• Tidak ada hasil yang ditemukan

Directory UMM :Journals:Journal_of_mathematics:INTEGERS:

N/A
N/A
Protected

Academic year: 2017

Membagikan "Directory UMM :Journals:Journal_of_mathematics:INTEGERS:"

Copied!
3
0
0

Teks penuh

(1)

#A22 INTEGERS 11 (2011)

ON THE NUMBER OF POINTS IN A LATTICE POLYTOPE

Arseniy Akopyan1

Institute for Information Transmission Problems (Kharkevich Institute), Moscow, Russia and Department of Mathematics, University of Texas at Brownsville,

Texas, USA

Makoto Tagami

Mathematical Institute, Tohoku University, Tohoku, Japan [email protected]

Received: 4/9/10, Revised: 10/12/10, Accepted: 1/26/11, Published: 3/24/11

Abstract

In this article we will show that for every naturaldandn >1 there exists a natural number t such that for everyd-dimensional simplicial complexT with vertices in

Zd, the number of lattice points in the tth dilate of T is exactlyχ(T) modulo n,

whereχ(T) is the Euler characteristic ofT.

1 Introduction

This problem was given to one of the authors by Rom Pinchasi. He noticed that if we scale a segment with vertices in a lattice in two times, then the number of lattice points in the scaled segment will be odd. For polygons with vertices in a two-dimensional lattice, the same fact follows from Pick’s formula except that this polygon must be scaled in four times. We will show that the following theorem holds:

Theorem 1. For any natural numbersdandn >1there exists a natural numbert such that ifT is any simplicial complex inRd with vertices in the integer latticeZd then the number of lattice points in the complextT is equivalent to χ(T)modulon.

Hereχ(T) is the Euler characteristic of the complexT andtT denotes the image ofT under similarity with the center at the origin and ratio equal tot.

The proof is based on Stanley’s theorem on the coefficients of Ehrhart polynomi-als [4]. Let us recall the definition of Ehrhart polynomial [2]. A polytope is called a

(2)

INTEGERS 11 (2011) 2 lattice polytope if all the vertices lie onZd. For anyd-dimensional lattice polytope P inRd, there exists a polynomial

L(P, t) =adtd+ad

−1td−1+· · ·+a0, (1)

such that the number of lattice points in the polytope tP is equal to L(P, t). It

is possible to prove that a0 is the Euler characteristic ofP (that is one for convex

polytopes) andadis the volume ofP. Further important properties of Ehrhart poly-nomial and its connection with number theory, combinatorics and discrete geometry could be found in [1].

2 Proof

First we prove the following lemma. Here [·] is the floor function, that is, [x] denotes the largest integer number not greater thanx.

Lemma 2. LetP be a convex polytope inRd with vertices in the integer latticeZd, p be any prime number andl =�

logpd�

. Then for any natural numberk > l, the number of lattice points in the convex polytope pkP is exactly one modulopkl.

Proof. From Stanley’s nonnegativity theorem (more precisely Lemma 3.14 in [1]) it follows that in this case the number of lattice points in the convex polytopetP

equals exactly:

t+d

d �

+h1

t+d −1 d

+· · ·+hd1

t+ 1

d �

+hd �t

d �

, (2)

whereh1,h2, . . . ,hd are nonnegative integer numbers.

Suppose t =pk and m dpl+11. If αis the maximal power of pwhich

dividesmthen (m+pk)/pαm/pα (modpk−l). Using this fact it is easy to show that�t+dd�

≡1 (modpkl). Also from Kummer’s theorem (see [3], exercise 5.36) it follows that for any i= 1,2, . . . , dwe have �t+d−i

d �

≡0 (modpkl). So as we can see, the number of lattice points equals exactly one modulopk−l.

Remark 3. It is easy to see that the statement of Lemma 2 holds for dilation factor apk,aN. For a proof it is su

fficient to apply the Lemma to the polytopeaP.

Proof of Theorem 1. Consider the prime factorization ofn: n=pα11 p

α2

2 p

α3

3 . . . p

αs

s . Let βi =αi+�logpid

. Definet =pβ11 p

β2

2 p

β3

3 . . . pβss.Suppose ∆ is a simplex. By Lemma 2 we have that the number of lattice points in t∆ equals 1 modulo pαi

i for any i = 1,2, . . . , s. From the Chinese remainder theorem, it follows that this number is equivalent to 1 modulon.

(3)

INTEGERS 11 (2011) 3 the number of lattice points modulonis also an additive function, we obtain that the number of lattice points is equivalent to exactlyχ(T) (modn).

Remark 4. As noted by the anonymous referee the statement of Theorem 1 is kind of obvious for t = nd!. It is well-known that for any d-dimensional lattice polytope, all the coefficients of the Ehrhart polynomial are rational numbers and all the denominators except for the constant term 1 are divisors of d!. In other words, the polynomial is of the formL(P, t) = 1 +t·p(t)/d! where the polynomial

p(t) has integer coefficients. So ift=n·d! thenL(P, nd!) = 1 +n·p(n·d!),which is 1 modulon.

Let us show that the numbertobtained in the proof of Theorem 1 is the minimal natural number which satisfies the condition of the Theorem.

Suppose t is not divisible by pβi

i for some i. Let d� =p [logpid]

i and ∆ be ad� -dimensional simplex with vertices (0,0, . . . ,0), (1,0, . . . ,0), . . . , (0,0, . . . ,1). Then the number of lattice points in the simplexx∆ is equal to�x+d�d�

(see [1], Section 2.3). It is easy to see that one can choosexsuch thatt·x≡pβi−1

i (mod p βi

i ). Note that ifa≡b (mod pβi

i ), then

a+k

k �

≡ �b+k

k �

(modpαi

i ), for allk < p βi−αi

i =d�.

Since�pβi− 1

i +d�−1

d�1

≡1 (modpαi

i ), we have

L(x∆, t) =

xt+d

d�

� ≡

pβi−1

i +d� d�

� =

= �

pβi−1

i +d�−1 d�1

·p

βi−1

i +d� d� ≡p

αi−1

i + 1 (modp αi

i ). (3)

Acknowledgment. We wish to thank Rom Pinchasi and Oleg Musin for helpful discussions and remarks. We are grateful to the anonymous referee for his valuable comments.

References

[1] M. Beck and S. Robins. Computing the Continuous Discretely: Integer-Point Enumeration in Polyhedra, Springer Verlag, 2006.

[2] E. Ehrhart. Sur les polyedres rationnels homoth´etiquesan dimensions, CR Acad. Sci. Paris, 254:616–618, 1962.

[3] R.L. Graham, D.E. Knuth, and O. Patashnik. Concrete Math, 1988.

Referensi

Dokumen terkait

Dari ketiga Gambar di atas dapat dilihat bahwa pola gerusan lokal di sekitar pilar adalah sama untuk posisi pilar yang sejajar dengan arah aliran yang datang, tapi yang

[r]

Perbedaan jumlah kotoran sapi dan jerami yang terdapat dalam bahan organik, menunjukkan bahwa perlakuan b1 dengan perbandingan kotoran sapi dan jerami padi 1:1 merupakan

Pada kasus ini gigi pasien yang berjejal atau tidak teratur susunannya, sesudah dilakukan gingivektomi harus dirawat dengan kawat gigi orthodonsi sehingga memudahkan pasien

Setelah diumumkannya Pemenang pengadaan ini, maka kepada Peserta/Penyedia barang/jasa berkeberatan atas pengumuman ini dapat menyampaikan sanggahan secara

Pengadaan Per makanan Pener ima Manfaat pada PSBN Mahatmiya Bali Per iode Bulan Febr uar i s/ d Desember 2016. KELOMPOK KERJA UNIT LAYANAN PENGADAAN I I PSBN

Strategi komunikasi yang dilakukan dalam promosi objek wisata Situ Lengkong ini yaitu bersifat kiasan, dimana strategi dilakukan dengan maksud menyatakan sesuatu

Disimpulkan bahwa tidak ada hubungan anta- ra faktor risiko kepemilikan kucing dengan seropositif IgM/IgG Toksoplasma pada wanita pranikah di Bantul.. Kata kunci: Seropositif