some

b∈(0, L−2

[(1 +L2

)12 −1]);x

1∈K for alln∈N, define

xn+1= (1−αn)xn+αnTnxn.

(3)

The recursion formula of theorem 1 is a modification of the well-known Mann iteration process (see [9]).

Recently, Chang [1] extended Theorem 1 to real uniformly smooth Banach space; in fact, he proved the following theorem:

Theorem 2 Let K be a nonempty bounded closed convex subset of a real uniformly smooth Banach space E, T :K → K an asymptotically pseudocontractive mapping with sequence {kn}n≥0 ⊂[1,∞), lim

n→∞kn = 1, and x

F(T) = {x K :T x=x}.

Let {αn} ⊂ [0,1] satisfying the following conditions: lim

n→∞αn = 0,

P

αn = ∞. For

arbitrary x0 ∈K let {xn} be iteratively defined by

xn+1 = (1−αn)xn+αnTnxn, n≥0.

If there exists a strictly increasing function ψ: [0,∞)→[0,∞), ψ(0) = 0 such that

hTnx−x∗, j(x−x∗)i ≤kn||x−x∗||2−ψ(||x−x∗||), ∀n∈N,

then xn→x∗ ∈F(T).

Remark 2 Theorem 2, as stated is a modification of Theorem 2.4 of Chang [1] who actually included error terms in his algorithm.

In [11], E. U. Ofoedu proved the following results.

Theorem 3 Let K be a nonempty closed convex subset of a real Banach space E, T : K → K a uniformly L-Lipschitzian asymptotically pseudocontractive mapping with sequence {kn}n≥0 ⊂ [1,∞), lim

n→∞kn = 1 such that x

F(T) = {x K : T x = x}. Let {αn}n≥0 ⊂ [0,1] be such that

P

n≥0αn = ∞,

P

n≥0α 2

n < ∞ and

P

n≥0αn(kn−1)<∞. For arbitraryx0∈K let {xn}n≥0 be iteratively defined by

xn+1 = (1−αn)xn+αnTnxn, n≥0.

Suppose there exists a strictly increasing functionψ: [0,∞)→[0,∞), ψ(0) = 0such that

hTnx−x∗, j(x−x∗)i ≤kn||x−x∗||2−ψ(||x−x∗||), ∀x∈K.

Then {xn}n≥0 is bounded.

Theorem 4 Let K be a nonempty closed convex subset of a real Banach space E, T : K → K a uniformly L-Lipschitzian asymptotically pseudocontractive mapping with sequence {kn}n≥0 ⊂ [1,∞), lim

n→∞kn = 1 such that x

(4)

T x = x}. Let {αn}n≥0 ⊂ [0,1] be such that

P

n≥0αn = ∞,

P

n≥0α 2

n < ∞ and

P

n≥0αn(kn−1)<∞. For arbitraryx0∈K let {xn}n≥0 be iteratively defined by

xn+1 = (1−αn)xn+αnTnxn, n≥0.

Suppose there exists a strictly increasing functionψ: [0,∞)→[0,∞), ψ(0) = 0such that

hTnx−x∗, j(x−x∗)i ≤kn||x−x∗||2−ψ(||x−x∗||), ∀x∈K.

Then {xn}n≥0 converges strongly to x∗ ∈F(T).

Theorem 5 Let K be a nonempty closed convex subset of a real Banach space E, T : K → K a uniformly L-Lipschitzian asymptotically pseudocontractive mapping with sequence {kn}n≥0 ⊂[1,∞), lim

n→∞kn= 1 such that x

F(T) ={xK:T x= x}. Let {an}n≥0,{bn}n≥0,{cn}n≥0 be real sequences in [0,1] satisfying the following conditions:

i) an+bn+cn= 1;

ii) P

n≥0(bn+cn) =∞;

iii) P

n≥0(bn+cn) 2 <

∞; iv) P

n≥0(bn+cn)(kn−1)<∞;and

v) P

n≥0cn<∞.

For arbitrary x0 ∈K let {xn}n≥0 be iteratively defined by

xn+1 =anxn+bnTnxn+cnun, n≥0,

where {un}n≥0 is a bounded sequence of error terms in K. Suppose there exists a

strictly increasing function ψ: [0,∞)→[0,∞), ψ(0) = 0 such that

hTnx−x∗, j(x−x∗)i ≤kn||x−x∗|| 2

−ψ(||x−x∗||), ∀x∈K.

Then {xn}n≥0 converges strongly to x∗ ∈F(T).

Remark 3 One can easily see that if we take in theorems 3 and 4, αn = n1σ; 0 < σ <1,thenP

αn=∞,butPα2n=∞. Hence the conclusions of theorems 3, 4 and

(5)

In this paper our purpose is to improve the results of Ofoedu [11] in a significantly more general context by removing the conditionsP

n≥0α 2

n<∞and

P

n≥0αn(kn−

1) < ∞ from the theorems 3 −4. We also significantly extend theorem 2 from uniformly smooth Banach space to arbitrary real Banach space. The boundedness assumption imposed on K in the theorem is also dispensed with.

2.Main Results The following lemmas are now well known.

Lemma 6 [14] Let J :E → 2E be the normalized duality mapping. Then for any

x, y∈E,we have

||x+y||2

≤ ||x||2

+ 2hy, j(x+y)i, ∀j(x+y)∈J(x+y).

Suppose there exists a strictly increasing functionψ: [0,∞)→[0,∞)withψ(0) = 0. Lemma 7 [10] Let {θn} be a sequence of nonnegative real numbers, {λn} be a real

sequence satisfying

0≤λn≤1,

X

n=0

λn=∞

and let ψ∈Ψ. If there exists a positive integer n0 such that

θ2n+1 ≤θ 2

n−λnψ(θn+1) +σn,

for all n≥n0,withσn≥0,∀n∈N,and σn= 0(λn), thenlimn→∞θn= 0.

Theorem 8 Let K be a nonempty closed convex subset of a real Banach space E, T : K → K a uniformly L-Lipschitzian asymptotically pseudocontractive mapping with sequence {kn}n≥0 ⊂[1,∞), lim

n→∞kn = 1 such that p∈F(T) = {x ∈K :T x= x}. Let {an}n≥0,{bn}n≥0,{cn}n≥0 be real sequences in [0,1] satisfying the following conditions:

i) an+bn+cn= 1;

ii) P

n≥0bn=∞;

iii) cn=o(bn);

iv) lim

(6)

For arbitrary x0 ∈K let {xn}n≥0 be iteratively defined by

xn+1 =anxn+bnTnxn+cnun, n≥0, (2.1)

where {un}n≥0 is a bounded sequence of error terms in K. Suppose there exists a

strictly increasing function ψ: [0,∞)→[0,∞), ψ(0) = 0 such that

hTnx−p, j(x−p)i ≤kn||x−p||2−ψ(||x−p||), ∀x∈K. (2.2)

Then {xn}n≥0 converges strongly to p∈F(T).

Proof. From the conditioncn=o(bn) impliescn=tnbn,wheretn→0 as n→ ∞.

Since p is a fixed point ofT, then the set of fixed pointsF(T) of T is nonempty. Since the sequence {un}n≥0 is bounded, we set

M = sup

n≥0

kun−pk.

By lim

n→∞bn= 0 = limn→∞tnimply there exists n0 ∈

N such thatnn0, bnδ;

0 < δ= min

1 18[φ−1

(a0)]2

, φ

−1

(a0)

2(2 +L)φ−1

(a0) +M

,

φ(2φ−1

(a0))

12(1 +L)φ−1(a0)

2(2 +L)φ−1(a0) +M

)

,

and

tn≤

φ(2φ−1(a0))

12φ−1

(a0)(M+ 2φ−1(a0))

.

Define a0 :=kxn0 −T

n0x

n0kkxn0 −pk+ (kn0 −1)kxn0 −pk

2

. Then from (2.2), we obtain that kxn0 −pk ≤φ

−1

(a0).

CLAIM. kxn−pk ≤2φ−1(a0) ∀n≥n0.

The proof is by induction. Clearly, the claim holds forn=n0. Suppose it holds

for some n≥n0, i.e.,kxn−pk ≤2φ−1(a0). We prove that kxn+1−pk ≤2φ−1(a0).

Suppose that this is not true. Thenkxn+1−pk>2φ−1(a0)), so thatφ(kxn+1−pk)>

φ(2φ−1

(a0)). Using the recursion formula (2.1), we have the following estimates kxn−Tnxnk ≤ kxn−pk+kp−Tnxnk

≤ (1 +L)kxn−pk ≤ 2(1 +L)φ−1

(7)

kxn+1−pk = kanxn+bnTnxn+cnun−pk

= kxn−p−bn(xn−Tnxn) +cn(un−xn)k ≤ kxn−pk+bnkxn−Tnxnk+cnkun−xnk ≤ 2φ−1

(a0) + 2(1 +L)φ−1(a0)bn+ (M+ 2φ−1(a0))cn ≤ 2φ−1

(a0) + [2(2 +L)φ−1(a0) +M]bn ≤ 3φ−1(a0).

With these estimates and again using the recursion formula (2.1), we obtain by lemma 1 that

kxn+1−pk2 = kanxn+bnTnxn+cnun−pk2

= kxn−p−bn(xn−Tnxn) +cn(un−xn)k ≤ kxn−pk2−2bnhxn−Tnxn, j(xn+1−p)i

+2cnhun−xn, j(xn+1−p)i

= kxn−pk2+ 2bnhTnxn+1−p, j(xn+1−p)i −2bnhxn+1−p, j(xn+1−p)i

+2bnhTnxn−Tnxn+1, j(xn+1−p)i

+2bnhxn+1−xn, j(xn+1−p)i

+2cnhun−xn, j(xn+1−p)i

≤ kxn−pk2+ 2bn kn||xn+1−p||2−φ(||xn+1−p||)

−2bnkxn+1−pk2+ 2bnkTnxn−Tnxn+1k ||xn+1−p||

+2bnkxn+1−xnk ||xn+1−p||

+2cn(M+kxn−pk)kxn+1−pk

≤ kxn−pk2+ 2bn(kn−1)||xn+1−p||2−2bnφ(||xn+1−p||)

+2bn(1 +L)kxn+1−xnk ||xn+1−p||

+2cn(M+kxn−pk)kxn+1−pk, (2.3)

where

kxn+1−xnk = kanxn+bnTnxn+cnun−xnk

= kbn(Tnxn−xn) +cn(un−xn)k ≤ bnkxn−Tnxnk+cnkun−xnk

≤ 2(1 +L)φ−1(a0)bn+ (M+ 2φ−1(a0))cn ≤ [2(2 +L)φ−1

(8)

Substituting (2.4) in (2.3), we get

kxn+1−pk2 ≤ kxn−pk2−2bnφ(2φ−1(a0))

+18[φ−1

(a0)]2(kn−1)bn

+6(1 +L)φ−1

(a0)[2(2 +L)φ−1(a0) +M]b2n

+6φ−1

(a0)(M+ 2φ−1(a0))cn

≤ kxn−pk2+ (kn−1)−φ(2φ−1(a0))bn.

Thus

φ(2φ−1(a0))bn≤ kxn−pk2− kxn+1−pk2+ (kn−1),

implies

φ(2φ−1

(a0)) j

X

n=n0

bn ≤ j

X

n=n0

(kxn−pk2− kxn+1−pk2) + j

X

n=n0

(kn−1)

= kxn0−pk

2

+

j

X

n=n0

(kn−1),

so that as j→ ∞ we have

φ(2φ−1

(a0))

X

n=n0

bn≤ kxn0−pk

2

+

j

X

n=n0

(kn−1)<∞,

which implies that P

bn < ∞, a contradiction. Hence, kxn+1−x∗k ≤ 2φ−1(a0);

thus{xn} is bounded.

Now with the help (2.4) and the conditioncn=o(bn), (2.3) takes the form kxn+1−pk2 ≤ ||xn−p||2−2bnφ(kxn+1−pk)

+2bn[4[φ−1(a0)]2(kn−1)

+2(1 +L)φ−1

(a0)[2(2 +L)φ−1(a0) +M]bn

+2φ−1

(a0)(M+ 2φ−1(a0))tn]. (2.5)

Denote

θn = ||xn−p||,

λn = 2bn,

σn = 2bn[4[φ−1(a0)] 2

(kn−1)

+2(1 +L)φ−1(a0)[2(2 +L)φ−1(a0) +M]bn

+2φ−1

(9)

Condition lim

n→∞bn= 0 assures the existence of a rankn0∈

Nsuch thatλn= 2bn1, for all n ≥ n0. Now with the help of Pn0bn = ∞, cn = o(bn), lim

n→∞bn = 0 and Lemma 2, we obtain from (2.5) that

lim

n→∞||xn−p||= 0, completing the proof.

Corollary 9 Let K be a nonempty closed convex subset of a real Banach space E, T : K → K a uniformly L-Lipschitzian asymptotically pseudocontractive mapping with sequence {kn}n≥0 ⊂[1,∞), lim

n→∞kn = 1 such that p∈F(T) = {x ∈K :T x= x}. Let {αn}n≥0 ⊂[0,1]be such that

P

n≥0αn=∞ and lim

n→∞αn= 0. For arbitrary x0∈K let {xn}n≥0 be iteratively defined by

xn+1 = (1−αn)xn+αnTnxn, n≥0.

Suppose there exists a strictly increasing functionψ: [0,∞)→[0,∞), ψ(0) = 0such that

hTnx−p, j(x−p)i ≤kn||x−p||2−ψ(||x−p||), ∀x∈K.

Then {xn}n≥0 converges strongly to p∈F(T).

References

[1] S. S. Chang,Some results for asymptotically pseudocontractive mappings and asymptotically nonexpansive mappings, Proc. Amer. Math. Soc. 129 (2000) 845– 853.

[2] C. E. Chidume, Iterative algorithm for nonexpansive mappings and some of their generalizations, Nonlinear Anal. (to V. Lakshmikantham on his 80th birthday) 1,2 (2003) 383–429.

[3] C. E. Chidume, Geometric properties of Banach spaces and nonlinear itera-tions, in press.

[4] C. E. Chidume, C. O. Chidume,Convergence theorem for zeros of generalized Lipschitz generalized phi-quasiaccretive operators, Proc. Amer. Math. Soc., 134 (2006) 243-251.

(10)

[6] K. Goebel,W. A. Kirk,A fixed point theorem for asymptotically nonexpansive mappings, Proc. Amer. Math. Soc. 35 (1972) 171–174.

[7] S. Ishikawa,Fixed point by a new iteration method, Proc. Amer. Math. Soc. 44 (1974) 147–150.

[8] L. S. Liu, Ishikawa and Mann iterative process with errors for nonlinear strongly accretive mappings in Banach spaces, J. Math. Anal. Appl. 1945 (1995) 114–125.

[9] W. R. Mann, Mean value methods in iteration, Proc. Amer. Math. Soc. 4 (1953) 506–510.

[10] C. Moore and B. V. C. Nnoli,Iterative solution of nonlinear equations involv-ing set-valued uniformly accretive operators, Computers Math. Applic. 42 (2001), 131-140.

[11] E. U. Ofoedu, Strong convergence theorem for uniformly L-Lipschitzian asymptotically pseudocontractive mapping in real Banach space, J. Math. Anal. Appl. 321 (2) (2006) 722-728.

[12] B. E. Rhoades,A comparison of various definition of contractive mappings, Trans. Amer. Math. Soc. 226 (1977) 257–290.

[13] J. Schu,Iterative construction of fixed point of asymptotically nonexpansive mappings, J. Math. Anal. Appl. 158 (1991) 407–413.

[14] H. K. Xu, Inequalities in Banach spaces with applications, Nonlinear Anal. TMA 16 (12) (1991), 1127-1138.

[15] Y. Xu,Ishikawa and Mann iterative process with errors for nonlinear strongly accretive operator equations, J. Math. Anal. Appl. 224 (1998) 98–101.

Arif Rafiq

Dept. of Mathematics,

COMSATS Institute of Information Technology, Lahore, Pakistan

Referensi

Dokumen terkait

Hal ini berarti bahwa pengusaha mikro dan kecil di Jawa Timur cenderung untuk berpikir sendiri dalam mencari ide tentang produk atau proses bisnis yang baru sekalipun

Demikian pengumuman ini, atas perhatian dan partisipasi Saudara – saudara dalam pelelangan paket pekerjaan konstruksi di atas kami ucapkan

Hal ini menunjukan bahwa karyawan operator alat berat CV Haragon Surabaya kurang mempunyai motivasi kerja yang baik, karena sikap karyawan dalam bekerja tidak

Selanjutnya, ranking dibuat menggunakan skala likert untuk menilai apakah penerapan GCG yang dilakukan perusahaan sudah baik atau tidak, dimana penulis menetapkan (1) sangat

Dari tabel 3.12 diketahui nilai R-Square yang dihasilkan sebesar 0,425, memiliki arti bahwa kemampuan kepuasan akan gaji, motivasi mencapai target penjualan, usia, serta

Berdasarkan Tabel 3.4 di atas, dapat diketahui bahwa dapat diketahui bahwa nilai korelasi variabel leader member exchange (X 1 ) dan kepuasan terhadap bonus (X 2 )

Penelitian ini adalah penelitian kualitatif deskriptif dengan tema desain organisasi Star Model, dari Star Model, yang akan menjelaskan antara Strategy, Structure, People, Process,

Pada indikator kualitas, persentase terbanyak terdapat pada item perubahan dalam pengembangan kualitas yaitu 42.2% dengan frekuensi 35 orang dalam kategori sering yang